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The Story of Auxin

Auxin is a remarkable little molecule that plays a role in nearly

every aspect of plant growth and development. No mutants

have been identified that can grow without auxin; it appears to

be absolutely required for plant survival. Auxin is universally

present in all plants and is found in green algae as well as the

more distantly related red and brown algae, although its function

in these organisms is not well characterized. In angiosperms,

auxin synthesis or signaling mutants are frequently small, under-

scoring auxin’s role as a growth promoter. However, auxin’s role

is much more that merely a growth promoter; it is also necessary

for the specification andmaintenance of the root apical meristem,

the initiation of lateral roots and leaves, and the formation of

developmental patterns. In this article, we can only describe a few

of auxin’s functions; readers are encouraged to read some of the

many excellent review articles listed below for more information.

Classic studies on auxin are described in two of Kenneth

Thimann’s review articles from 1938 and 1974. For a superb and

more recent historical perspective, see Abel and Theologis

(2010), who capture the story of auxin research thus, “the

century-long endeavor is a beautiful illustration of the power

of scientific reasoning and human intuition, but it also brings

to light the fact that decisive progress is made when new

technologies emerge and disciplines unite.”

EARLY STUDIES

Auxin was the first plant hormone isolated, and it is probably the

most thoroughly studied of all plant growth regulators. Many

generations of plant scientists have contributed to our under-

standing of how auxin works. Early botanists carefully described

plant growth, development, and movement and even proposed

the existence of mobile signals to coordinate these activities. In

the late 19th and early 20th centuries, a series of elegant

experiments into the nature of shoot phototropism (moving

toward light) led directly to the identification of auxin as a mobile

signal regulating cell elongation. Most famously, Charles Darwin

and his son Francis studied phototropism in coleoptiles, a tissue

in monocots that protects young leaves during germination. In

1880, they determined that light given from one side is perceived

at the coleoptile tip but that “some influence is transmitted from

the upper to the lower part, causing the latter to bend.” In 1913,

Peter Boysen-Jensen furthered these studies, observing and

that the “influence” can move through an agar block but not

a solid substance. Subsequently, Arpad Paal (1919) showed that

removing the tip of a dark-grown coleoptile and replacing the tip

asymmetrically onto the coleoptile base could induce curvature

in the absence of a light stimulus. Building upon these studies,

Frits Went placed coleoptile tips onto agar blocks and showed

that these treated blocks were capable of promoting growth;

they had captured the growth-promoting substance. Went’s

experiments led to the purification and identification of the auxin

indole-3-acetic acid (IAA). Auxins in fact are a family of related

compounds, some of which are entirely synthetic but mimic

auxin effects, whereas others are low-abundance compounds

or found in only some plant families. In most discussions, auxin

is used synonymously with IAA, which is the most abundant

naturally occurring auxin.

Once it was available in purified form, auxin’s contribu-

tions to root initiation, fruit development, cell elongation, and

the suppression of lateral buds by the shoot apex (apical

dominance) were recognized, as were some of the fundamental

properties that contribute to auxin action. In the 1930s, Kenneth

Thimann observed that different tissues differ in their sensitivity

to auxin, and H.G. Van der Weij discovered the polar nature of

auxin transport. In the latter part of the 20th and early 21st

centuries the emerging tools of molecular biology and Arabi-

dopsis thaliana genetics finally revealed the underlyingmolecular

basis for auxin action, although the story remains incomplete.

Current studies incorporate genomics technologies, systems

biology approaches, and computer modeling to explore the

mechanisms by which auxin coordinates plant growth and

development, including the as yet unresolved ways in which

auxin signaling interacts with environmental inputs and other

hormone signaling pathways.

AUXIN HOMEOSTASIS

Auxin’s effects are strongly dependent on its accumulation

in the right place at the right time. The combined effects of

regulated auxin transport (discussed below) and biosynthesis,

conjugation, and degradation see that this happens. At one

point it was thought that auxin was exclusively produced in

young leaves, but we now know that auxin is synthesized

throughout the plant by a set of tightly regulated biosynthetic

pathways. Most of the catalytic steps are performed by

enzymes encoded by multiple genes, ensuring resiliency,

flexibility, and specificity. IAA is mainly produced from the

amino acid Trp, although there is evidence for another, Trp-

independent pathway that is not well characterized. There

are several parallel but intersecting pathways for conversion of

Trp to IAA, deduced through genetic and biochemical studies.

