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where
A(t) ≡ Df(x̄(t)).

In applying the method of normal forms to (19.13.2), the fact that
A(t) is time dependent causes problems. If x̄(t) is periodic in t, then
A(t) is periodic. Hence, Floquet theory can be used to transform
(19.13.2) to a vector field where the linear part is constant (this is
described in Arnold [1983]). In this case the method of normal forms
as developed in this chapter can then be applied. Recently, Floquet
theory has been generalized to the quasiperiodic case by Johnson
[1986, 1987]; using these ideas, the normal form theory can be ap-
plied in this case also. Recent results along these lines have also been
obtained by Jorba and Simo [1992], Treshchev [1995], and Jorba et
al [1997]. Their results also apply to linear systems with quasiperiod-
ically varying coefficients, and are computationally very efficient.

Concerning center manifold theory, Sell [1978] has proved existence
theorems for stable, unstable, and center manifolds in nonautonomous
systems.

Some very interesting work of Siegmund [2002] has recently appeared
that develops the method of normal forms for very general nonau-
tonomous vector fields.

Smooth Linearization. There exists a number of results concerning dif-
ferentiable coordinate changes that linearize a dynamical system (vec-
tor field or diffeomorphism) in the neighborhood of an invariant man-
ifold. A recent review of these results can be found in Bronstein and
Kopanskii [1994].

Real Normal Forms and Complex Coordinates. We have seen nu-
merous examples in this chapter where the use of complex coordi-
nates simplifies normal form calculations. A systematic development
of this approach can be found in Menck [1993].

Normal Forms for Stochastic Systems. Normal form theory for sto-
chastic dynamical systems has been worked out in Namachchivaya
and Leng [1990] and Namachchivaya and Lin [1991].

20

Bifurcation of Fixed Points of

Vector Fields

Consider the parameterized vector field

ẏ = g(y, λ), y ∈ R
n, λ ∈ R

p, (20.0.1)

where g is a Cr function on some open set in R
n × R

p. The degree of
differentiability will be determined by our need to Taylor expand (20.0.1).
Usually C5 will be sufficient.
Suppose (20.0.1) has a fixed point at (y, λ) = (y0, λ0), i.e.,

g(y0, λ0) = 0. (20.0.2)

Two questions immediately arise.

1. Is the fixed point stable or unstable?

2. How is the stability or instability affected as λ is varied?

To answer Question 1, the first step to take is to examine the linear vector
field obtained by linearizing (20.0.1) about the fixed point (y, λ) = (y0, λ0).
This linear vector field is given by

ξ̇ = Dyg(y0, λ0)ξ, ξ ∈ R
n. (20.0.3)

If the fixed point is hyperbolic (i.e., none of the eigenvalues ofDyg(y0, λ0)
lie on the imaginary axis), we know that the stability of (y0, λ0) in (20.0.1)
is determined by the linear equation (20.0.3) (cf. Chapter 1). This also
enables us to answer Question 2, because since hyperbolic fixed points are
structurally stable (cf. Chapter 12), varying λ slightly does not change the
nature of the stability of the fixed point. This should be clear intuitively,
but let us belabor the point slightly.
We know that

g(y0, λ0) = 0, (20.0.4)

and that
Dyg(y0, λ0) (20.0.5)

has no eigenvalues on the imaginary axis. Therefore, Dyg(y0, λ0) is in-
vertible. By the implicit function theorem, there thus exists a unique Cr

function, y(λ), such that
g(y(λ), λ) = 0 (20.0.6)
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for λ sufficiently close to λ0 with

y(λ0) = y0. (20.0.7)

Now, by continuity of the eigenvalues with respect to parameters, for λ
sufficiently close to λ0,

Dyg(y(λ), λ) (20.0.8)

has no eigenvalues on the imaginary axis. Therefore, for λ sufficiently close
to λ0, the hyperbolic fixed point (y0, λ0) of (20.0.1) persists and its stability
type remains unchanged. To summarize, in a neighborhood of λ0 an isolated
fixed point of (20.0.1) persists and always has the same stability type.

The real fun starts when the fixed point (y0, λ0) of (20.0.1) is not hyper-
bolic, i.e., when Dyg(y0, λ0) has some eigenvalues on the imaginary axis.
In this case, for λ very close to λ0 (and for y close to y0), radically new
dynamical behavior can occur. For example, fixed points can be created or
destroyed and time-dependent behavior such as periodic, quasiperiodic, or
even chaotic dynamics can be created. In a certain sense (to be clarified
later), the more eigenvalues on the imaginary axis, the more exotic the
dynamics will be.
We will begin our study by considering the simplest way in which

Dyg(y0, λ0) can be nonhyperbolic. This is the case where Dyg(y0, λ0) has
a single zero eigenvalue with the remaining eigenvalues having nonzero real
parts. The question we ask in this situation is what is the nature of this
nonhyperbolic fixed point for λ close to λ0? It is under these circumstances
where the real power of the center manifold theory becomes apparent, since
we know that this question can be answered by studying the vector field
(20.0.1) restricted to the associated center manifold (cf. Section 18.2). In
this case the vector field on the center manifold will be a p-parameter fam-
ily of one-dimensional vector fields. This represents a vast simplification of
(20.0.1).

20.1 A Zero Eigenvalue

Suppose that Dyg(y0, λ0) has a single zero eigenvalue with the remaining
eigenvalues having nonzero real parts; then the orbit structure near (y0, λ0)
is determined by the associated center manifold equation, which we write
as

ẋ = f(x, µ), x ∈ R
1, µ ∈ R

p, (20.1.1)

where µ = λ− λ0. Furthermore, we know that (20.1.1) must satisfy

f(0, 0) = 0, (20.1.2)

∂f

∂x
(0, 0) = 0. (20.1.3)
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Equation (20.1.2) is simply the fixed point condition and (20.1.3) is the
zero eigenvalue condition. We remark that (20.1.1) is Cr if (20.0.1) is Cr.
Let us begin by studying a few specific examples. In these examples we will
assume

µ ∈ R
1.

If there are more parameters in the problem (i.e., µ ∈ R
p, p > 1), we

will consider all, except one, as fixed. Later we will consider more carefully
the role played by the number of parameters in the problem. We remark
also that we have not yet precisely defined what we mean by the term
“bifurcation.” We will consider this after the following series of examples.

20.1a Examples

Example 20.1.1. Consider the vector field

ẋ = f(x, µ) = µ− x2, x ∈ R
1, µ ∈ R

1. (20.1.4)

It is easy to verify that
f(0, 0) = 0 (20.1.5)

and
∂f

∂x
(0, 0) = 0, (20.1.6)

but in this example we can determine much more. The set of all fixed points of
(20.1.4) is given by

µ− x2 = 0

or
µ = x2. (20.1.7)

This represents a parabola in the µ− x plane as shown in Figure 20.1.1.

FIGURE 20.1.1.

In the figure the arrows along the vertical lines represent the flow generated
by (20.1.4) along the x-direction. Thus, for µ < 0, (20.1.4) has no fixed points,



20.1 A Zero Eigenvalue 359

and the vector field is decreasing in x. For µ > 0, (20.1.4) has two fixed points.
A simple linear stability analysis shows that one of the fixed points is stable
(represented by the solid branch of the parabola), and the other fixed point is
unstable (represented by the broken branch of the parabola). However, we hope
that it is obvious to the reader that, given a Cr (r ≥ 1) vector field on R

1 having
only two hyperbolic fixed points, one must be stable and the other unstable.

