

# Ecotoxicology Current issues in Research vs Regulation

Ludek Blaha + ecotox colleagues









# When Where

the assessment of toxicity is needed

# What

to assess for toxicity









## When & where the toxicity assessment is needed?

View of the researcher



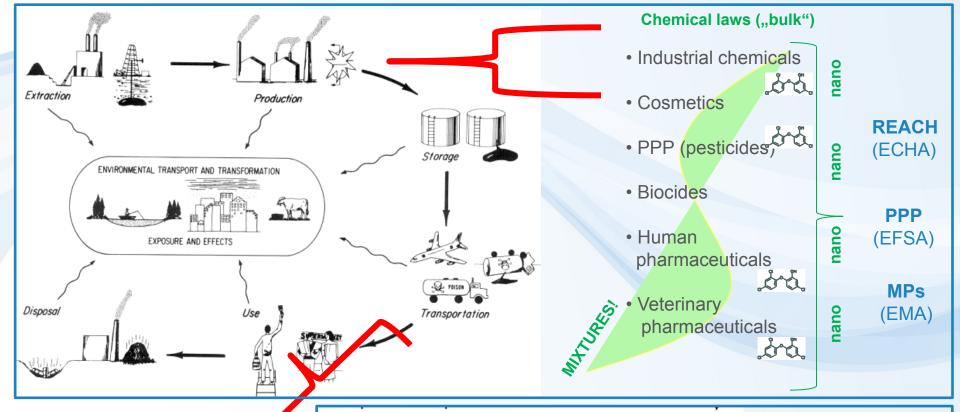
#### **Anytime!**

... depending on researcher's budget

View of the regulator



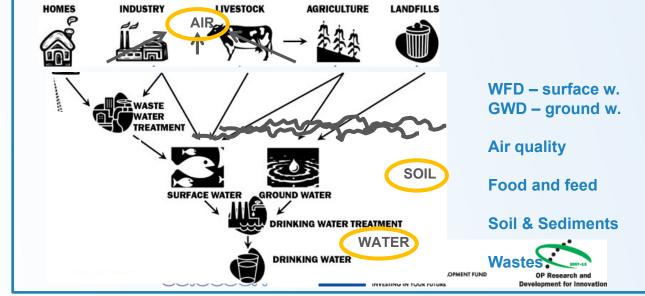
As the law says!


... what are the law(s)?





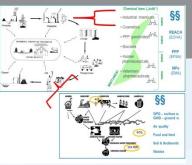







#### Two approaches:

- Prospective (chemicals...)
- Retrospective (mixtures ...)