These pathways are often referred to by their key intermediates;

the IPA pathway converts Trp to IAA via indole pyruvic acid (IPA),

the IAM pathway through indole-3-acetamide, and the IAOx

pathway through indole-3-acetaldoximine. The IAOx pathway

may be restricted to Arabidopsis and its close relatives.

The two-step IPA pathway is thought to account for the

majority of auxin biosynthesis in plants. The first step is the
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conversion of Trp to IPA via the activity of a Trp aminotransfer-

ase enzyme, encodedby the TRYPTOPHANAMINOTRANFERASE

OF ARABIDOPSIS1 (TAA1) gene. The second, rate-limiting step

is the conversion of IPA to IAA by the YUCCA flavin mono-

oxygenase enzymes. Both gene families are conserved amongst

plants. In Arabidopsis, YUCCA is encoded by 11 YUC genes that

have different cell type-specific expression patterns. The regula-

tion of the activities of these genes and enzymes is extremely

important in regulating auxin accumulation in response to light,

temperature, and nutrients. Recently an enzyme that catalyzes

the reverse reaction to TAA1 was identified. This enzyme,

VAS1, uses the ethylene precursor methionine as a substrate,

and so it effectively coordinates auxin and ethylene biosynthesis.

This new finding sheds further light on the many ways these

two hormones interact, including their synergistic effects on

shoot elongation in response to vegetative shading.

IAA can be conjugated to other molecules to allow its storage

in a biologically inactive form and to trigger its degradation. GH3

genes encode auxin conjugases and are strongly induced by

auxin, implying that conjugation is part of a negative feedback

mechanism to regulate auxin activity. Similarly, tissues with the

highest levels of auxin also accumulate the highest levels of

auxin degradation products, suggesting that these tissues have

a rapid rate of hormone turnover.

TOOLS IN AUXIN RESEARCH

Many of our recent insights into auxin action are a consequence

of our ability to examine auxin accumulation, action, and

transport at the cellular level. The traditional and most precise

method for IAA quantification is tissue extraction followed by

gas chromatography–mass spectroscopy. Until recently this

method was unable to provide cell-specific information, but

a refinement has been developed in which cells can be isolated

from Arabidopsis roots and sorted based on their expression of

cell type–specific green fluorescent protein constructs. Using

this method, the auxin concentration of pools of homogenous

cell types has been measured by gas chromatography–mass

spectroscopy, greatly refining our knowledge of auxin concen-

trations throughout the root and confirming the presence of

a significant auxin maximum at the quiescent center of the root.

Auxin-specific antibodies also have been used with varying

degrees of success to analyze auxin distribution using immu-

nolocalization methods. Recently-characterized auxin synthesis

inhibitors will help explore auxin’s roles as well as help define the

auxin biosynthetic pathway in different tissues.

Auxin responses have been examined using two artificial

sensors. The first uses a synthetic auxin responsive promoter

called DR5, fused to a reporter gene encoding b-glucuronidase

(which cleaves a colorless substrate to produce a blue pre-

cipitate) or green fluorescent protein. As this sensor monitors

transcription of auxin responsive genes, it is termed an “output

sensor”. A second sensor, called DII-VENUS, is a constitutively

expressed protein consisting of a nuclear-localized yellow

fluorescent protein fused to an amino acid sequence that

promotes proteolysis in the presence of auxin, the degron

domain II of Aux/IAA protein (see below). At high auxin levels,

the fluorescent protein is degraded, leading to non-fluorescent

regions against a background of fluorescence. Often, the spatial

patterns conferred by the DR5 and DII-VENUS reporters are

complementary.

An important tool for examining patterns of auxin movement

(from which some rough approximation of auxin levels can be

inferred) comes from the study of auxin transport proteins,

described below. Auxin movement through tissues is conferred

to a large extent by the polar distribution of auxin influx and

efflux proteins. For example, examining localization in neigh-

boring cells of auxin efflux proteins of the PIN family gives an

approximate picture of the direction of local auxin transport

within a tissue. Using this method to monitor living tissues over

time, very dynamic changes in PIN protein orientation have been

revealed, as well as the important roles of auxin and auxin

transport during development. Finally, computer models and

simulations based on experimental data replicate and predict

patterns of auxin accumulation and support the interpretation

that auxin has a key role in developmental patterning.