This is an example of bifurcation. We refer to (x, µ) = (0, 0) as a bifurcation

point and the parameter value µ = 0 as a bifurcation value.
Figure 20.1.1 is referred to as a bifurcation diagram. This particular type of

bifurcation (i.e., where on one side of a parameter value there are no fixed points
and on the other side there are two fixed points) is referred to as a saddle-

node bifurcation. Later on we will worry about seeking precise conditions on
the vector field on the center manifold that define the saddle-node bifurcation
unambiguously.

End of Example 20.1.1

Example 20.1.2. Consider the vector field

ẋ = f(x, µ) = µx− x2, x ∈ R
1, µ ∈ R

1. (20.1.8)

It is easy to verify that
f(0, 0) = 0 (20.1.9)

and
∂f(0, 0)

∂x
= 0. (20.1.10)

Moreover, the fixed points of (20.1.8) are given by

x = 0 (20.1.11)

and
x = µ (20.1.12)

FIGURE 20.1.2.
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and are plotted in Figure 20.1.2. Hence, for µ < 0, there are two fixed points;
x = 0 is stable and x = µ is unstable. These two fixed points coalesce at µ = 0
and, for µ > 0, x = 0 is unstable and x = µ is stable. Thus, an exchange of
stability has occurred at µ = 0. This type of bifurcation is called a transcritical

bifurcation.

End of Example 20.1.2

Example 20.1.3. Consider the vector field

ẋ = f(x, µ) = µx− x3, x ∈ R
1, µ ∈ R

1. (20.1.13)

It is clear that we have
f(0, 0) = 0, (20.1.14)

FIGURE 20.1.3.

∂f

∂x
(0, 0) = 0. (20.1.15)

Moreover, the fixed points of (20.1.13) are given by

x = 0 (20.1.16)

and
x2 = µ (20.1.17)

and are plotted in Figure 20.1.3.
Hence, for µ < 0, there is one fixed point, x = 0, which is stable. For µ > 0,

x = 0 is still a fixed point, but two new fixed points have been created at µ = 0
and are given by x2 = µ. In the process, x = 0 has become unstable for µ > 0,
with the other two fixed points stable. This type of bifurcation is called a pitchfork
bifurcation.

End of Example 20.1.3
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Example 20.1.4. Consider the vector field

ẋ = f(x, µ) = µ− x3, x ∈ R
1, µ ∈ R

1. (20.1.18)

It is trivial to verify that
f(0, 0) = 0 (20.1.19)

and
∂f

∂x
(0, 0) = 0. (20.1.20)

FIGURE 20.1.4.

Moreover, all fixed points of (20.1.18) are given by

µ = x3 (20.1.21)

and are shown in Figure 20.1.4.
However in this example, despite (20.1.19) and (20.1.20), the dynamics of

(20.1.18) are qualitatively the same for µ > 0 and µ < 0. Namely, (20.1.18)
possesses a unique, stable fixed point.

End of Example 20.1.4

20.1b What Is A “Bifurcation of a Fixed Point”?

The term “bifurcation” is extremely general. We will begin to learn its
uses in dynamical systems by understanding its use in describing the orbit
structure near nonhyperbolic fixed points. Let us consider what we learned
from the previous examples.
In all four examples we had

f(0, 0) = 0
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and
∂f

∂x
(0, 0) = 0,

and yet the orbit structure near µ = 0 was different in all four cases.
Hence, knowing that a fixed point has a zero eigenvalue for µ = 0 is not
sufficient to determine the orbit structure for λ near zero. Let us consider
each example individually.

1. (Example 20.1.1). In this example a unique curve (or branch) of fixed
points passed through the origin. Moreover, the curve lay entirely on
one side of µ = 0 in the µ− x plane.

2. (Example 20.1.2). In this example two curves of fixed points inter-
sected at the origin in the µ− x plane. Both curves existed on either
side of µ = 0. However, the stability of the fixed point along a given
curve changed on passing through µ = 0.

3. (Example 20.1.3). In this example two curves of fixed points inter-
sected at the origin in the µ − x plane. Only one curve (x = 0)
existed on both sides of µ = 0; however, its stability changed on
passing through µ = 0. The other curve of fixed points lay entirely
to one side of µ = 0 and had a stability type that was the opposite
of x = 0 for µ > 0.

4. (Example 20.1.4). This example had a unique curve of fixed points
passing through the origin in the µ − x plane and existing on both
sides of µ = 0. Moreover, all fixed points along the curve had the same
stability type. Hence, despite the fact that the fixed point (x, µ) =
(0, 0) was nonhyperbolic, the orbit structure was qualitatively the
same for all µ.

We want to apply the term “bifurcation” to Examples 20.1.1, 20.1.2, and
20.1.3 but not to Example 20.1.4 to describe the change in orbit structure
as µ passes through zero. We are therefore led to the following definition.

Definition 20.1.1 (Bifurcation of a Fixed Point) A fixed point (x, µ)
= (0, 0) of a one-parameter family of one-dimensional vector fields is said
to undergo a bifurcation at µ = 0 if the flow for µ near zero and x near
zero is not qualitatively the same as the flow near x = 0 at µ = 0.

Several remarks are now in order concerning this definition.

Remark 1. The phrase “qualitatively the same” is a bit vague. It can be
made precise by substituting the term “C0-equivalent” (cf. Section 19.12),
and this is perfectly adequate for the study of the bifurcation of fixed
points of one-dimensional vector fields. However, we will see that as we
explore higher dimensional phase spaces and global bifurcations, how to
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make mathematically precise the statement “two dynamical systems have
qualitatively the same dynamics” becomes more and more ambiguous.

Remark 2. Practically speaking, a fixed point (x0, µ0) of a one-dimensional
vector field is a bifurcation point if either more than one curve of fixed
points passes through (x0, µ0) in the µ − x plane or if only one curve of
fixed points passes (x0, µ0) in the µ−x plane; then it (locally) lies entirely
on one side of the line µ = µ0 in the µ− x plane.

Remark 3. It should be clear from Example 20.1.4 that the condition that
a fixed point is nonhyperbolic is a necessary but not sufficient condition for
bifurcation to occur in one-parameter families of vector fields.

We next turn to deriving general conditions on one-parameter families
of one-dimensional vector fields which exhibit bifurcations exactly as in
Examples 20.1.1, 20.1.2, and 20.1.3.

20.1c The Saddle-Node Bifurcation

We now want to derive conditions under which a general one-parameter
family of one-dimensional vector fields will undergo a saddle-node bifurca-
tion exactly as in Example 20.1.1. These conditions will involve derivatives
of the vector field evaluated at the bifurcation point and are obtained by
a consideration of the geometry of the curve of fixed points in the µ − x
plane in a neighborhood of the bifurcation point.
Let us recall Example 20.1.1. In this example a unique curve of fixed

points, parameterized by x, passed through (µ, x) = (0, 0). We denote the
curve of fixed points by µ(x). The curve of fixed points satisfied two prop-
erties.