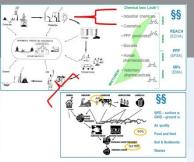





# What to assess for toxicity?

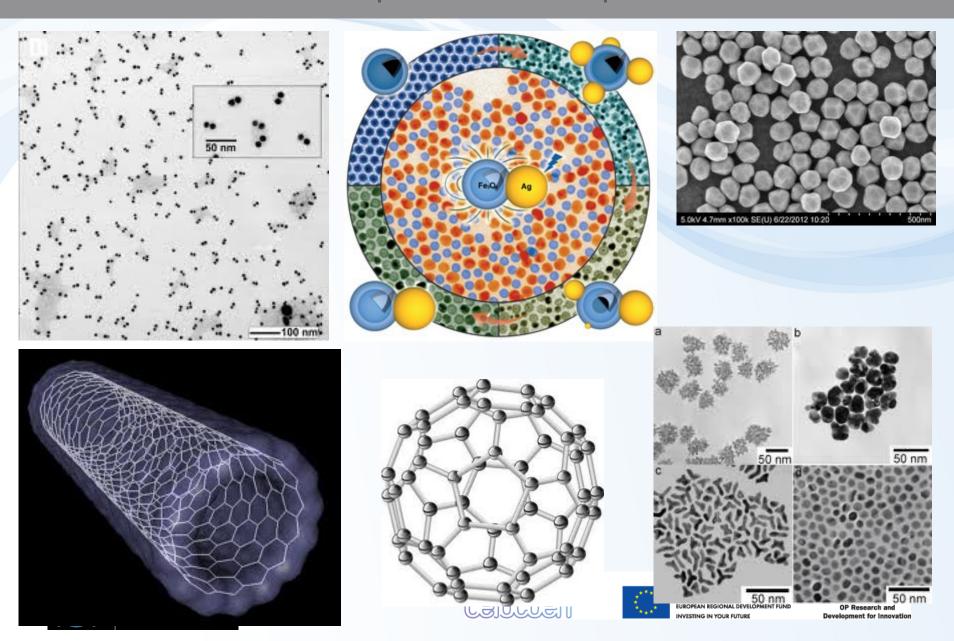




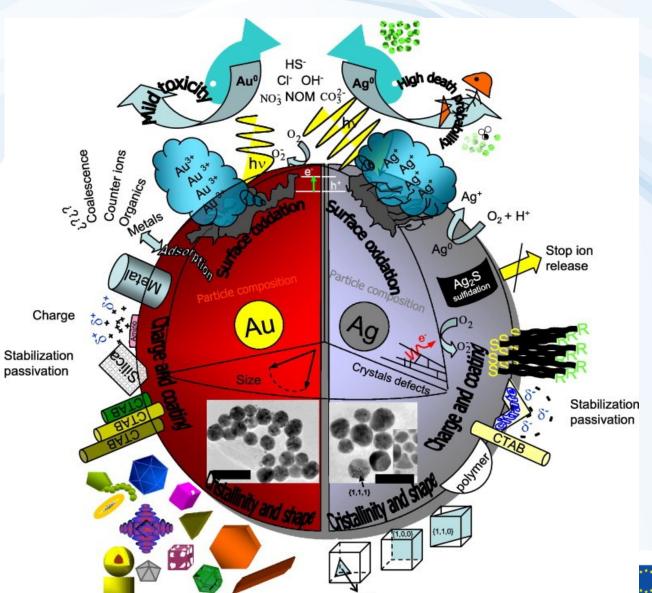



|                                          | Current research topics | As required by law |
|------------------------------------------|-------------------------|--------------------|
| Individual<br>chemicals<br>(prospective) |                         |                    |
| <b>Mixtures</b> (prospective)            |                         |                    |
| Contaminated samples (retrospective)     |                         |                    |
| Resear for tox                           |                         |                    |

# What to assess for toxicity?






|                                      |                                                                                                                           | White consequent (MIII)                                                 |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
|                                      | Current research topics                                                                                                   | As required by law                                                      |
| Individual chemicals (prospective)   | Engineered nanomaterials/particles  Ecological effects (e.g. of pharmaceuticals)  Endocrine disruption & chronic diseases | Industry & biocides (REACH) PPPs = pesticides Pharmaceuticals Cosmetics |
| Mixtures<br>(prospective)            |                                                                                                                           |                                                                         |
| Contaminated samples (retrospective) |                                                                                                                           |                                                                         |
| Research for toxic in the co         |                                                                                                                           |                                                                         |

# Nanoparticles - examples

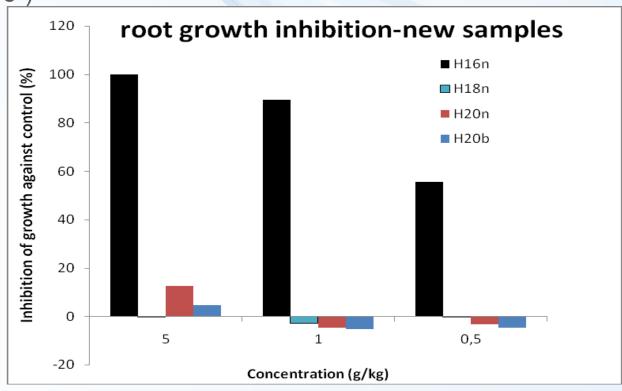


# Toxicity of nanoparticles ...



(Mostly unknown)
Parameters may
Affect ecotoxicity

Composition (chemical)
Surface (size, area)
Charge
Reactivity
Interactions with ions,
other chemicals...


→ Effects on environmental Fate and toxicity





## Ecotoxicity of nanoparticles – RECETOX example

Comparison of toxicity - 4 "appeared to be the same" particles (one producer – 4 different lots) (zerovalent iron – ZVI – Fe<sup>0</sup>)



?? Why is H16 so toxic ??

