Up: doc_matcont Previous: Bifurcations   Contents
- 1
-
E.L. Allgower and K. Georg, Numerical Continuation Methods: An introduction, Springer-Verlag, 1990 .
- 2
-
W.J. Beyn, A. Champneys, E. Doedel, W. Govaerts, Yu.A. Kuznetsov, and
B. Sandstede, Numerical continuation and computation of normal forms. In:
B. Fiedler, G. Iooss, and N. Kopell (eds.) ``Handbook of Dynamical Systems :
Vol 2", Elsevier 2002, pp 149 - 219.
- 3
-
C. De Boor and B. Swartz, Collocation at Gaussian points, SIAM Journal on Numerical Analysis 10 (1973), pp. 582-606.
- 4
-
A. Dhooge, W. Govaerts and Yu. A. Kuznetsov, MATCONT : A Matlab package for numerical bifurcation
analysis of ODEs, ACM Transactions on Mathematical Software 29(2) (2003), pp. 141-164.
- 5
-
E. Doedel and J Kernévez, AUTO: Software for continuation problems in ordinary differential equations with applications, California Institute of Technology, Applied Mathematics, 1986.
- 6
-
E.J. Doedel, A.R. Champneys, T.F. Fairgrieve, Yu.A. Kuznetsov, B. Sandstede and X.J. Wang,
AUTO97-00 :
Continuation and Bifurcation Software for
Ordinary Differential Equations (with HomCont), User's Guide,
Concordia University, Montreal, Canada (1997-2000).
(http://indy.cs.concordia.ca).
- 7
-
Doedel, E.J., Govaerts W., Kuznetsov, Yu.A.: Computation of Periodic Solution Bifurcations in ODEs using Bordered Systems, SIAM Journal on Numerical Analysis 41,2(2003) 401-435.
- 8
-
Doedel, E.J., Govaerts, W., Kuznetsov, Yu.A., Dhooge A.: Numerical continuation of branch points of equilibria and periodic orbits, (preprint 2003) .
- 9
-
W.J.F. Govaerts, Numerical Methods for Bifurcations of Dynamical Equilibria, SIAM, 2000.
- 10
-
Yu.A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer-Verlag, 1998.
- 11
-
Yu.A. Kuznetsov and V.V. Levitin, CONTENT: Integrated Environment for analysis of dynamical systems. CWI, Amsterdam 1997:
ftp://ftp.cwi.nl/pub/CONTENT
- 12
-
MATLAB, The Mathworks Inc.,
http://www.mathworks.com
.
- 13
-
W. Mestrom, Continuation of limit cycles in MATLAB, Master Thesis,
Mathematical Institute, Utrecht University, The Netherlands, 2002.
- 14
-
Morris, C., Lecar,H., Voltage oscillations in the barnacle giant muscle fiber,Biophys J. 35 (1981) 193-213.
- 15
-
A. Riet, A Continuation Toolbox in MATLAB, Master Thesis, Mathematical
Institute, Utrecht University, The Netherlands, 2000.
- 16
-
D. Roose et al., Aspects of continuation software, in :
Continuation and Bifurcations: Numerical Techniques and Applications,
(eds. D. Roose, B. De Dier and A. Spence), NATO ASI series, Series C,
Vol. 313, Kluwer 1990, pp. 261-268.
- 17
-
Terman, D., Chaotic spikes arising from a model of bursting in excitable membranes, Siam J. Appl. Math. 51 (1991) 1418-1450.
- 18
-
Terman, D., The transition from bursting to continuous spiking in excitable membrane models, J. Nonlinear Sci. 2, (1992) 135-182.
- 19
-
Freire, E., Rodriguez-Luis, A., Gamero E. and Ponce, E., A case study for homoclinic chaos in an autonomous electronic circuit: A trip form Takens-Bogdanov to Hopf- Shilnikov, Physica D 62 (1993) 230-253.
- 20
-
Genesio, R. and Tesi, A. Harmonic balance methods for the analysis
of chaotic dynamics in nonlinear systems. Automatica 28 (1992), 531-548.
- 21
-
Genesio, R., Tesi, A., and Villoresi, F. Models of complex dynamics in
nonlinear systems. Systems Control Lett. 25 (1995), 185-192.
- 22
-
Champneys, A.R.
and Kuznetsov Yu.A. 1994. Numerical detection and continuation of codimension-two homoclinic orbits. Int. J. Bifurcation Chaos, 4(4),
785-822.
- 23
-
Champneys, A.R., Kuznetsov Yu.A. and Sandstede B. 1996. A numerical toolbox for homoclinic bifurcation analysis. Int. J. Bifurcation Chaos, 6(5),
867-887.
- 24
-
Demmel, J.W., Dieci, L. and Friedman, M.J. 2001. Computing
connecting orbits via an improved algorithm for continuing invariant subspaces. SIAM J. Sci.
Comput., 22(1), 81-94.
- 25
-
Doedel, E.J. and Friedman, M.J.: Numerical computation of heteroclinic
orbits, J.
Comp. Appl. Math. 26 (1989) 155-170.
- 26
-
Friedman, M., Govaerts, W., Kuznetsov, Yu.A. and Sautois, B. 2005.
Continuation
of homoclinic orbits in matlab. LNCS, 3514, 263-270.
- 27
-
W.J.F. Govaerts, Numerical Methods for Bifurcations of Dynamical
Equilibria, SIAM, 2000.