1. It was tangent to the line µ = 0 at x = 0, i.e.,

dµ

dx
(0) = 0. (20.1.22)

2. It lay entirely to one side of µ = 0. Locally, this will be satisfied if we
have

d2µ

dx2
(0) #= 0. (20.1.23)

Now let us consider a general, one-parameter family of one-dimensional
vector fields.

ẋ = f(x, µ), x ∈ R
1, µ ∈ R

1. (20.1.24)

Suppose (20.1.24) has a fixed point at (x, µ) = (0, 0), i.e.,

f(0, 0) = 0. (20.1.25)
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Furthermore, suppose that the fixed point is not hyperbolic, i.e.,

∂f

∂x
(0, 0) = 0. (20.1.26)

Now, if we have
∂f

∂µ
(0, 0) #= 0, (20.1.27)

then, by the implicit function theorem, there exists a unique function

µ = µ(x), µ(0) = 0 (20.1.28)

defined for x sufficiently small such that f(x, µ(x)) = 0. (Note: the reader
should check that (20.1.27) holds in Example 20.1.1.) Now we want to
derive conditions in terms of derivatives of f evaluated at (µ, x) = (0, 0) so
that we have

dµ

dx
(0) = 0, (20.1.29)

d2µ

dx2
(0) #= 0. (20.1.30)

Equations (20.1.29) and (20.1.30), along with (20.1.25), (20.1.26), and
(20.1.27), imply that (µ, x) = (0, 0) is a bifurcation point at which a saddle-
node bifurcation occurs.
We can derive expressions for (20.1.29) and (20.1.30) in terms of deriva-

tives of f at the bifurcation point by implicitly differentiating f along the
curve of fixed points.
Using (20.1.27), we have

f(x, µ(x)) = 0. (20.1.31)

Differentiating (20.1.31) with respect to x gives

df

dx
(x, µ(x)) = 0 =

∂f

∂x
(x, µ(x)) +

∂f

∂µ
(x, µ(x))

dµ

dx
(x). (20.1.32)

Evaluating (20.1.32) at (µ, x) = (0, 0), we obtain

dµ

dx
(0) =

−∂f
∂x

(0, 0)

∂f

∂µ
(0, 0)

; (20.1.33)

thus we see that (20.1.26) and (20.1.27) imply that

dµ

dx
(0) = 0, (20.1.34)

i.e., the curve of fixed points is tangent to the line µ = 0 at x = 0.
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FIGURE 20.1.5.

a)
(

−
∂2f

∂x2
(0, 0)/ ∂f

∂µ
(0, 0)

)

> 0; b)
(

−
∂2f

∂x2
(0, 0)/ ∂f

∂µ
(0, 0)

)

< 0.

Next, let us differentiate (20.1.32) once more with respect to x to obtain

d2f

dx2
(x, µ(x)) = 0 =

∂2f

∂x2
(x, µ(x)) + 2

∂2f

∂x∂µ
(x, µ(x))

dµ

dx
(x)

+
∂2f

∂µ2
(x, µ(x))

(

dµ

dx
(x)

)2

+
∂f

∂µ
(µ, µ(x))

d2µ

dx2
(x). (20.1.35)

Evaluating (20.1.35) at (µ, x) = (0, 0) and using (20.1.33) gives

∂2f

∂x2
(0, 0) +

∂f

∂µ
(0, 0)

d2µ

dx2
(0) = 0

or

d2µ

dx2
(0) =

−∂
2f

∂x2
(0, 0)

∂f

∂µ
(0, 0)

. (20.1.36)

Hence, (20.1.36) is nonzero provided we have

∂2f

∂x2
(0, 0) #= 0. (20.1.37)
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Let us summarize. In order for (20.1.24) to undergo a saddle-node bifur-
cation we must have

f(0, 0) = 0

∂f

∂x
(0, 0) = 0











nonhyperbolic fixed point (20.1.38)

and
∂f

∂µ
(0, 0) #= 0, (20.1.39)

∂2f

∂x2
(0, 0) #= 0. (20.1.40)

Equation (20.1.39) implies that a unique curve of fixed points passes
through (µ, x) = (0, 0), and (20.1.40) implies that the curve lies locally on
one side of µ = 0. It should be clear that the sign of (20.1.36) determines
on which side of µ = 0 the curve lies. In Figure 20.1.5 we show both cases
without indicating stability and leave it as an exercise for the reader to
verify the stability types of the different branches of fixed points emanating
from the bifurcation point.
Let us end our discussion of the saddle-node bifurcation with the follow-

ing remark. Consider a general one-parameter family of one-dimensional
vector fields having a nonhyperbolic fixed point at (x, µ) = (0, 0). The
Taylor expansion of this vector field is given as follows

f(x, µ) = a0µ+ a1x
2 + a2µx+ a3µ

2 +O(3). (20.1.41)

Our computations show that the dynamics of (20.1.41) near (µ, x) = (0, 0)
are qualitatively the same as one of the following vector fields

ẋ = µ± x2. (20.1.42)

Hence, (20.1.42) can be viewed as the normal form for saddle-node bifur-
cations.

This brings up another important point. In applying the method of nor-
mal forms there is always the question of truncation of the normal form;
namely, how are the dynamics of the normal form including only the O(k)
terms modified when the higher order terms are included? We see that,
in the study of the saddle-node bifurcation, all terms of O(3) and higher
could be neglected and the dynamics would not be qualitatively changed.
The implicit function theorem was the tool that enabled us to verify this
fact.

20.1d The Transcritical Bifurcation

We want to follow the same strategy as in our discussion and derivation
of general conditions for the saddle-node bifurcation given in the previous



20.1 A Zero Eigenvalue 367

section, namely, to use the implicit function theorem to characterize the
geometry of the curves of fixed points passing through the bifurcation point
in terms of derivatives of the vector field evaluated at the bifurcation point.
For the example of transcritical bifurcation discussed in Example 20.1.2,

the orbit structure near the bifurcation point was characterized as follows.

1. Two curves of fixed points passed through (x, µ) = (0, 0), one given
by x = µ, the other by x = 0.

2. Both curves of fixed points existed on both sides of µ = 0.

3. The stability along each curve of fixed points changed on passing
through µ = 0.

Using these three points as a guide, let us consider a general one-parameter
family of one-dimensional vector fields

ẋ = f(x, µ), x ∈ R
1, µ ∈ R

1. (20.1.43)

We assume that at (x, µ) = (0, 0), (20.1.43) has a nonhyperbolic fixed point,
i.e.,

f(0, 0) = 0 (20.1.44)

and
∂f

∂x
(0, 0) = 0. (20.1.45)

Now, in Example 20.1.2 we had two curves of fixed points passing through
(µ, x) = (0, 0). In order for this to occur it is necessary to have

∂f

∂µ
(0, 0) = 0, (20.1.46)

or else, by the implicit function theorem, only one curve of fixed points
could pass through the origin.