... despite of detailed investigation never revealed










# PHARMACEUTICALS





Storage



Transport



Distribution

Storage



Transport



### Consumption

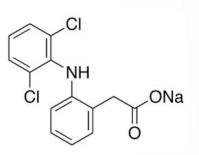
Storage



Transport



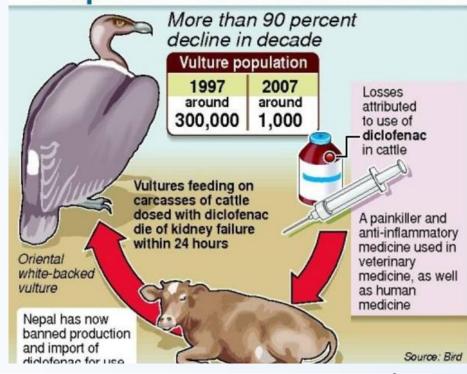
Waste management


**Manufacturing** wast

Possible releases to the environment

# Example 1 - DICLOFENAC

# **Unexpected effects at NON-TARGET species**


- nephrotoxicity at vultures
- Relevant also in EU (ESP, EL,CY)



















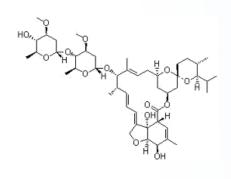
## Example 2 – AVERMEKTIN-like antiparasitics

**Moxidectin** – used e.g. in home "spot on" products














#### Ivermectin – antiparasitics in large herds

- Used **2-times per season** per sheep/cow
- Kills 100% parasites in sheep
- Released in dung kills 80-90% larvae of dung flies
- High concentrations in dung (released 2 days post application)
- Persistent in the soil (half-life 30 days)
- Can be washed into adjacent streams (highly toxic to water insects)











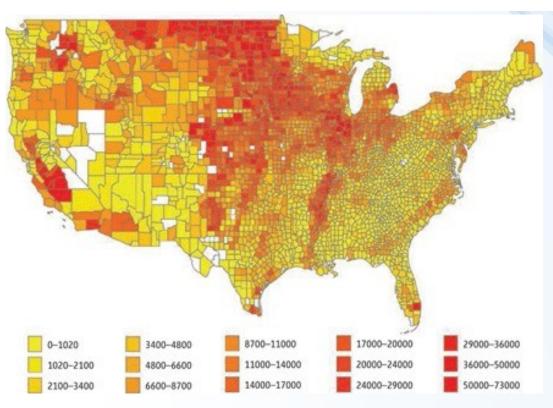


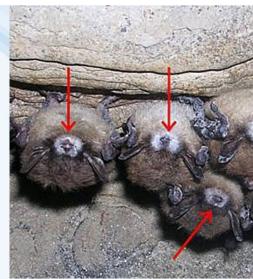






# POLICYFORUM


CONSERVATION


# **Economic Importance of Bats in Agriculture**

Justin G. Boyles, 1\* Paul M. Cryan, 2 Gary F. McCracken, 3 Thomas H. Kunz<sup>4</sup>



Insectivorous bat populations, adversely impacted by white-nose syndrome and wind turbines, may be worth billions of dollars to North American agriculture.









Biol. Lett. Published online

# doi:10.1098/rsbl.2012.0685

# Maternal predatorexposure has lifelong consequences for offspring learning in threespined sticklebacks



Daniel P. Roche, Katie E. McGhee\* and Alison M. Bell

School of Integrative Biology, University of Illinois, Urbana, IL 61801, USA

\*Author for correspondence (kemcghee@illinois.edu).

#### Stress

#### → multigeneration effects





#### **Epigenetics**

#### → DNA methylations

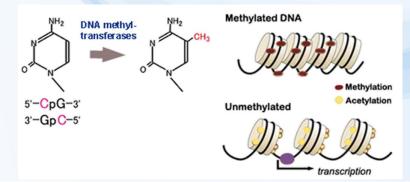



Table 1. Behaviours (mean  $\pm$  s.e.) of the offspring from the maternal treatments.

|                                                                                          | offspring of predator-exposed<br>mothers (s)   | offspring of unexposed<br>mothers (s) |
|------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------|
| initial exploratory behaviour (day 1: 09.00):                                            |                                                |                                       |
| latency to first begin moving                                                            | 49 ± 30                                        | 56 ± 20                               |
| latency to enter either chamber for the first time                                       | 330 ± 70                                       | $326 \pm 78$                          |
| learning the colour association:                                                         |                                                |                                       |
| day 1 (09.00): latency to find food reward                                               | $426 \pm 65$                                   | $427 \pm 61$                          |
| day 3 (09.00): latency to find food reward<br>day 5 (09.00): latency to find food reward | $^{533  \pm  48}_{337  \pm  61}$ 2x difference | $304 \pm 74$ $158 \pm 68$             |

Testing comparability of existing and innovative bioassays for water quality assessment

#### Main questions:

Are current limits (for individual compounds) safe? Relevance of "Something from Nothing" phenomenon?