POLAR AUXIN TRANSPORT

Many hormones can be translocated through the plant by way

of the xylem or phloem, but the directional movement of auxin

between cells and tissues is particularly well described, and may

be unusual in the extent to which it occurs. Polar auxin transport

is fundamental to many of its functions in pattern formation,

organogenesis, and directional growth responses. The Cholodny-

Went theory proposed in the 1930s postulated that the asymme-

tries in growth rate in light- or gravity-responding organs are

caused by an auxin gradient. After many years, this theory is

now widely accepted, largely because of our ability to detect

the proposed auxin gradient using the tools described above,

and the identification of the chemical and cellular basis by

which the auxin gradients are established and maintained.

Because IAA is a weak acid, it exists in a charged anionic form

(IAA2) in the neutral pH of the cytoplasm (pH ;7). In the more

acidic cell wall environment (pH ;5.5), ;15% of the molecules

are in the uncharged form (IAAH), which can transit through the

plasma membrane. The pH differential between the cytoplasm

and wall means that auxin can move into (as IAAH) but not out of

plant cells. Changing the pH of the cell wall by overexpression or

loss of function of a proton pump protein affects this chemios-

motic movement; when the apoplast is more acidic, a higher

proportion of the IAA is uncharged, accelerating auxin transport.

Plants also employ specific transport proteins to move auxin

precisely. Many auxin transporter proteins were identified

through genetic screens for abnormal auxin responses, including

agravitropism. The extremely agravitropic aux1mutant is deficient

in polar auxin transport. AUX1 encodes an auxin influx carrier

that augments auxin’s chemiosmotic influx into cells. AUX1 and

its related LIKE-AUX1 genes seem to be particularly important

for auxin influx in conditions when auxin efflux rates are high.

The ATP Binding Cassette subgroup B (ABCB) transporters

comprise a 21-protein family that contributes to auxin transport

in diverse ways; some function in auxin influx and some in auxin

efflux. (These were previously also known as multiple drug
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resistance/P-glycoproteins.) Unlike PIN proteins, their cellular

position seems to be relatively stable and they may interact with

and stabilize PIN proteins at specific microdomains of the

membrane. ABCB function is inhibited by plant flavonoid

compounds, whose synthesis is increased upon wounding

and environmental stresses; thus, these transporters may

directly link auxin responses and stress responses.

The PIN genes (named for the pin-formed mutant) encode

auxin efflux carriers with asymmetric, polar distributions on cell

membranes. Through their polarity, PIN proteins contribute to

the highly directional, polar transport of auxin that underlies

developmental patterning and differential growth responses.

In Arabidopsis, there are eight PIN genes with different

tissue-specific expression patterns. Furthermore, the individual

PIN proteins themselves can have different cellular distributions

within cells. To some extent, these different family members are

specialized for specific functions. For example, PIN1 is ex-

pressed in the xylem parenchyma throughout the plant and has

a major role in the polar transport of auxin from shoot tip to root

tip. PIN2 plays a key role in root gravitropism; loss-of-function

mutants have a strongly agravitropic phenotype. Localization of

the PIN3 protein changes upon a change in light or gravity

orientation and is important for establishing the auxin gradients

that mediate tropic growth responses, and PIN5 and PIN8 are

localized to the endoplasmic reticulum and thought to be

involved in intracellular active auxin transport.

PIN protein redistribution is critical for the movement of auxin

that regulates pattern formation and organogenesis at the shoot

apical meristem and during embryogenesis. Auxin maxima

are required for and precede the initiation of lateral roots,

leaves, and flowers at the shoot apical meristem and the

embryonic formation of the radicle (embryonic root) meristem

and cotyledons. It remains a fascinating and unresolved question

how the PIN proteins themselves are properly positioned, but

recent studies suggest that connections between the plasma

membrane and cell wall may help maintain their polar distribution.

Some PIN proteins undergo continual movement between the

plasma membrane and internal endosomal membranes through

regulated endo- and exocytosis, which seems to be necessary

for PIN repositioning at the cell surface. There are many different

routes of intracellular PIN trafficking known. One way is via the

molecule clathrin, which forms a polyhedral cage structure that

encapsulatesmembrane vesicles. ThePINphosphorylation state

also contributes to this membrane shuttling. PINOID encodes

a protein kinase that phosphorylates PIN proteins in vivo. In the

pinoidmutant or plants treated with protein kinase inhibitors, PIN

proteins can accumulate in internal membranes. By contrast,

mutants or inhibitors that interfere with protein phosphatases

promote PIN localization to the plasma membrane. Auxin itself

regulates PIN protein expression and membrane targeting, in

some cases creating a robust and stable pattern of auxin flow

(sometimes referred to as canalization).