Equation (20.1.46) presents a problem if we wish to proceed as in the
case of the saddle-node bifurcation; in that situation we used the condition
∂f
∂µ (0, 0) #= 0 in order to conclude that a unique curve of fixed points,

µ(x), passed through the bifurcation point. We then evaluated the vector
field on the curve of fixed points and used implicit differentiation to derive
local characteristics of the geometry of the curve of fixed points based on
properties of the derivatives of the vector field evaluated at the bifurcation
point. However, if we use Example 20.1.2 as a guide, we can extricate
ourselves from this difficulty.
In Example 20.1.2, x = 0 was a curve of fixed points passing through the

bifurcation point. We will require that to be the case for (20.1.43), so that
(20.1.43) has the form

ẋ = f(x, µ) = xF (x, µ), x ∈ R
1, µ ∈ R

1, (20.1.47)
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where, by definition, we have

F (x, µ) ≡







f(x,µ)
x , x #= 0

∂f
∂x (0, µ), x = 0







. (20.1.48)

Since x = 0 is a curve of fixed points for (20.1.47), in order to obtain an
additional curve of fixed points passing through (µ, x) = (0, 0) we need
to seek conditions on F whereby F has a curve of zeros passing through
(µ, x) = (0, 0) (that is not given by x = 0). These conditions will be in terms
of derivatives of F which, using (20.1.48), can be expressed as derivatives
of f .

Using (20.1.48), it is easy to verify the following

F (0, 0) = 0, (20.1.49)

∂F

∂x
(0, 0) =

∂2f

∂x2
(0, 0), (20.1.50)

∂2F

∂x2
(0, 0) =

∂3f

∂x3
(0, 0), (20.1.51)

and (most importantly)

∂F

∂µ
(0, 0) =

∂2f

∂x∂µ
(0, 0). (20.1.52)

Now let us assume that (20.1.52) is not zero; then by the implicit function
theorem there exists a function, µ(x), defined for x sufficiently small, such
that

F (x, µ(x)) = 0. (20.1.53)

Clearly, µ(x) is a curve of fixed points of (20.1.47). In order for µ(x) to not
coincide with x = 0 and to exist on both sides of µ = 0, we must require
that

0 <

∣

∣

∣

∣

dµ

dx
(0)

∣

∣

∣

∣

<∞.

Implicitly differentiating (20.1.53) exactly as in the case of the saddle-node
bifurcation we obtain

dµ

dx
(0) =

−∂F
∂x (0, 0)

∂F
∂µ (0, 0)

. (20.1.54)

Using (20.1.49), (20.1.50), (20.1.51), and (20.1.52), (20.1.54) becomes

dµ

dx
(0) =

−∂2f
∂x2 (0, 0)
∂2f
∂x∂µ (0, 0)

. (20.1.55)
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FIGURE 20.1.6.

a)
(

−
∂2f

∂x2
(0, 0)/ ∂2f

∂x∂µ
(0, 0)

)

> 0; b)
(

−
∂2f

∂x2
(0, 0)/ ∂2f

∂x∂µ
(0, 0)

)

< 0.

We now summarize our results. In order for a vector field

ẋ = f(x, µ), x ∈ R
1, µ ∈ R

1, (20.1.56)

to undergo a transcritical bifurcation, we must have

f(0, 0) = 0

∂f

∂x
(0, 0) = 0











nonhyperbolic fixed point (20.1.57)

and
∂f

∂µ
(0, 0) = 0, (20.1.58)

∂2f

∂x∂µ
(0, 0) #= 0, (20.1.59)

∂2f

∂x2
(0, 0) #= 0. (20.1.60)

We note that the slope of the curve of fixed points not equal to x = 0 is
given by (20.1.55). These two cases are shown in Figure 20.1.6; however, we
do not indicate stabilities of the different branches of fixed points. We leave
it as an exercise to the reader to verify the stability types of the different
curves of fixed points emanating from the bifurcation point.
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Thus, (20.1.57), (20.1.58), (20.1.59), and (20.1.60) show that the orbit
structure near (x, µ) = (0, 0) is qualitatively the same as the orbit structure
near (x, µ) = (0, 0) of

ẋ = µx∓ x2. (20.1.61)

Equation (20.1.61) can be viewed as a normal form for the transcritical
bifurcation.

20.1e The Pitchfork Bifurcation

The discussion and derivation of conditions under which a general one-
parameter family of one-dimensional vector fields will undergo a bifurcation
of the type shown in Example 20.1.3 follows very closely our discussion of
the transcritical bifurcation.

The geometry of the curves of fixed points associated with the bifurcation
in Example 20.1.3 had the following characteristics.

1. Two curves of fixed points passed through (µ, x) = (0, 0), one given
by x = 0, the other by µ = x2.

2. The curve x = 0 existed on both sides of µ = 0; the curve µ = x2

existed on one side of µ = 0.

3. The fixed points on the curve x = 0 had different stability types on
opposite sides of µ = 0. The fixed points on µ = x2 all had the same
stability type.

Now we want to consider conditions on a general one-parameter family
of one-dimensional vector fields having two curves of fixed points passing
through the bifurcation point in the µ − x plane that have the properties
given above.
We denote the vector field by

ẋ = f(x, µ), x ∈ R
1, µ ∈ R

1, (20.1.62)

and we suppose
f(0, 0) = 0, (20.1.63)

∂f

∂x
(0, 0) = 0. (20.1.64)

As in the case of the transcritical bifurcation, in order to have more than
one curve of fixed points passing through (µ, x) = (0, 0) we must have

∂f

∂µ
(0, 0) = 0. (20.1.65)

Proceeding further along these lines, we require x = 0 to be a curve of fixed
points for (20.1.62) by assuming the vector field (20.1.62) has the form

ẋ = xF (x, µ), x ∈ R
1, µ ∈ R

1, (20.1.66)
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where

F (x, µ) ≡







f(x,µ)
x , x #= 0

∂f
∂x (0, µ), x = 0







. (20.1.67)

In order to have a second curve of fixed points passing through (µ, x) =
(0, 0) we must have

F (0, 0) = 0 (20.1.68)

with
∂F

∂µ
(0, 0) #= 0. (20.1.69)

Equation (20.1.69) insures that only one additional curve of fixed points
passes through (µ, x) = (0, 0). Also, using (20.1.69), the implicit function
theorem implies that for x sufficiently small there exists a unique function
µ(x) such that

F (x, µ(x)) = 0. (20.1.70)

In order for the curve of fixed points, µ(x), to satisfy the above-mentioned
characteristics, it is sufficient to have

dµ

dx
(0) = 0 (20.1.71)

and
d2µ

dx2
(0) #= 0. (20.1.72)

The conditions for (20.1.71) and (20.1.72) to hold in terms of the deriva-
tives of F evaluated at the bifurcation point can be obtained via implicit
differentiation of (20.1.70) along the curve of fixed points exactly as in the
case of the saddle-node bifurcation. They are given by

dµ

dx
(0) =

−∂F
∂x (0, 0)

∂F
∂µ (0, 0)

= 0 (20.1.73)

and
d2µ

dx2
(0) =

−∂2F
∂x2 (0, 0)
∂F
∂µ (0, 0)

#= 0. (20.1.74)

Using (20.1.67), (20.1.73) and (20.1.74) can be expressed in terms of deriva-
tives of f as follows

dµ

dx
(0) =

−∂2f
∂x2 (0, 0)
∂2f
∂x∂µ (0, 0)

= 0 (20.1.75)

and
d2µ

dx2
(0) =

−∂3f
∂x3 (0, 0)
∂2f
∂x∂µ (0, 0)

#= 0. (20.1.76)
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We summarize as follows. In order for the vector field