#### 3 samples

- → 12 European laboratories different bioassays
- → ČR RECETOX: 11 bioassays



Carvalho, R. et al. (2014) Mixtures of chemical pollutants at European legislation safety concentrations: how safe are they?

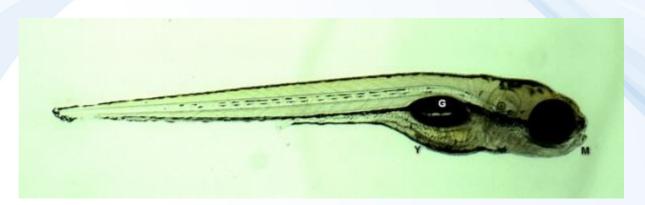
Toxicol Sci 141(1): 218-233



Testing comparability of existing and innovative bioassays for water quality assessment

EU WFD priority substances

Different concentrations


EQS
= limit
(Environmental
Quality
Standard)

|                                    |                |         | l I     |
|------------------------------------|----------------|---------|---------|
|                                    | RM 1ª          | RM 2 ª  | RM 3 a  |
| Priority substances                | around or >EQS | < EQS   | < EQS   |
| Atrazine                           | 6              | 0.6     | 0.6     |
| BaP                                | 0.0017         | 0.00017 | 0.00017 |
| Cadmium <sup>b</sup>               | 0.8            | 0.08    | 0.08    |
| Chlorfenvinphos                    | 1              | 0.1     | 0.1     |
| Chlorpyrifos                       | 0.3            | 0.03    | 0.03    |
| DEHP (Bis(2-ethylhexyl) phthalate) | 13             | 1.3     | 1.3     |
| Diclofenac                         | 1              | 0.1     | 0.1     |
| diuron                             | 2              | 0.2     | 0.2     |
| 17beta-estradiol                   | 0.004          | 0.0004  | 0.0004  |
| fluoranthene                       | 0.063          | 0.0063  | 0.0063  |
| Isoproturon                        | 3              | 0.3     | 0.3     |
| Ni <sup>b</sup>                    | 40             | 4       | 4       |
| 4-Nonylphenol                      | 3              | 0.3     | 0.3     |
| Simazine                           | 10             | 1       | 1       |
| Carbamazepine                      | -              | -       | 0.5     |
| Sulfamethoxazole                   | -              | -       | 0.6     |
| Triclosan (Irgasan)                | -              | -       | 0.02    |
| DEET                               | -              | -       | 41      |
| Bisphenol A                        | -              | -       | 1.5     |



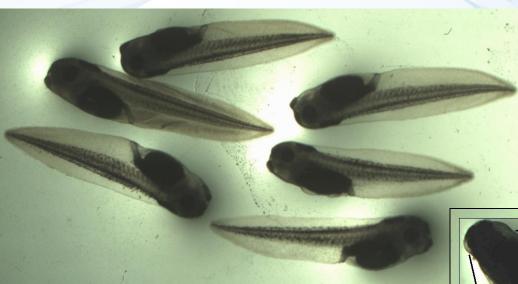
Testing comparability of existing and innovative bioassays for water quality assessment

Example: Effects of mixtures on *D. rerio* fish embryos



Control




Effects of RM 3 (i.e. safe) mixtures

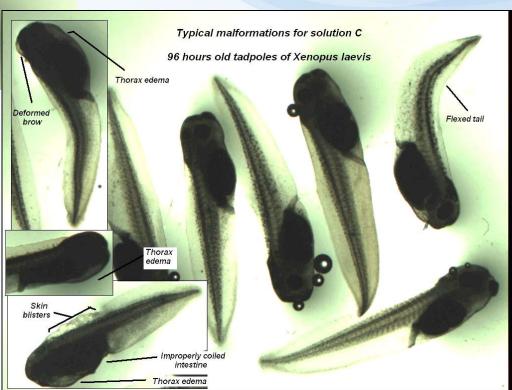


Carvalho, R. et al. (2014) Mixtures of chemical pollutants at European legislation safety concentrations: how safe are they? Toxicol Sci 141(1):

Testing comparability of existing and innovative bioassays for water quality assessment

Example: Effects of mixtures on *X. laevis* frog embryos



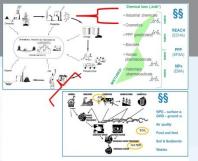

Effects of RM 3 (i.e. safe) mixtures

#### Controls

Carvalho, R. et al. (2014) Mixtures of chemical pollutants at European legislation safety concentrations: how safe are they?

