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1. Philosophical foundations of empirical science and statistics 

You are all students of science. But have you ever thought of what actually is the aim of 

science? Probably, we can all agree that the aim of science is to increase human knowledge. 

But how this is done? We may think that adding new pieces of knowledge to what is already 

known is actually the process of science. These new pieces come in the form of universal 

statements (laws; theories) describing natural processes. Some scientific disciplines, 

including biology, use data or experience to increase current knowledge and are thus called 

empirical science. Intuitively, we may assume that the new pieces of knowledge are first 

collected as the newly gathered experience or data (singular observations, statements) from 

which the theories and hypotheses (universal statements) are built. Statistics should then be 

the language of empirical science to summarize the data and make the inference of universal 

statements from the singular ones. This approach to empirical science would be called 

induction. Despite intuitive, it is not the approach we use in modern science to increase 

knowledge. 

We may also agree that only true universal statements or theories represent a real addition 

to knowledge and may be used to infer correct causal explanations. So we should aim at 

truth, which should be an essential aspect of our scientific work. But how does science and 

scientists recognize the truth of their theories? This is not an easy task. Truth can be defined 

as a correspondence of statements with the facts1. But the question is how to measure such 

correspondence. There are two apparent ways: 1. We can believe authorities who may issue 

a judgement on this. The authorities may be of various kind: priests, experienced scientists, 

distinguished professors or books written by them (note that this is well compatible with the 

accumulative process of science described above) or 2. We can believe that truth is manifest 

– that truth is revealed by reason and everybody (who is not ignorant) can see it. The first 

way was largely applied in the Middle Age with the church, priests and the Bible as the 

authorities and ultimate source of truth. This led to a long-term stagnation of science and a 

few burnt at the stake. The second approach stems from the Renaissance thinking revolving 

against the dogmatic doctrines of the church. It was a foundation of many great discoveries 

made since the Renaissance time. Unfortunately, there is also devil hidden in this approach 

to truth. It lies in the fact that if truth is manifest, then those who cannot see it are either 

ignorant, or worse, pursue some evil intentions. Declaring itself as the only science-based 

approach to the society and politics, the Marxist-Leninist doctrine largely relies on the belief 

that its truth is obvious, which also provided justification for the ubiquitous cruel handling of 

its opponents whenever possible.2,3  

                                                      
1 Facts (i.e. for instance measurements) are (usually) considered true. There is always sort of measurement error, but that is 
mostly negligible. Reporting false facts is unacceptable. It is basically cheating, which, if occurs, has a great negative effect 
on knowledge, because challenging published facts is something, which is rarely done. 
2 Note here that if the conflict between the Renaissance thinkers such as Galileo Galilei or Giordano Bruno and the church is 
viewed as a fight between the two views on truth both of which may lead to evil ends, you may reconsider the outright 
negative view on the representatives of the inquisition. Nevertheless, burning your opponents at the stake is not an 
acceptable means of discussion in any case.  
3 A strange mix of both approaches to truth is still largely applied in secondary education in some countries (e.g. Czechia). 

Textbooks and the teachers’ knowledge may be used here as the ultimate authority for truth. At the same time, students 
are punished for making mistakes (by low grades) because truth is manifest. If they cannot see it, they are considered 
ignorant and as such deserve the punishment. 



It seems that we have a problem with truth and need to find the way out of it. The solution of 

the problem was summarized the philosopher of science Karl R. Popper (1902-1994). Popper 

states that although truth exists and we should pursue it, we can never be sure that our 

theories are true. This is because our we 

are prone to make mistakes with the 

interpretation of what our senses tell us. 

This view is not that novel as K.R. Popper 

himself refers to ancient Greek 

philosophers some of whom have 

identified this paradox of truth. One 

illustrative account of this is the story of 

prisoners in cave contained in Plato’s 

Republic. This is the story about prisoners 

who are kept in a cave from the very 

beginning of their life and have their 

heads fixed to look at a wall. Fire is located 

far behind them and persons and objects 

pass between the fire and the prisoners’ 

back casting shadows on the wall, which 

the prisoners can see. Then, as Plato says 

(by the speech of Socrates): “To them, I 

said, the truth would be literally nothing 

but the shadows of the images.”. In this 

writing, Plato also declares ourselves to be 

like these prisoners. This may seem 

strange as we tend to believe that what 

we see is real but consider e.g. the recent 

observation of gravitational waves. We 

observe them by super-complicated and 

ultra-sensitive devices and can only see 

shadows of them (nobody can see them 

directly).  