ẋ = f(x, µ), x ∈ R
1, µ ∈ R

1, (20.1.77)

to undergo a pitchfork bifurcation at (x, µ) = (0, 0), it is sufficient to have

f(0, 0) = 0

∂f

∂x
(0, 0) = 0











nonhyperbolic fixed point (20.1.78)

FIGURE 20.1.7.

a)
(

−
∂3f

∂x3
(0, 0)/ ∂2f

∂x∂µ
(0, 0)

)

> 0; b)
(

−
∂3f

∂x3
(0, 0)/ ∂2f

∂x∂µ
(0, 0)

)

< 0.

with
∂f

∂µ
(0, 0) = 0, (20.1.79)

∂2f

∂x2
(0, 0) = 0, (20.1.80)

∂2f

∂x∂µ
(0, 0) #= 0, (20.1.81)

∂3f

∂x3
(0, 0) #= 0. (20.1.82)

There are two possibilities for the disposition of the two branches of fixed
points depending on the sign of (20.1.76). These two possibilities are shown
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in Figure 20.1.7 without indicating stabilities. We leave it as an exercise for
the reader to verify the stability types for the different branches of fixed
points emanating from the bifurcation point.
We conclude by noting that (20.1.78), (20.1.79), (20.1.80), (20.1.81), and

(20.1.82) imply that the orbit structure near (x, µ) = (0, 0) is qualitatively
the same as the orbit structure near (x, µ) = (0, 0) in the vector field

ẋ = µx∓ x3. (20.1.83)

Thus, (20.1.83) can be viewed as a normal form for the pitchfork bifurca-
tion.

20.1f Exercises

1. In our development of the transcritical and pitchfork bifurcations we assumed that
x = 0 was a trivial solution. Was this necessary? In particular, would the conditions
for transcritical and pitchfork bifurcations change if this were not the case?

2. Consider a C
r (r ≥ 1) autonomous vector field on R

1 having precisely two hyperbolic

fixed points. Can you infer the nature of the stability of the two fixed points? How
does the situation change if one of the fixed points is not hyperbolic? Can both fixed
points be nonhyperbolic? Construct explicit examples illustrating each situation.

3. Consider the saddle-node bifurcation for vector fields and Figure 20.1.5. For the case
(

−
∂2f

∂x2
(0, 0)/ ∂f

∂µ
(0, 0)

)

> 0, give conditions under which the upper part of the curve

of fixed points is stable and the lower part is unstable. Alternatively, give conditions
under which the upper part of the curve of fixed points is unstable and the lower part
is stable.

Repeat the exercise for the case
(

−
∂2f

∂x2
(0, 0)/ ∂f

∂µ
(0, 0)

)

< 0.

4. Consider the transcritical bifurcation for vector fields and Figure 20.1.6. For the case
(

−
∂2f

∂x2
(0, 0)/ ∂2f

∂x∂µ
(0, 0)

)

> 0, give conditions for x = 0 to be stable for µ > 0 and

unstable for µ < 0. Alternatively, give conditions for x = 0 to be unstable for µ > 0
and stable for µ < 0.

Repeat the exercise for the case
(

−
∂2f

∂x2
(0, 0)/ ∂2f

∂x∂µ
(0, 0)

)

< 0.

5. Consider the pitchfork bifurcation for vector fields and Figure 20.1.7. For the case
(

−
∂3f

∂x3
(0, 0)/ ∂2f

∂x∂µ
(0, 0)

)

> 0, give conditions for x = 0 to be stable for µ > 0 and

unstable for µ < 0. Alternatively, give conditions for x = 0 to be unstable for µ > 0
and stable for µ < 0.

Repeat the exercise for the case
(

−
∂3f

∂x3
(0, 0)/ ∂2f

∂x∂µ
(0, 0)

)

< 0.

6. In Exercise 4 following Chapter 18 we computed center manifolds near the origin for
the following one-parameter families of vector fields. Describe the bifurcations of the
origin. In, for example, a) and a′) the parameter ε multiplies a linear and nonlinear
term, respectively. In terms of bifurcations, is there a qualitative difference in the two
cases? What kinds of general statements can you make?

a) θ̇ = −θ + εv + v
2
,

v̇ = − sin θ,
(θ, v) ∈ S

1
× R

1
.

a′) θ̇ = −θ + v
2
+ εv

2
,

v̇ = − sin θ.
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b)
ẋ =

1

2
x+ y + x

2
y,

ẏ = x+ 2y + εy + y
2
,

(x, y) ∈ R
2
.

b′)
ẋ =

1

2
x+ y + x

2
y,

ẏ = x+ 2y + y
2
+ εy

2
.

d)
ẋ = 2x+ 2y + εy,

ẏ = x+ y + x
4
,

(x, y) ∈ R
2
.

d′)
ẋ = 2x+ 2y,

ẏ = x+ y + x
4
+ εy

2
.

f)
ẋ = −2x+ 3y + εx+ y

3
,

ẏ = 2x− 3y + x
3
,

(x, y) ∈ R
2
.

f′)
ẋ = −2x+ 3y + y

3
+ εx

2
,

ẏ = 2x− 3y + x
3
.

h)
ẋ = −x+ y,

ẏ = −e
x
+ e

−x
+ 2x+ εy,

(x, y) ∈ R
2
.

h′)
ẋ = −x+ y + εx

2
,

ẏ = −e
x
+ e

−x
+ 2x.

i)
ẋ = −2x+ y + z + εx+ y

2
z,

ẏ = x− 2y + z + εx+ xz
2
,

ż = x+ y − 2z + εx+ x
2
y,

(x, y, z) ∈ R
3
.

i′)
ẋ = −2x+ y + z + εx

2
+ y

2
z,

ẏ = x− 2y + z + εxy + xz
2
,

ż = x+ y − 2z + x
2
y.

j)
ẋ = −x− y + z

2
,

ẏ = 2x+ y + εy − z
2
,

ż = x+ 2y − z,

(x, y, z) ∈ R
3
.

j′)
ẋ = −x− y + εx

2
+ z

2
,

ẏ = 2x+ y − z
2
+ εy

2
,

ż = x+ 2y − z.

k)
ẋ = −x− y − z + εx− yz,
ẏ = −x− y − z − xz,
ż = −x− y − z − yz,

(x, y, z) ∈ R
3
.

k′)
ẋ = −x− y − z − yz + εx

2
,

ẏ = −x− y − z − xz,
ż = −x− y − z − xy.

l)
ẋ = y + x

2
+ εy,

ẏ = −y − x
2
,

(x, y) ∈ R
2
.

l′)
ẋ = y + x

2
+ εy

2
,

ẏ = −y − x
2
.

m)
ẋ = x

2
+ εy,

ẏ = −y − x
2
,

(x, y) ∈ R
2
.

m′)
ẋ = x

2
+ εy

2
,

ẏ −−y − x
2
.



20.1 A Zero Eigenvalue 375

7. Center Manifolds at a Saddle-node Bifurcation Point for Vector Fields

In developing the center manifold theory for parametrized families of vector fields, we
dealt with equations of the following form

ẋ = Ax+ f(x, y, ε),
ẏ = By + g(x, y, ε),

(x, y, ε) ∈ R
c
× R

s
× R

p
, (20.1.84)

where A is a c × c matrix whose eigenvalues all have zero real parts, B is an s × s
matrix whose eigenvalues all have negative real parts, and

f(0, 0, 0) = 0, Df(0, 0, 0) = 0,
g(0, 0, 0) = 0, Dg(0, 0, 0) = 0.