Toxicol Sci 141(1): 218-233






| Biotest                           | Α                                   | В                                 | С                                 |
|-----------------------------------|-------------------------------------|-----------------------------------|-----------------------------------|
| Microtox                          | 26 and 36% stimulation of           | 18 and 35% stimulation of         | 22 and 39% stimulation of         |
|                                   | luminescence in 15 and 30 mins of   | luminescence in 15 and 30 mins of | luminescence in 15 and 30 mins of |
|                                   | exposure, respectively              | exposure, respectively            | exposure, respectively            |
|                                   |                                     |                                   |                                   |
| Algae growth inhibition test 96-h | 31% inhibition of growth compared   | 20% inhibition of growth compared | 16% inhibition of growth compared |
| exposure                          | to solvent control                  | to solvent control                | to solvent control                |
| Acute immobilization test with    | 90% immobilization after 48 hours   | no effect observed                | no effect observed                |
| D. magna                          | of exposure; 25% immobilization     |                                   |                                   |
|                                   | occurred in 50% concentration - not |                                   |                                   |
|                                   | statistically significant           |                                   |                                   |
| Reproduction test with D.         | 100% mortality after 3 days of the  | 31 +/- 37 % inhibition of         | 23 +/- 24 % inhibition of         |
| magna (21-d exposure)             | test, no reproduction could be      | reproduction, not statistically   | reproduction, not statistically   |
|                                   | evaluated                           | significant                       | significant                       |
|                                   |                                     |                                   |                                   |
| FETAX (96-h exposure)             | 62 +/- 10 % of malformed embryos;   | 43 +/- 12 % of malformed embryos; | 34 +/- 14 % of malformed embryos; |
|                                   | no effect on embryo length          | no effect on embryo length        | no effect on embryo length        |
| ·                                 | observed                            | observed                          | observed                          |
| FET (120-h exposure)              | effects observed in number of       | no significant effects observed   | effects observed in number of     |
|                                   | defected embryos - absence of gas   |                                   | defected embryos, number of       |
|                                   | bladder, (head) deformities and     |                                   | underdeveloped embryos and        |
|                                   | underdeveloped embryos were         |                                   | length                            |
|                                   | observed the most often.            |                                   | *                                 |
|                                   | <b>*</b>                            |                                   | *                                 |
| In vitro - cytotoxicity           | no effect observed compared to      | no effect observed compared to    | no effect observed compared to    |
|                                   | solvent control                     | solvent control                   | solvent control                   |
| In vitro - estrogenicity          | effect under LOQ                    | effect under LOQ                  | effect under LOQ                  |
| In vitro - dioxin-like toxicity   | effect under LOQ                    | effect under LOQ                  | effect under LOQ                  |
| In vitro - androgenicity          | effect under LOQ                    | effect under LOQ                  | effect under LOQ                  |
| In vitro - antiandrogenicity      | effect under LOQ                    | effect under LOQ                  | effect under LOQ                  |

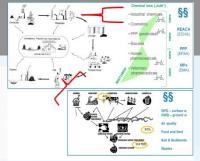
# What to assess for toxicity?







|                                          |                                                                                                                           | Visite Visite                                                           |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
|                                          | Current research topics                                                                                                   | As required by law                                                      |
| Individual<br>chemicals<br>(prospective) | Engineered nanomaterials/particles  Ecological effects (e.g. of pharmaceuticals)  Endocrine disruption & chronic diseases | Industry & biocides (REACH) PPPs = pesticides Pharmaceuticals Cosmetics |
| Mixtures<br>(prospective)                | Multistressors<br>+T°C, salinity, pathogens, irradiation, food<br>Exposome                                                | LOADING                                                                 |
| Contaminated samples (retrospective)     |                                                                                                                           |                                                                         |