Although we can only see shadows of 
reality, these shadows still contain some 
information. We can actually use this 
information to make estimates about the 
reality and more importantly to demonstrate our universal statements false. The ability to 
demonstrate some theories and hypotheses false is the principal strength of empirical science. 
This leads to rejection of theories demonstrated not to be true while those, for which falsifying 
evidence is not available (yet) are retained. If a theory is rejected on the basis of falsifying 
evidence, a new one can be suggested to replace the false theory, but note, that this new 

Box 1. Misleading empirical experience 

1. Ancient Greek philosopher Anaximandros 

(c. 610 – c. 546 BC) was the first who 

identified the Earth as an individual celestial 

body and presented the first cosmology. This 

was a great achievement of human reason. 

However, he supposed the Earth to be of 

barrel shape because he only could see flat 

world around him – as we actually do.  

 

Life of Anaximandros on barrel Earth 

2. Jean-Baptiste Lamarck (1744-1829) 

formulated the first comprehensive 

evolutionary theory based on his naturalist 

experience with adaptations of organisms to 

their environment. He asserted that 

organisms adapt to their environment by 

adjustments of their bodies, which changes 

are inherited by the offspring. This is very 

intuitive but demonstrated to be false by a 

long series of experimental testing.  



theory is never produced by an “objective” process 
based on the data. Instead, it is produced by subjective 
human reasoning (which aims to formulate the theory 
not to be in conflict with objective facts though).  
 In summary, experience can tell us that a 
theory is wrong but no experience can prove truth of 
a theory (note here, that we actually do not use the 
word “proof” in terminology of empirical science). 
Consider e.g. the universal statement “All plants are 
green”. It is not important how many green plants you 
observe to prove it true. Instead, observation of e.g. 
single non-green parasitic Orobanche (Fig. 1.1) is 
enough to demonstrate that it is false. Our approach 
of doing science is thus not based on induction. 
Instead it is hypothetical-deductive as we formulate 
hypotheses and from them deduce how world should 
look like if the hypotheses were true. If such 
predictions can be quantified, their (dis)agreement 
with the reality can be measured by statistics. The use 
of statistics is however not limited to hypothesis 
testing. We also use statistics for data exploration and 
for parameter estimates. 
 Finally, you may wonder how Biostatistics differs from Statistics in general. Well, 
there no fundamental theoretical difference, Biostatistics refers to application of statistical 
tools in biological disciplines. Biostatistics generally acknowledges, that biologists mostly fear 
maths so the mathematical roots of statistics are not discussed in details and also e.g. 
complicated formulae are avoided wherever possible.  
 
Literature 
Plato: Republic (Book VII) 
Popper KR: Conjectures and Refutations 
Popper KR: Logic of Scientific Discovery 
https://en.wikipedia.org/wiki/Anaximander 
https://en.wikipedia.org/wiki/Jean-Baptiste_Lamarck 
 

2. Data exploration and data types 

If you have some data, say a variable describing observations of 100 objects (e.g. tail length of 
100 rats), you may wish to explore these values to be able to say something about these data.  
That is, you may wish to describe the data using descriptive statistics. 
The data are here: 
  [1] 4.57 5.69 4.49 6.09 5.46 6.28 4.90 5.80 4.39 4.32 4.85 4.05 6.36 3.10 5.30 3.74 5.45 4.08 

 [19] 4.97 3.31 4.71 5.49 6.37 5.32 5.31 5.20 2.29 3.91 4.09 5.59 6.85 3.56 6.13 3.73 6.41 4.01 

 [37] 4.77 5.84 6.37 6.49 5.27 5.26 5.92 5.27 4.17 7.00 4.73 5.26 5.17 3.76 7.03 6.79 5.94 7.42 

 [55] 5.87 5.61 5.25 4.45 4.41 7.27 5.53 5.69 3.59 5.47 5.69 3.63 2.03 5.65 3.36 3.60 5.39 3.90 

 [73] 5.82 3.17 3.73 4.81 4.70 4.71 5.02 5.61 2.99 3.96 3.28 4.99 5.30 5.23 6.06 6.31 5.60 5.85 

 [91] 5.15 4.62 5.79 5.36 3.89 4.35 5.26 3.76 4.68 5.77 

 
First, we need to know the size of the data, i.e. number of observations (n). 
 

Fig. 1.1. Non-green parasitic plant 

Orobanche lutea. 



Here n = 100. 
 