(20.1.85)

The conditions Df(0, 0, 0) = 0, Dg(0, 0, 0) = 0 do not allow for terms that are linear in
the parameter ε. Clearly, this may not be the case at a saddle-node bifurcation point,
and we want to consider this issue in this exercise. Although this could have been
done in Chapter 18, in that chapter we were introducing only center manifold theory
and were not really concerned with bifurcations. In this case the form of the equations
given by (20.1.84) and (20.1.85) was the “cleanest and quickest” way to introduce the
notion of parametrized families of center manifolds.

We will start at a very basic level. Consider the C
r (r as large as necessary) vector

field
ż = F (z, ε), (z, ε) ∈ R

c+s
× R

p
. (20.1.86)

Suppose that (z, ε) = (0, 0) is a fixed point of (20.1.86) at which the matrix

DzF (0, 0) (20.1.87)

has c eigenvalues with zero real parts and s eigenvalues with negative real parts.
Our goal is to apply the center manifold theory in order to examine the dynamics
of (20.1.86) near (z, ε) = (0, 0).

We rewrite Equation (20.1.86) as follows

ż = DzF (0, 0)z +DεF (0, 0)ε+G(z, ε), (20.1.88)

where

G(z, ε) =
[

F (z, ε)−DzF (0, 0)z −DεF (0, 0)ε
]

= O(2) (20.1.89)

in z and ε. Note that the term “DεF (0, 0)ε” in (20.1.88) is the new wrinkle—it was
zero under our previous assumptions. For notational purposes we let

DzF (0, 0) ≡M −(c+ s)× (c+ s) matrix,
DεF (0, 0) ≡ Λ −(c+ s)× p matrix,

so that (20.1.88) becomes
ż = Mz + Λε+G(z, ε). (20.1.90)

Now let T be the (s+c)× (s+c) matrix that puts M into the following block diagonal
form

T
−1

MT =

(

A 0
0 B

)

, (20.1.91)

where A is a (c × c) matrix with all eigenvalues having zero real parts and B is an
(s× s) matrix with all eigenvalues having negative real parts. If we let

z = Tw, (x, y) ∈ R
c
× R

s
, (20.1.92)

where w = (x, y), and apply this linear transformation to (20.1.90), we obtain

(

ẋ
ẏ

)

=

(

A 0
0 B

)(

x
y

)

+ Λε+

(

f(x, y, ε)
g(x, y, ε)

)

, (20.1.93)

where
Λ ≡ T

−1
Λ,
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(

f(x, y, ε)
g(x, y, ε)

)

≡ T
−1

G(T (x, y), ε).

Note that f(0, 0, 0) = 0, g(0, 0, 0) = 0, Df(0, 0, 0) = 0, and Dg(0, 0, 0) = 0. Next, let

Λ =

(

Λc

Λs

)

,

where Λc corresponds to the first c rows of Λ, and Λs corresponds to the last s rows
of Λ. Then (20.1.93) can be rewritten as

(

ẋ
ε̇
ẏ

)

=





A Λc 0
0 0 0
0 Λs B





(

x
ε
y

)

+

(

f(x, y, ε)
0

g(x, y, ε)

)

. (20.1.94)

The reader should recognize that (20.1.94) is “almost” in the standard normal form for
application of the center manifold theory. The final step would be to introduce a linear
transformation that block diagonalizes the linear part of (20.1.94) into a (c+p)×(c+p)
matrix with eigenvalues all having zero real parts (and p identically zero) and an (s×s)
matrix with all eigenvalues having negative real parts.

a) Carry out this final step and discuss applying the center manifold theorem to
the resulting system. In particular, do the relevant theorems from Chapter 18
go through?

Before we work out some specific problems, let us first answer an example.

Consider the vector field

ẋ = ε+ x
2
+ y

2
,

ẏ = −y + x
2
,

(x, y, ε) ∈ R
3
. (20.1.95)

It should be clear that (x, y, ε) = (0, 0, 0) is a fixed point of (20.1.95). We want to
study the orbit structure near this fixed point for ε small. Rewriting (20.1.95) in the
form of (20.1.94) gives

(

ẋ
ε̇
ẏ

)

=

(

0 1 0
0 0 0
0 0 −1

)(

x
ε
y

)

+

(

x2 + y2

0
x2

)

. (20.1.96)

We seek a center manifold of the form

h(x, ε) = ax
2
+ bxε+ cε

2
+O(3).

Utilizing the usual procedure for calculating the center manifold, we obtain

h(x, ε) = x
2
− 2xε+ 2ε

2
+O(3).

The vector field restricted to the center manifold is then given by

ẋ = ε+ x
2
+O(4),

ε̇ = 0.

Hence, a saddle-node bifurcation occurs at ε = 0.

Now consider the following vector fields

b)
ẋ = ε+ x

4
+ y

2
,

ẏ = −y + x
3
,

(x, y, ε) ∈ R
3
.

c)
ẋ = ε+ x

2
− y

3
,

ẏ = ε− y + x
2
.

d)
ẋ = ε+ εx+ x

2
,

ẏ = −y + x
2
.
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e)
ẋ = ε+ εx+ x

2
,

ẏ = ε− y + x
2
.

f) ẋ = ε+
1

2
x+ y + x

3
,

ẏ = x+ 2y − xy.

g)
ẋ = 2ε+ 2x+ 2y,

ẏ = ε+ x+ y + y
2
.

h) ẋ = ε− 2x+ 2y − x
4
,

ẏ = 2x− 2y.

i)
ẋ = ε− 2x+ y + z + yz,
ẏ = x− 2y + z + zx,
ż = x+ y − 2z + xy,

(x, y, z, ε) ∈ R
4
.

For each vector field, construct the center manifold and discuss the dynamics near the
origin for ε small. What types of bifurcations occur?

8. Consider the vector field

ẋ = ε+ x
2
+ y

2
,

ẏ = −y + x
2
,

(x, y, ε) ∈ R
3
.

For this vector field the tangent space approximation is sufficient for approximating
the center manifold of the origin. Verify this statement and discuss conditions under
which the tangent space approximation might work in general. Consider your ideas in
the context of the following examples.

a)
ẋ = εx+ x

2
+ y

2
,

ẏ = −y + x
2
.

b)
ẋ = ε+ x

2
+ xy,

ẏ = −y + x
2
.

c)
ẋ = ε+ y

2
,

ẏ = −y + x
2
.

d)
ẋ = ε+ xy + y

2
,

ẏ = −y + x
2
.

9. Consider the block diagonal “normal form” of (20.1.84) to which we first transformed
the vector field in order to apply the center manifold theory. Discuss why (or why
not) this preliminary transformation was necessary. Is this preliminary transformation
necessary for equations of the form of (20.1.94) in order to apply the center manifold
theory? Work out several examples to support your views and illustrate the relevant
points. (Hint: consider the coordinatization of the center manifold and how the invari-
ance condition is manifested in those coordinates.)

10. Consider the following one-parameter family of two-dimensional C
r (r as large as

necessary) vector fields

ẋ = f(x;µ), (x, µ) ∈ R
2
× R

1
,

where f(0; 0) = 0 and Dxf(0, 0) has a zero eigenvalue and a negative eigenvalue.
Suppose the vector field has the following symmetry

f(x, µ) = −f(−x, µ).

What can you then conclude concerning the symmetry of the vector field restricted
to the center manifold for x and µ small? Can the vector field undergo a saddle-node
bifurcation at (x, µ) = (0, 0)? Can the vector field undergo a saddle-node bifurcation
at other points (x, µ) ∈ R

2 × R
1?
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20.2 A Pure Imaginary Pair of Eigenvalues: The
Poincare-Andronov-Hopf Bifurcation

We now turn to the next most simple way that a fixed point can be nonhy-
perbolic; namely, that the matrix associated with the vector field linearized
about the fixed point has a pair of purely imaginary eigenvalues, with the
remaining eigenvalues having nonzero real parts. Let us be more precise.

Recall (20.0.1), which we restate here;

ẏ = g(y, λ), y ∈ R
n, λ ∈ R

p, (20.2.1)

where g is Cr (r ≥ 5) on some sufficiently large open set containing the
fixed point of interest. The fixed point is denoted by (y, λ) = (y0, λ0), i.e.,

0 = g(y0, λ0). (20.2.2)

We are interested in how the orbit structure near y0 changes as λ is varied.
In this situation the first thing to examine is the linearization of the vector
field about the fixed point, which is given by

ξ̇ = Dyg(y0, λ0)ξ, ξ ∈ R
n. (20.2.3)

Suppose that Dyg(y0, λ0) has two purely imaginary eigenvalues with the
remaining n − 2 eigenvalues having nonzero real parts. We know (cf.
the remarks at the beginning of this chapter) that since the fixed point
is not hyperbolic, the orbit structure of the linearized vector field near
(y, λ) = (y0, λ0) may reveal little (and, possibly, even incorrect) informa-
tion concerning the nature of the orbit structure of the nonlinear vector
field (20.2.1) near (y, λ) = (y0, λ0).
Fortunately, we have a systematic procedure for analyzing this problem.

By the center manifold theorem, we know that the orbit structure near
(y, λ) = (y0, λ0) is determined by the vector field (20.2.1) restricted to the
center manifold. This restriction gives us a p-parameter family of vector
fields on a two-dimensional center manifold. For now we will assume that
we are dealing with a single, scalar parameter, i.e., p = 1. If there is more
than one parameter in the problem, we will consider all but one of them as
fixed.

On the center manifold the vector field (20.2.1) has the following form
(

ẋ

ẏ

)

=

(

Re λ(µ) −Im λ(µ)
Im λ(µ) Re λ(µ)

)(

x

y

)

+

(

f1(x, y, µ)
f2(x, y, µ)

)

,

(x, y, µ) ∈ R
1 × R

1 × R
1, (20.2.4)

where f1 and f2 are nonlinear in x and y and λ(µ), λ(µ) are the eigenvalues
of the vector field linearized about the fixed point at the origin.
Equation (20.2.4) was first discussed in Section 19.2. The reader should

recall that in performing the center manifold reduction to obtain (20.2.4),
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several preliminary steps were first implemented. Namely, first we trans-
formed the fixed point to the origin and, then, if necessary, performed a
linear transformation of the coordinates so that the vector field (20.2.1)
was in the form of (20.2.4). We further remark that the eigenvalue, de-
noted λ(µ), should not be confused with the general vector of parameters
in (20.2.1), denoted λ ∈ R

p, which we subsequently restricted to a scalar
and labeled µ. We will henceforth denote

λ(µ) = α(µ) + iω(µ), (20.2.5)

and note that by our assumptions we have

α(0) = 0,

ω(0) #= 0. (20.2.6)

The next step is to transform (20.2.4) into normal form. This was done in
Section 19.2. The normal form was found to be

ẋ = α(µ)x− ω(µ)y + (a(µ)x− b(µ)y)(x2 + y2) +O(|x|5, |y|5),
ẏ = ω(µ)x+ α(µ)y + (b(µ)x+ a(µ)y)(x2 + y2) +O(|x|5, |y|5).

(20.2.7)

We will find it more convenient to work with (20.2.7) in polar coordinates.
In polar coordinates (20.2.7) is given by

ṙ = α(µ)r + a(µ)r3 +O(r5),

θ̇ = ω(µ) + b(µ)r2 +O(r4). (20.2.8)

Because we are interested in the dynamics near µ = 0, it is natural to
Taylor expand the coefficients in (20.2.8) about µ = 0. Equation (20.2.8)
thus becomes

ṙ = α′(0)µr + a(0)r3 +O(µ2r, µr3, r5),

θ̇ = ω(0) + ω′(0)µ+ b(0)r2 +O(µ2, µr2, r4), (20.2.9)

where “ ′ ” denotes differentiation with respect to µ and we have used the
fact that α(0) = 0.

Our goal is to understand the dynamics of (20.2.9) for r small and µ
small. This will be accomplished in two steps.

Step 1. Neglect the higher order terms of (20.2.9) and study the resulting
“truncated” normal form.

Step 2. Show that the dynamics exhibited by the truncated normal form
are qualitatively unchanged when one considers the influence of the
previously neglected higher order terms.
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Step 1. Neglecting the higher order terms in (20.2.9) gives

ṙ = dµr + ar3,

θ̇ = ω + cµ+ br2, (20.2.10)

where, for ease of notation, we define

α′(0) ≡ d,
a(0) ≡ a,
ω(0) ≡ ω,
ω′(0) ≡ c,
b(0) ≡ b. (20.2.11)

In analyzing the dynamics of vector fields we have always started with the
simplest situation; namely, we have found the fixed points and studied the
nature of their stability. In regard to (20.2.10), however, we proceed slightly
differently because of the nature of the coordinate system. To be precise,
values of r > 0 and µ for which ṙ = 0, but θ̇ #= 0, correspond to periodic
orbits of (20.2.10). We highlight this in the following lemma.

Lemma 20.2.1 For −∞ < µd
a < 0 and µ sufficiently small

(r(t), θ(t)) =

(

√

−µd
a
,

[

ω +

(

c− bd
a

)

µ

]

t+ θ0

)

(20.2.12)

is a periodic orbit for (20.2.10).

Proof: In order to interpret (20.2.12) as a periodic orbit, we need only
to insure that θ̇ is not zero. Since ω is a constant independent of µ, this
immediately follows by taking µ sufficiently small. ⊓⊔

We address the question of stability in the following lemma.

Lemma 20.2.2 The periodic orbit is

i) asymptotically stable for a < 0;

ii) unstable for a > 0.

Proof: The way to prove this lemma is to construct a one-dimensional
Poincaré map along the lines of Chapter 10 (and in particular, Example
10.1.1), from which the results of this lemma follow. ⊓⊔

We note that since we must have r > 0, (20.2.12) is the only periodic
orbit possible for (20.2.10). Hence, for µ #= 0, (20.2.10) possesses a unique
periodic orbit having amplitude O(

√
µ). Concerning the details of stability

of the periodic orbit and whether it exists for µ > 0 or µ < 0, from (20.2.12)
it is easy to see that there are four possibilities:
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FIGURE 20.2.1. d > 0, a > 0.

FIGURE 20.2.2. d > 0, a < 0.

1. d > 0, a > 0;

2. d > 0, a < 0;

3. d < 0, a > 0;
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4. d < 0, a < 0.

We will examine each case individually; however, we note that in all cases
the origin is a fixed point which is

stable at µ = 0 for a < 0,

unstable at µ = 0 for a > 0.

Case 1: d > 0, a > 0. In this case the origin is an unstable fixed point for
µ > 0 and an asymptotically stable fixed point for µ < 0, with an unstable
periodic orbit for µ < 0 (note: the reader should realize that if the origin
is stable for µ < 0, then the periodic orbit should be unstable); see Figure
20.2.1.

Case 2: d > 0, a < 0. In this case the origin is an asymptotically stable
fixed point for µ < 0 and an unstable fixed point for µ > 0, with an
asymptotically stable periodic orbit for µ > 0; see Figure 20.2.2.

Case 3: d < 0, a > 0. In this case the origin is an unstable fixed point for
µ < 0 and an asymptotically stable fixed point for µ > 0, with an unstable

FIGURE 20.2.3. d < 0, a > 0.

periodic orbit for µ > 0; see Figure 20.2.3.

Case 4: d < 0, a < 0. In this case the origin is an asymptotically stable
fixed point for µ < 0 and an unstable fixed point for µ > 0, with an
asymptotically stable periodic orbit for µ < 0; see Figure 20.2.4.
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FIGURE 20.2.4. d < 0, a < 0.

From these four cases we can make the following general remarks.

Remark 1. For a < 0 it is possible for the periodic orbit to exist for either
µ > 0 (Case 2) or µ < 0 (Case 4); however, in each case the periodic orbit
is asymptotically stable. Similarly, for a > 0 it is possible for the periodic
orbit to exist for either µ > 0 (Case 3) or µ < 0 (Case 1); however, in each
case the periodic orbit is unstable. Thus, the number a tells us whether
the bifurcating periodic orbit is stable (a < 0) or unstable (a > 0). The
case a < 0 is referred to as a supercritical bifurcation, and the case a > 0
is referred to as a subcritical bifurcation.

Remark 2. Recall that

d =
d

dµ
(Reλ(µ))

∣

∣

∣

∣

µ=0

.

Hence, for d > 0, the eigenvalues cross from the left half-plane to the right
half-plane as µ increases and, for d < 0, the eigenvalues cross from the right
half-plane to the left half-plane as µ increases. For d > 0, it follows that the
origin is asymptotically stable for µ < 0 and unstable for µ > 0. Similarly,
for d < 0, the origin is unstable for µ < 0 and asymptotically stable for
µ > 0.

Step 2. At this point we have a fairly complete analysis of the orbit structure
of the truncated normal form near (r, µ) = (0, 0). We now must consider
Step 2 in our analysis of the normal form (20.2.9); namely, are the dynamics
that we have found in the truncated normal form changed when the effects
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of the neglected higher order term are considered? Fortunately, the answer
to this question is no and is the content of the following theorem.

Theorem 20.2.3 (Poincaré-Andronov-Hopf Bifurcation) Consider
the full normal form (20.2.9). Then, for µ sufficiently small, Case 1, Case
2, Case 3, and Case 4 described above hold.

Proof: We will outline a proof that uses the Poincaré-Bendixson Theorem.
We begin by considering the truncated normal form (20.2.10) and the case
a < 0, d > 0. In this case the periodic orbit is stable and exists for µ > 0,
and the r coordinate is given by

r =

√

−dµ
a
.

FIGURE 20.2.5.

We next choose µ > 0 sufficiently small and consider the annulus in the
plane, A, given by

A = {(r, θ)| r1 ≤ r ≤ r2} ,
where r1 and r2 are chosen such that

0 < r1 <

√

−dµ
a

< r2.

By (20.2.10), it is easy to verify that on the boundary of A, the vector
field given by the truncated normal form (20.2.10) is pointing strictly into
the interior of A. Hence, A is a positive invariant region (cf. Definition
3.0.3, Chapter 3); see Figure 20.2.5.
It is also easy to verify that A contains no fixed points so, by the Poincaré-

Bendixson theorem, A contains a stable periodic orbit. Of course we already
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knew this; our goal is to show that this situation still holds when the full
normal form (20.2.9) is considered.
Now consider the full normal form (20.2.9). By taking µ and r sufficiently

small, the O(µ2r, µr3, r5) terms can be made much smaller than the rest
of the normal form (i.e., the truncated normal form (20.2.10). Therefore,
by taking r1 and r2 sufficiently small, A is still a positive invariant region
containing no fixed points. Hence, by the Poincaré-Bendixson theorem, A
contains a stable periodic orbit. The remaining three cases can be treated
similarly; however, in the cases where a > 0, the time-reversed flow (i.e.,
letting t→ −t) must be considered. ⊓⊔

To apply this theorem to specific systems, we need to know d (which is
easy) and a. In principle, a is relatively straightforward to calculate. We
simply carefully keep track of the coefficients in the normal form transfor-
mation in terms of our original vector field. However, in practice, the alge-
braic manipulations are horrendous. The explicit calculation can be found
in Hassard, Kazarinoff, and Wan [1980], Marsden and McCracken[1976],
and Guckenheimer and Holmes [1983]; here we will just state the result.
At bifurcation (i.e., µ = 0), (20.2.4) becomes

(

ẋ

ẏ

)

=

(

0 −ω
ω 0

)(

x

y

)

+

(

f1(x, y, 0)
f2(x, y, 0)

)

, (20.2.13)

and the coefficient a(0) ≡ a is given by

a =
1

16

[

f1xxx + f
1
xyy + f

2
xxy + f

2
yyy

]

+
1

16ω

[

f1xy
(

f1xx + f
1
yy

)

− f2xy
(

f2xx + f
2
yy

)

− f1xxf2xx + f1yyf2yy
]

, (20.2.14)

where all partial derivatives are evaluated at the bifurcation point, i.e.,
(x, y, µ) = (0, 0, 0).

We end this section with some historical remarks. Usually Theorem
20.2.3 goes by the name of the “Hopf bifurcation theorem.” However, as has
been pointed out repeatedly by V. Arnold [1983], this is inaccurate, since
examples of this type of bifurcation can be found in the work of Poincaré
[1892]. The first specific study and formulation of a theorem was due to
Andronov [1929]. However, this is not to say that E. Hopf did not make
an important contribution; while the work of Poincaré and Andronov was
concerned with two-dimensional vector fields, the theorem due to E. Hopf
[1942] is valid in n dimensions (note: this was before the discovery of the
center manifold theorem). For these reasons we refer to Theorem 20.2.3 as
the Poincaré-Andronov-Hopf bifurcation theorem.
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20.2a Exercises

1. This exercise comes from Marsden and McCracken [1976]. Consider the following vector
fields

a)
ṙ = −r(r − µ)

2
,

θ̇ = 1,
(r, θ) ∈ R

+
× S

1
.

b) ṙ = r(µ− r
2
)(2µ− r

2
)
2
,

θ̇ = 1.

c)
ṙ = r(r + µ)(r − µ),

θ̇ = 1.

d) ṙ = µr(r
2
− µ),

θ̇ = 1.

FIGURE 20.2.6.

e) ṙ = −µ
2
r(r + µ)

2
(r − µ)

2
,

θ̇ = 1.