# What to assess for toxicity?



in the environment



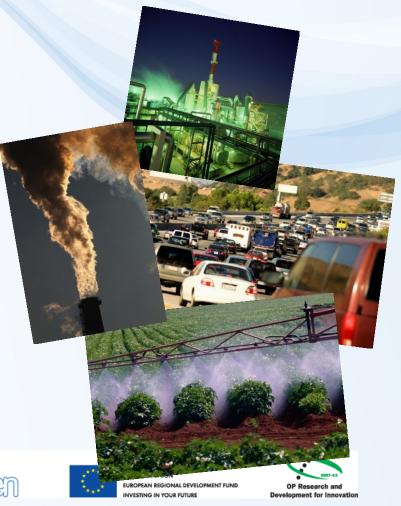


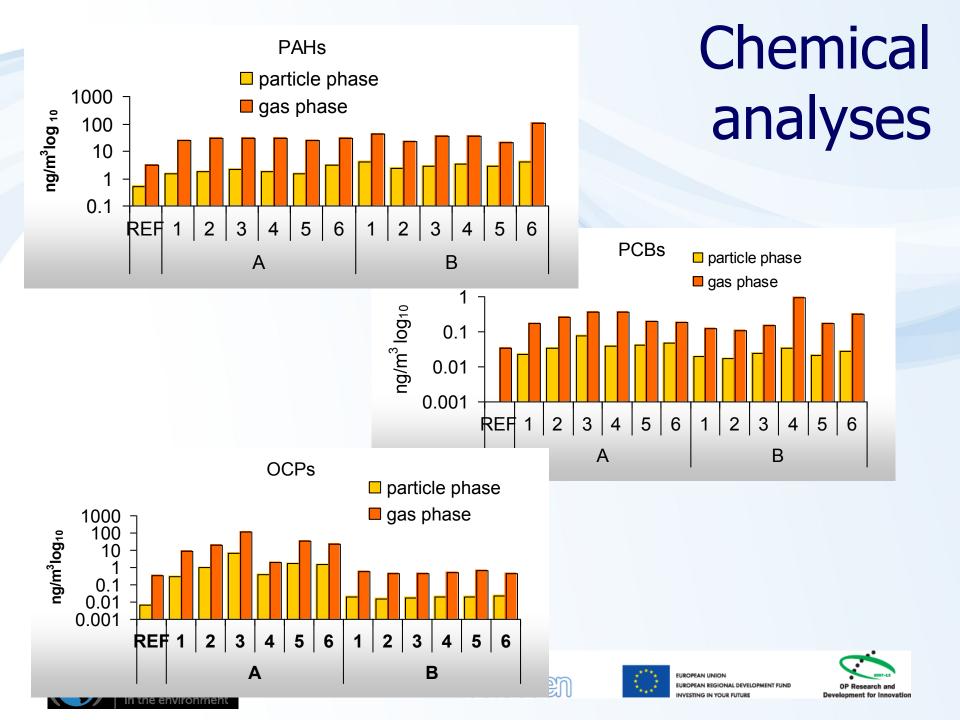
|                                      | Current research topics                                                                                                   | As required by law                                                      |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Individual chemicals (prospective)   | Engineered nanomaterials/particles  Ecological effects (e.g. of pharmaceuticals)  Endocrine disruption & chronic diseases | Industry & biocides (REACH) PPPs = pesticides Pharmaceuticals Cosmetics |
| Mixtures<br>(prospective)            | Multistressors<br>+T°C, salinity, pathogens, irradiation, food<br>Exposome                                                | LOADING                                                                 |
| Contaminated samples (retrospective) | Can analyzed chemicals                                                                                                    | Chemical analyses & limits (see lectures: RISK ASSESSMENT part)         |
| (rotroopootivo)                      | explain observed effects?                                                                                                 | Effect testing rare: Remediation, dredged sediments (CZ), effluents     |
|                                      |                                                                                                                           | LOADING                                                                 |
| for toxi                             | ch centre c compounds                                                                                                     | TECHNICAL REPORT ON AQUATIC EFFECT-BASED MONITORING TOOLS               |