Second, we are interested is the central tendency, i.e. certain middle value around which, the 
data are located. This is provided by the median. Which is the middle value4 of the ordered 
data dataset from the lowest to the highest value. Here med = 5.24 
 
Third, we need to know the spread of the data. A simple characteristic is range (minimum and 
maximum. Here min = 2.03 and max = 7.42. However, the minima and maxima may be affected 
by outliers and extremes. While, it is useful to know them, we may also prefer some more 
robust characteristics. This comes with quartiles. Quartiles are 25% and 75% quantiles. XX%-
quantile refers to a value compared to which XX% of other observations are lower. In our case 
the first quartile (25%) = 4.15 and the third quartile (75%) = 5.71. The second (50%) quartile is 
the median. 
 
These descriptive statistics can be summarized graphically in the form of boxplot. That is very 
useful for comparisons between different datasets (e.g. comparison of mouse tail length with 
a similar dataset on rats): 

 
Fig. 2.1. Boxplot displaying tail length of mice and rats. The bold lines in boxes represent 
medians, boxes represent quartiles (i.e. 25 and 75% quantiles) and the lines extending from 
the box boundaries (whiskers) represent the range or non-outlier range of values, whichever 
is smaller. The non-outlier range is defined as the interval between (25% quantile ) 1.5 × 
interquartile range) and (75% quantile + 1.5 × interquartile range). Any point outside this 
interval is considered an outlier and is depicted separately.5 
Another useful type of plot is the histogram. Histogram is very useful for displaying data 
distributions (but less so for comparisons between different datasets). To plot a histogram, 
values of the variable are assigned into intervals (called also bins). Numbers of observation 
(frequency) within each bin is then plotted on in the graph. 
 

                                                      
4 Note here, that if n is even and the two values close to the middle are not equal, median is computed as their 
arithmetic mean. 
5 This is a very detailed description of a boxplot. Usually it can be briefer. Still, I was forced to make it this 
detailed by the editor of one paper I published. 



 
Fig. 2.2. Histogram of mouse tail length. 
 
Types of data 
The data on mouse tail length we have explored are called data on ratio scale. Several other 
types of data can be defined on the basis of their properties. These are summarized in Table 
2.1. in ratio-scale and interval data, further distinction can be made between continuous and 
discrete data but that makes little difference for practical computation. 
 
Table 2.1. Summary of data types definition and properties. 

Data type Criteria Possible math. 
operations 

Examples Object class in 
R 

Ratio scale data constant intervals 
between values, 
meaningful zero 

+,-,×,/ length, mass, 
temperature in 
K 

numeric 

Interval scale 
data 

constant intervals 
between values, 
zero not 
meaningful  

+,- temperature in  
°C 

numeric 

Ordinal data 
(also called semi-
quantitative) 

variable intervals 
between values  

comparison of 
values 

exam grades, 
Braun-
Blanquet cover 

numeric (but 
may require 
conversion) 

Categorical data non-numeric 
values 

none colors, sex, 
species identity 

factor 

Categorical variables cannot be explored by the methods described above. Instead, 
frequencies of individual categories can be summarized in a table, or a barplot can be used to 
illustrate the data graphically. 
Consider e.g. 163 bean plant individual with flowers of three colors: white, red, purple. 



 
 
Fig 2.3. Barplot of frequencies of flower colors in the bean dataset. 
 
 
How to do in R 

Size of data: function length 

Median: function median 

Range: function range 

Minimum: function min 

Maximum: function max  

Quartiles: function quantile with default settings produces 5 values: min, lower 
quartile, median, upper quartile, maximum 
Boxplot: function boxplot supports the formula notation, i.e. response variable ~ 

classifying variable) 
Histogram: function hist 

Barplot: function barplot requires frequencies to be provided e.g. by table or 

tapply 



3. Probability, distribution, parameter estimates and likelihood 

Random variable and probability distribution 

Imagine tossing a coin. Before you make a toss, you don’t know the result and you cannot 

affect the outcome. The set of future outcomes generated by such process is called random 

variable. Randomness does not mean, that you do not know anything about the possible 

outcomes of this process. You know the two possible outcomes that can be produced and 

also the expectation of getting one or the other (assuming that the coin is “fair”). A random 

variable can thus be described by its properties. This description of the process generating 

the random variable is then indicative of the expectations of individual future observations – 

probabilities. We are not limited by a single observation but can consider a series of them. 

Then, it makes sense to ask e.g. what is the probability to get less than 40 eagles in 100 

tosses. If we do not fix the value to 40 but instead study the probabilities for all possible 

vales (here from 1 to 100), we can define probability associated with each value from 1 to 

100 as: 

pi = P(X< xi) 

where pi is the probability of observing a value lower than a given value xi. Then we can 

construct the probability distribution function defined as: 

f(X) = ∑ 𝑝𝑖𝑋<𝑥𝑖
 

in human (non-mathematical) language, this translates as: Take probabilities of all values 

lower than X, compute their sum and you get the value of probability distribution function 

for value X (Fig. 3.1a). Another option to explore the distribution of values is to sample a 

random variable and examine properties of such sample. After you take such sample (or 

make a measurement), i.e.  record events generated by a random variable, corresponding 

values cease to be a random variable but become the data. The data values may be plotted 

on a histogram of frequencies (Fig.3.1b; see also chapter 2). The frequency histogram can be 

converted to a probability density histogram (Fig. 3.1c) by scaling the area of the histogram 

to 1. The density diagram has a great advantage that probabilities of observing a value 

within given interval can directly be read as size of the area of given column. The histograms 

shown in Fig. 3. indicate sampling probability distribution or density based on the data. By 

contrast the red lines indicate theoretical probability distribution or density; i.e. how the 

values should look like if they followed the theoretical binomial distribution, which describes 

the coin tossing process. As you can see, the sampling and theoretical distributions do not 

match exactly, but there does not seem to be any systematic bias. The density of theoretical 

probabilities can thus be viewed as an idealized density histogram. There are many types of 

theoretical distributions, which describe many different processes generating random 

variables. Each of these types can further have many shapes, which depends on the 

parameters of the probability distribution function. E.g. the shape of the binomial 

distribution, which describes our coin tossing problem, is defined by parameters p indicating 

the average probability of observing one outcome and size, which is the number of trials 

(tosses in our case). 



Coin tossing produced discrete values to which probabilities could directly be assigned 

because there is a limited number of possible outcomes. This is not possible with continuous 

variables, as the number of possible values is infinite. However, if you look back at the 

definition of the probability distribution function, this is not a problem because for any 

value, you can find an interval of lower values.  

 

 

 

Normal distribution 

Among many theoretical distribution types, we will focus on normal (Gaussian) distribution. 

This distribution describes a process producing values symmetrically distributed around the 

 

Fig. 3.1. Probability (a), frequency (b) and density (d) distribution of coin tosses (n = 100, 

size = 100, p = 0.5). Grey histograms represent sampling statistics (prob., freq., dens.). 

Red lines in (a) and (c) represent theoretical binomial probability distribution and 

density, respectively. (d) standard 10 crown coin of Austrian-Hungarian Empire used for 

the tossing. Depicted here to illustrate why we call the coin sides the Head and Eagle 

instead of Brno and Lion as on the current 10 CZK coin. 



center of the distribution. Normal distribution can be used to describe (or approximate) 

distribution of variables measured on ratio and interval scale. It has two parameters, which 

define its shape (Fig. 3.2a):  

the central tendency (expected value), called the mean: 

 𝜇 =  
∑ 𝑋𝑖

𝑁
𝑖=1

𝑁
 

i.e. sum of all values of the variable divided by the number of objects.  

and the variance, which defines the spread of the probability density: 

𝜎2 =  
∑ (𝑋𝑖  −  𝜇𝑛

𝑖=1 )2

𝑁
 

i.e. mean square of differences of individual values from the mean.  

Variance is given in squared units of the variable itself (e.g. in m2 for length). Therefore, 

standard deviation (σ, SD), which is simply square root of variance, is frequently used. 

Common notation of the normal distribution with mean μ and variance σ2 is: N(μ, σ2). 

Normal distribution has non-zero probability density over the entire scale of real numbers. 

This implies that normal distribution may not always be suitable to approximate distribution 

of some variables, e.g. physical variables such as length or masses because these cannot be 

lower than zero. However, normal density becomes close to zero if one moves several SD 

units from the mean (Fig 3.2b). This means that normal distribution may be used for the 

always-positive variables (like length, mass etc.) only if the mean is reasonably far from zero 

(measured by SD units). At the same time, this implies that existence of outlying values is not 

expected and normal approximation of variables containing them may be problematic.  

Any normal distribution can be converted to standard normal distribution (with mean = 0 

and SD = 1) by subtracting the mean of the original normal distribution and dividing the 

values by SD. This procedure is called standardization.  

Central limit theorem is an important statement relevant for the use of normal distribution. 

It states that in many situations, when independent random variables are added, their sum 

tends to converge to normal distribution even if the original variables were not normal. For 

instance, biomass production in grasslands is affected by many processes (e.g. water use by 

plants, photosynthesis, …) sum of which can often be reasonably approximated by normal 

distribution.  