Recently, a further gene family of seven members encoding

PIN-LIKES (PILS) proteins was identified and characterized. The

PILS proteins do not show extensive sequence similarity to PIN

proteins, but they do show a similar protein topology to the PINs,

consisting of a central hydrophilic loop flanked at each side by

five transmembrane domains. The PILS proteins localize to the

endoplasmic reticulum and are thought to regulate auxin

homeostasis and intracellular auxin accumulation. Therefore,

many different classes of auxin transporters regulate auxin flow

within and between cells. The PIN proteins remain the best-

characterized group and the expression, activity and localization

of PIN genes and their encoded proteins are important targets

for regulatory inputs from diverse signaling pathways, including

light and gravity as well as ethylene and cytokinin. The com-

plexities of polar auxin transport provide us with an engaging

and fascinating puzzle and reveal that plants have developed

very sophisticated systems to make sure that auxin goes where

it needs to go.

AUXIN PERCEPTION AND SIGNALING

Auxin seems to act through multiple types of receptor proteins.

AUXIN BINDING PROTEIN1 (ABP1) was identified in the 1970s.

Knock-down of ABP1 function has shown that it regulates cell

division and expansion during postembryonic growth and is also

necessary for the maintenance of the root meristem. ABP1 is

membrane-localized and found in the endoplasmic-reticulum

lumen or the outer surface of the plasma membrane. It is as-

sociated with auxin responses at the plasma membrane, in-

cluding the activation of proton pumps and cell wall acidification

and loosening. When auxin concentrations are low, ABP1 pro-

motes the clathrin-dependent recycling of PIN proteins. At

higher auxin concentrations, this effect is inhibited and so more

auxin is transported through the cell-surface PIN proteins, which

is a type of positive feedback. ABP1 also contributes to the

regulation of the cytoskeleton and cell shape.

In 2005, the protein TRANSPORT INHIBITOR RESPONSE1

(TIR1) was identified as an auxin receptor, connecting auxin with

the regulated proteolysis of auxin response repressors and

continuing a story that had been emerging for more than 25

years.

TIR1 is an F-box protein, a component of an SCF (SKP1,

CUL1, and F-box protein) ubiquitin ligase complex. Ubiquitin is

a small protein that is conjugated to other proteins by ubiquitin

ligase complexes, including SCFTIR1. Because the F-box protein

confers specificity to this complex by binding to the target

proteins, SCF complexes are identified by their specific F-box

protein component as indicated. Ubiquitinated proteins are

proteolyzed by the 26S proteasome, which selectively degrades

proteins, including regulatory proteins.

When bound to auxin, TIR1 also specifically binds to Aux/IAA

repressor proteins with the auxin holding the proteins together

like a molecular glue, targeting them for proteolysis. Genes

encoding Aux/IAA proteins were identified in the 1980s and were

among the first auxin-induced genes to be identified through the

newly developed tools of molecular biology. Aux/IAA proteins

are short-lived, nuclear-localized proteins, whose rate of

degradation is enhanced by auxin. Aux/IAA proteins have four

conserved domains. A short amino acid sequence in domain II

was identified as the “degron” and is necessary for auxin-

induced instability. In the early 1990s, several research groups

identified dominant, gain-of-function mutants in Aux/IAA genes;

these mutations were mapped to amino acid changes in the
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degron that interfere with auxin-induced protein degradation.

Taken together, these results indicate that auxin signaling is

dependent on the degradation of the Aux/IAA repressors and

that stabilized mutant proteins confer an auxin-resistant

phenotype because they are resistant to degradation.

Analysis of the promoters of several auxin-induced genes led

to the identification of the auxin response element and a family

of proteins that specifically bind to the auxin response element

called auxin response factors (ARFs). Arabidopsis has 23 ARF-

encoding genes. All ARFs have DNA binding domains; some

have a transcriptional activation domain and function as

transcriptional activators, whereas others function as transcrip-

tional repressors.

ARFs and Aux/IAA proteins have homology at their C-terminal

domains through which they can form homo- and heterodimers.

At low levels of auxin, Aux/IAA proteins can accumulate and,

through heterodimerization with ARF proteins, repress auxin

responses. When auxin levels increase, SCFTIR1 binds to auxin

and to Aux/IAA proteins, initiating their ubiquitination and

proteolysis by the 26S proteasome. Removal of Aux/IAA proteins

relieves their repression of ARF protein function. Unrepressed

ARF proteins can then exert their effects upon transcription.

The way that these two protein families interact has been

illuminated by studies of the Arabidopsis embryonic patterning

mutants monopteros (arf5/mp) and bodenlos (iaa12/bdl). These

mutants have a very similar abnormal phenotype characterized

primarily by their inability to form a primary root. The arf5/mp

mutant has a loss-of-function mutation in ARF5, which encodes

a transcriptional activator. The iaa12/bdl mutant has a gain-of-

function mutation in IAA12. The increased stability of the IAA12

protein in the iaa12/bdl mutant has a similar effect as loss of the

ARF5 transcription factor, highlighting IAA12’s role as a re-

pressor of ARF5 function. Overexpression of ARF5 can revert

the iaa12/bdl mutant phenotype to the wild type, indicating that

the relative abundance of these proteins is important in de-

termining transcriptional outcomes.

In some ways, the auxin-mediated signal transduction

pathway seems startlingly simple; auxin binds SCFTIR1, which

initiates proteolysis of Aux/IAA repressors, derepressing ARF

transcription factors. If we contrast this to a canonical signal

transduction pathway in which information is relayed from

receptor through a series of intermediate proteins to effector

proteins, we don’t see the same opportunities for amplification

or crosstalk that are inherent in longer signaling cascades.

However, the Arabidopsis genome encodes 29 Aux/IAA proteins

and 23 ARF proteins; it is likely that the complexity and

specificity of the auxin response is conferred in part by the

combinatorial interactions between these large protein families.

Presumably, auxin’s effects depend on the relative abundances

of each of these proteins, their relative affinities for homo- and

heterodimerization, and the binding affinities of the ARF proteins

for the promoters of auxin-inducible genes. TIR1 is also

a member of a protein family that consists of five additional

proteins, AUXIN SIGNALING F-BOX PROTEIN1 (AFB1) through

AFB5. As plants have evolved greater developmental and

morphological complexity, the proportion of their genome that

encodes auxin response genes has increased severalfold, from

0.14% of moss genes to 0.4 to 0.6% of angiosperm genes.

Among these, the Aux/IAA genes have been most dramatically

amplified, from two genes in moss to 24 to 28 genes in the

angiosperms. Although the auxin signaling pathway is short, it

nevertheless provides ample opportunity for complexity.

AUXIN ACTION IN WHOLE-PLANT PROCESSES

In spite of our remarkable progress in elucidating the mecha-

nisms that control auxin homeostasis, transport, perception,

and signaling, we still have a gap in our understanding of auxin-

mediated processes downstream of its immediate effects on

Aux/IAA turnover and ARF derepression. Many auxin-induced or

auxin-repressed genes have been identified, which in some

cases clarify how auxin effects are mediated (examples include

tissue-specific transcription factors that contribute to organo-

genesis or enzymes that stimulate production or degradation of

other hormones). In other cases, transcriptomic studies just lead

to more questions; to understand auxin action in whole-plant

processes, we will need to decipher these complex studies.

We will also need to take into account auxin’s roles beyond

transcriptional regulation, namely, its extremely rapid effect in

promoting cell elongation and its role as an important source of

positional information that contributes to pattern formation and

organogenesis.

AUXIN’S ROLE IN CELL ELONGATION

Although auxin was initially purified through Frits Went’s cell

elongation assay, we still do not fully understand how auxin

promotes cell or tissue elongation. Auxin-treated stem seg-

ments show a pronounced decrease in cell wall pH as a result

of an auxin-induced stimulation of a plasma membrane proton

pump. A stem segment incubated in an acidic buffer also

elongates in an effect that is referred to as acid growth. Auxin-

induced wall acidification may loosen the cell wall directly but

also activates pH sensitive wall-loosening enzymes called

extensins, which promote elongation when applied to a tissue.

The model of auxin-induced acidification followed by extensin

activation only accounts for short-term growth responses and

does not explain all of the auxin-induced growth effects. It

seems that this response is mediated by the auxin receptor

ABP1. Plants overexpressing ABP1 produce significantly

larger cells than control plants, suggesting that as we learn

more about ABP1 and its downstream effectors, we will

better understand the process of auxin-induced cell expan-

sion. We still do not understand by what mechanism auxin

acts differentially on cell growth in shoots and roots, pro-

moting cell elongation in aboveground organs and inhibiting it

belowground.

AUXIN’S ROLES IN PATTERN FORMATION

AND ORGANOGENESIS

The early part of the 21st century has brought new insight into

the roles of auxin in establishing developmental patterns and in
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organogenesis. Pattern formation is the process through which

spatial differentiation emerges from a homogeneous material.

Pattern formation occurs during plant and animal embryogen-

esis when the developing organism acquires its axes of

polarity: top-to-bottom, in-to-out, and front-to-back. These

axes often develop as a consequence of some sort of

molecular gradient. In animal development, the term “mor-

phogen” describes a mobile signal that forms a gradient within

a developing structure and specifies cell identities and tissue

and organ patterning in a concentration-dependent manner.

For example, during vertebrate limb development, the “sonic

hedgehog” morphogen is secreted from a zone of polarizing

activity and specifies the formation of different digits at

different positions depending on its concentration. Adding

a second source of the morphogen causes a duplicated

morphogen gradient and a duplicated, mirror image limb that

develops from it.

In many of its effects auxin seems to act as a morphogen

(although there are some differences between auxin and animal

morphogens, including the fact that auxin does not form a

gradient by diffusion but through polar auxin transport). Re-

markably, an auxin gradient can be detected in a developing

Arabidopsis embryo already after the first cell division. The

gradient changes polarity to form a basal maximum at around the

32-cell stage. Formation of this gradient is necessary for proper

embryonic root formation. Mutants in which auxin transport is

interfered with (pin1,3,4,7) or auxin signaling is disrupted (arf5/mp

and iaa12/bdl) are all unable to initiate a root during embryo-

genesis.

Pattern formation in plants also occurs outside of embryo-

genesis. Cell differentiation regulated by auxin gradient–

specified positional information was first shown in the vascular

cambium of pine (Pinus sylvestris). More recently, an auxin

gradient was found to mediate pattern formation in the

Arabidopsis female gametophyte. The most thoroughly char-

acterized morphogen-like role of auxin is in the regulation of cell

differentiation at the root apex, in which auxin accumulates in

a strong and stable gradient with a maximum at the quiescent

center. Cells are formed by divisions at the root apical meristem

that encompasses the quiescent center. As cells are displaced

away from the meristem, they stop dividing, elongate, and

differentiate in a position-dependent fashion. Interfering with

the auxin gradient through any of several means (mutation of

PINs or application of polar auxin transport inhibitors or

exogenous auxin to name a few) disrupts the pattern of cellular

activities in the root.

Auxin has also been described as acting as a developmental

trigger, eliciting a specific response at the site of a localized auxin

maximum or minimum. A localized auxin maximum is sufficient to

initiate the formation of leaves or flowers from the shoot apical

meristem or lateral roots from the pericycle cells of the primary

root, whereas a localized auxin minimum is necessary for the

establishment of the cell separation zone in the Arabidopsis

seed pod and also for establishing a competence window for

lateral root founder cell specification. It is clear that throughout

the life of a plant, from embryo to seed pod, and by acting as

a morphogen or a trigger, auxin plays a critical role in conveying

positional information.

CROSSTALK AND INTERACTIONS WITH OTHER

HORMONES AND SIGNALS

Now that many components of several hormonal and environ-

mental signaling pathways have been identified, we can begin to

address how these pathways overlap and influence each other.

One of the first characterized examples of cross-regulation is the

interaction between auxin and cytokinin. In the 1950s, Folke

Skoog and colleagues showed that the undifferentiated cells of

the interior tissue of tobacco (Nicotiana tabacum) stems (pith)

could differentiate into shoots or roots depending on the

hormones on which they were cultured and that the relative

amounts of auxin and cytokinin were critical in the cellular

responses. There are now many examples of how auxin

pathways crosstalk with those of other hormones. Auxin-

cytokinin interactions in several developmental contexts such

as lateral root initiation and root development have been well-

characterized. These show that there are multiple points of

cross-regulation by cytokinin on auxin, including its biosynthe-

sis, polar transport by affecting PIN expression and direct

antagonistic responses on individual transcription factor pro-

moters. (These interactions are described further in Teaching

Tools in Plant Biology; Cytokinins.) Auxin and ethylene have

a more synergistic interaction; they promote each other’s

biosynthesis, and ethylene can induce PIN expression. By

contrast, jasmonates upregulate auxin biosynthesis but seem to

attenuate auxin transport. Light, pathogens, nutrient availability,

and stress all affect auxin accumulation, transport, or response.

We are just beginning to learn how these diverse pathways are

integrated and coordinated. Clearly, these studies are indispen-

sible in deciphering auxin action at the whole-plant level.

CONCLUSIONS AND FUTURE DIRECTIONS

It has long been recognized that auxin is critically and

fundamentally important in the life of a plant and that its

localized synthesis, transport, and response underlie plant

growth and development. With each new tool in our inquiry

toolbox, auxin researchers have pushed forward our under-

standing of these complex phenomena. Thanks to genomic

sequence information frommany plants, along with the powerful

gene discovery approaches from Arabidopsis genetics, we now

know the identity of many of the genes that contribute to auxin

biosynthesis, transport, perception, and downstream signaling

responses and some of the ways these genes respond to each

other and other signaling pathways. Our ability to image auxin

flow and response in vivo has shown us the phenomenally

dynamic auxin distribution patterns that coordinate develop-

ment. However, many questions remain: what coordinates these

auxin fluxes? What is the role of the cytoskeleton and protein

trafficking machinery in positioning them? What are the relative

contributions of auxin synthesis and transport in pattern

generation? If cellular responses are specified by ARF and

Aux/IAA protein accumulation, what establishes their expres-

sion patterns? How do the functions of the AFB proteins

compare with those of TIR1, and what mediates the ABP1

protein functions? The story of auxin, with its “beautiful

March 2013 5



illustration of the power of scientific reasoning and human

intuition,” has chapters that have yet to be written.
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J. (2012). Evolution and structural diversification of PILS putative auxin

carriers in plants. Front Plant Sci 3: 227. 10.3389/fpls.2012.00227.

Finet, C., and Jaillais, Y. (2012). Auxology: when auxin meets plant

evo-devo. Dev. Biol. 369: 19–31. doi:10.1016/j.ydbio.2012.05.039.

Friml, J. (2010). Subcellular trafficking of PIN auxin efflux carriers in

auxin transport. Eur. J. Cell Biol. 89: 231–235. doi:10.1016/j.

ejcb.2009.11.003.

Grunewald, W., and Friml, J. (2010). The march of the PINs:

developmental plasticity by dynamic polar targeting in plant cells.

EMBO J. 29: 2700–2714. doi:10.1038/emboj.2010.181.

Guilfoyle, T.J., and Hagen, G. (2007). Auxin response factors. Curr.

Opin. Plant Biol. 10: 453–460. doi:10.1016/j.pbi.2007.08.014.

Halliday, K.J., Martı́nez-Garcı́a, J.F., and Josse, E-M. (2009).

Integration of light and auxin signaling. Cold Spring Harb. Perspect.

Biol. 1: a001586. doi:10.1101/cshperspect.a001586.

Holland, J.J., Roberts, D., and Liscum, E. (2009). Understanding

phototropism: From Darwin to today. J. Exp. Bot. 60: 1969–1978.

doi:10.1093/jxb/erp113.

Kieffer, M., Neve, J., and Kepinski, S. (2010). Defining auxin response

contexts in plant development. Curr. Opin. Plant Biol. 13: 12–20.

doi:10.1016/j.pbi.2009.10.006.

Kleine-Vehn, J., and Friml, J. (2008). Polar targeting and endocytic

recycling in auxin-dependent plant development. Annu. Rev. Cell Dev.

Biol. 24: 447–473. doi:10.1146/annurev.cellbio.24.110707.175254.

Korbei, B., and Luschnig, C. (2011). Cell polarity: PIN it down! Curr.

Biol. 21: R197–R199. doi:10.1016/j.cub.2011.01.062.

Lau, S., Jurgens, G., and De Smet, I. (2008). The evolving complexity

of the auxin pathway. Plant Cell 20: 1738–1746. doi:10.1005/tpc.

108.060418.

Lau, S., Shao, N., Bock, R., Jürgens, G., and De Smet, I. (2009). Auxin

signaling in algal lineages: Fact or myth? Trends Plant Sci. 14: 182–

188. doi:10.1016/j.tplants.2009.01.004.
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Benková, E. (2011). Cytokinin modulates endocytic trafficking of

PIN1 auxin efflux carrier to control plant organogenesis. Dev. Cell

21: 796–804. doi:10.1016/j.devcel.2011.08.014.

Mashiguchi, K., Tanaka, K., Sakai, T., Sugawara, S., Kawaide, H.,

Natsume, M., Hanada, A., Yaeno, T., Shirasu, K., Yao, H.,

McSteen, P., Zhao, Y., et al. (2011). The main auxin biosynthesis

pathway in Arabidopsis. Proc. Natl. Acad. Sci. USA 108: 18512–18517.

doi:10.1073/pnas.1108434108.

Michniewicz, M., et al. (2007). Antagonistic regulation of PIN

phosphorylation by PP2A and PINOID directs auxin flux. Cell 130:

1044–1056. doi:10.1016/j.cell.2007.07.033.

Mravec, J., et al. (2009). Subcellular homeostasis of phytohormone

auxin is mediated by the ER-localized PIN5 transporter. Nature 459:

1136–1140. doi:10.1038/nature08066.

Mravec, J., et al. (2011). Cell plate restricted association of DRP1A and

PIN proteins is required for cell polarity establishment in Arabidopsis.

Curr. Biol. 21: 1055–1060. doi:10.1016/j.cub.2011.05.018.

Müller, A., Guan, C., Gälweiler, L., Ta«nzler, P., Huijser, P., March-

ant, A., Parry, G., Bennett, M., Wisman, E., and Palme, K. (1998).

AtPIN2 defines a locus of Arabidopsis for root gravitropism control.

EMBO J. 17: 6903–6911. doi:10.1093/emboj/17.23.6903.

Nagpal, P., Walker, L.M., Young, J.C., Sonawala, A., Timpte, C.,

Estelle, M., and Reed, J.W. (2000). AXR2 encodes a member of the

Aux/IAA protein family. Plant Physiol. 123: 563–574. doi:10.1104/

pp.123.2.563.

Nakayama, N., Smith, R.S., Mandel, T., Robinson, S., Kimura, S.,

Boudaoud, A., and Kuhlemeier, C. (2012). Mechanical regulation of

auxin-mediated growth. Curr. Biol. 22: 1468–1476. doi:10.1016/j.

cub.2012.06.050.

Noh, B., Bandyopadhyay, A., Peer, W.A., Spalding, E.P., and

Murphy, A.S. (2003). Enhanced gravi- and phototropism in plant

mdr mutants mislocalizing the auxin efflux protein PIN1. Nature 423:

999–1002. doi:10.1038/nature01716.

Noh, B., Murphy, A.S., and Spalding, E.P. (2001). Multidrug re-

sistance-like genes of Arabidopsis required for auxin transport and

auxin-mediated development. Plant Cell 13: 2441–2454. doi:10.1105/

tpc.13.11.2441.

Nozue, K., Harmer, S.L., and Maloof, J.N. (2011). Genomic analysis

of circadian clock-, light-, and growth-correlated genes reveals

PHYTOCHROME-INTERACTING FACTOR5 as a modulator of auxin

signaling in Arabidopsis. Plant Physiol. 156: 357–372. doi:10.1104/

pp.111.172684.

Okushima, Y., Fukaki, H., Onoda, M., Theologis, A., and Tasaka, M.

(2007). ARF7 and ARF19 regulate lateral root formation via direct

activation of LBD/ASL genes in Arabidopsis. Plant Cell 19: 118–130.

doi:10.1038/nature01716.

Ouellet, F., Overvoorde, P., and Theologis, A. (2001). IAA17/AXR3:

Biochemical insight into an auxin mutant phenotype. Plant Cell 13:

829–841. doi:10.1105/tpc.13.4.829.
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Zazı́malová, E., and Hejátko, J. (2009). Cytokinins modulate auxin-

induced organogenesis in plants via regulation of the auxin efflux.

Proc. Natl. Acad. Sci. USA 106: 3609–3614. doi:10.1073/

pnas.0811539106.
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