# Contaminated samples? Case study "air"

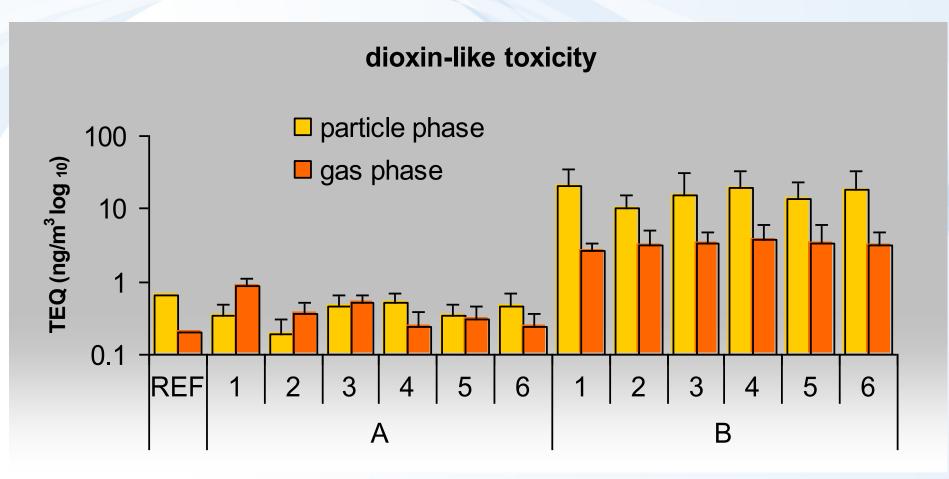
# Active sampling particles vs gaseous phase

 Reference locality – agriculture (Košetice observatory)


 Region A – industrial (historically OCPs production)


 Region B – combined: industry, agriculture, traffic

Novák et al. (2009) Environment International





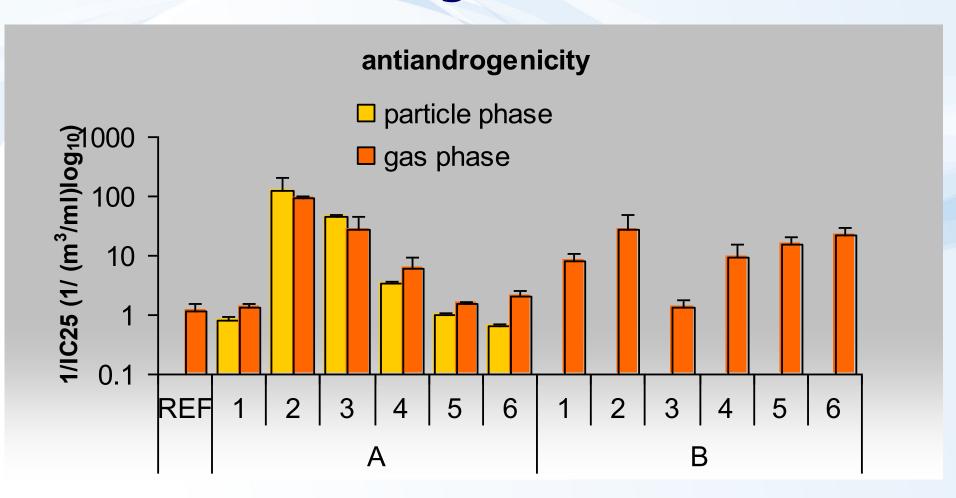





# Dioxin-like effects



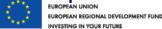
- Difference B>A
- Difference B vs A particles vs gas











# Antiandrogenic effects



Quantitative – comparable

Clear differences in patterns ... no effects on particles in "B







### Summary on When, Where, What

- Regulatory world
  - Assessment of "chemicals"!
- Contaminated samples
  - effects rarely tested
    - Great value of bioassays

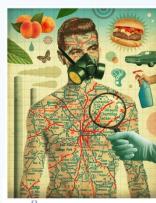
       in assessment of contaminated samples
      - Effects observed (!)
      - How to set the "limits"?
- Research issues and questions
  - Nanomaterials, Pharmaceuticals, EDCs
  - Mixtures!
  - Exposome





Contents lists available at ScienceDirect

#### **Environment International**


journal homepage: www.elsevier.com/locate/envint

Review

What level of estrogenic activity determined by *in vitro* assays in municipal waste waters can be considered as safe?

Barbora Jarošová <sup>a</sup>, Luděk Bláha <sup>a</sup>, John P. Giesy <sup>b</sup>, Klára Hilscherová <sup>a,\*</sup>

- <sup>a</sup> Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ-62500 Brno, Czech Republic
- b Department of Biomedical Veterinary Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada









