Map algebra

Dr. Amy Griffin Masaryk University, Brno 25 April 2018

Learning objectives

- Define map algebra.
- Explain the differences between and provide examples of local, focal, zonal and global map algebra operations.
- Construct a model diagram that captures the steps of a map algebra analysis.

Inventors of the concept

C. Dana Tomlin

Joseph Berry (mapematics)

The general idea

- Layers
 Input(s)
 Output(s)
- Operators
- Functions More complex combinations of operators & layers

4 kinds of map algebra operations

- Local
- Focal
- •Zonal
- Global

Decreasing scale (increasing size) of area required for the operation

Local Operations

Operates on a cell-wise basis (pixel by pixel).

Arithmetic, Statistics, Relations, Trigonometric, Exponential/logarithmic, Reclassify

Focal Operations

Operates on a cell using information from neighbours (window)

Examples: low-pass filter, slope, aspect

Zonal Operations

Performs an operation on a cell based on cells within a zone that contains that cell.

Example: calculate the maximum value in that zone.

ZoneRas

OutRas

Global operations

An operation on an individual cell depends upon the values of ALL cells

example: Euclidean Distance operation

0	1.0	2.0
1.0	1.4	2.2
2.0	2.2	2.8

Prerequisites for Map Algebra

- Raster pixels need to line up across layers
 - Map projection needs to be the same
 - Spatial resolution needs to be the same
- Handling No Data values:
 - No Data + 1 = No Data
 - 0 + 1 = 0

Examples (from Berry's Tutorial Map Analysis Package)

Still working with binary data, but adding instead of multiplying

Rankings instead of binaries

Press † to review

Adding in proximity analysis (buffers)

And make those buffer sizes depend on slope

Map Algebra Inputs

Find 'best' campground location

- 1) Gentle slope
- 2) Near roads
- 3) Near water
- 4) Good views of water
- 5) Westerly aspect

Water

8 Outlet
7 Inlet
6 Fork
5 Lake Shore
4 Lake
3 Pond
2 Stream
1 Spring
0 Dov Land

Roads

Derive criteria from inputs

Slopemap

Derive criteria from inputs

Roads

Water

Proximity_water

Derive criteria from inputs

Proximity_water

Proximity_roads

Derive preferences from criteria

Aspectmap

Exposure_water

V_pref

Combine preferences

S_pref

Not too close to the road

Constraints

1 Available 0 Constraint

Constraints

NO_prox

Not on slopes over 50%

Combine constraints with preference map

Potential masked

Potential_average

8 6.9 5.8 4.7 3.6 2.5 1.4

1 Available 0 Constraint

Constraints

Final suitability map

Potential_masked

Summary

- Map algebra takes multiple map layers and combines them using mathematical and logical operations.
- Pay attention to raster data requirements (same map projection, same spatial resolution).
- Multistep analysis with map algebra can build powerful models to solve multicriteria spatial problems.

References

 Berry, J., Reed, K.L. (2008). MapCalc Learner software. <u>http://www.innovativegis.com/basis/MA_Workshop/MapCalc_download.</u> <u>htm</u> Last accessed 24 April 2018.