Probability computation 

Knowing the probability distribution of certain variables allows probabilities associated with 

given intervals of the variables to be computed. For instance, a producer of clothes may 

design T-shirt sizes to cover 95% of the population of customers if he knows that body size 

has certain probability distribution, e.g. normal distribution described by mean and variance. 

Two functions are used for the conversion between the values of the variable and 

probabilities. Probability distribution function computes probabilities of observing values 



lower (lower tail) or higher (upper tail) than given threshold. Quantile function is inverse to 

probability distribution function and allows computing the quantiles – threshold values of 

the original variable associated with given probability value. 

 

Fig 3.2. Normal distribution: shapes of probability density of normal distributions differing in 

their μ and σ2 parameters (a). Illustration of SD units intervals and their importance for 

probability quantiles (note here that these are quantiles of probability corresponding to plot 

area under the density line; not quantiles produced by quantile function) (b). Standard 

normal distribution with μ = 0 and σ2 = 1 (c). 

Parameter estimates, statistical sampling and likelihood 

Probability computation can be a very informative analysis but it requires prior knowledge of 

the theoretical distribution and its parameters. This is usually not the case. In most cases, we 

have just the data, i.e. the statistical sample. This sample can be imagined as a subset of the 

statistical population, i.e. possibly infinite set of all values contained in the random variable.  

It seems as a logical step to estimate the population parameters from those of the sample. 

Recall now the story of prisoners in the cave in chapter one. In parallel with them, we have 

the information only on a fraction of reality (sample) from which we aim to estimate how 

reality (population) looks like. 



Such process of statistical inference is possible under certain conditions: 

1. The type of the theoretical distribution of population values must be known or at least 

assumed (the latter is the case in reality). This cannot be derived from the data. However, it 

is possible to compare the sampling distribution of the data (illustrated e.g. by a histogram) 

and the theoretical distribution (e.g. Fig. 3.1.c). 

2. The data must be generated by random sampling from the population. If the sampling is 

not random, parameter estimates get biased. 

Population parameters are assumed to be fixed (as opposed to random) in classical statistics 

(sometimes called frequentist statistics). This corresponds to the fact, that there is only one 

true value of a single population parameter – no alternative truths are allowed. We cannot 

assign any probabilities either to population parameters or to completed estimates because 

probabilities can only be assigned to future outcomes of a random variable. However, we 

can assign likelihood to the estimates. In continuous variables, likelihood of a parameter 

value given the observed data is the product of probability densities associated with the 

observed values derived from density distribution function containing given parameter 

estimate. For practical reasons, we use log-likelihoods where the product transforms into 

sum. Maximum likelihood estimation then involves searching for such parameters which 

have the highest log-likelihood values (Fig.3.3).  

Practically, the population parameters are estimated by computing estimators: 

maximum-likelihood estimator of μ is the arithmetic mean: 

�̅� =  
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
 

the uncertainty of the estimation of population mean can be characterized by error 

associated with �̅�. This is called standard error of the mean (SE, 𝑠�̅�): 

𝑠�̅� =  
𝑠

√𝑛
 

as you can see the uncertainty about the population mean decreases with square-root of the 

number of observations. The more observations, the more precise inference! 

maximum-likelihood estimator of population variance is sample variance:  

𝑠2 =  
∑ (𝑥𝑖  −  �̅�𝑛

𝑖=1 )2

𝑛 − 1
 

Note the difference in the denominator between formulae of sample and population 

variances. Sample standard deviation s = √𝑠2 



 

Fig 3.3. Maximum likelihood estimation of normal distribution parameters. A sample (n = 50) 

was sampled from a normally distributed population with μ = 10 and σ2 = 4. Maximum 

likelihood estimation was then performed on the sample aiming at reconstruction of the 

population parameters. Mean value was estimated �̅� = 9.57 and variance s2 = 3.37. 

Corresponding probability density function was plotted onto the sampling density histogram 

(a). Log-likelihoods of a series of possible mean and variance values are plotted together 

with the estimated and population population parameters (b,c). Note that in real-life 

statistical inference, the information on population parameters is not known. 

 

I guess, you may now think I am completely crazy. It took no less than 6 pages to explain all 

the complicated principles of probability calculation, likelihood and parameter estimate to 

end up with simple calculation of arithmetic mean and variance! However, you will see that 

it was worth it. In following classes, we will discuss other probability distributions, which are 

less intuitive than the normal. So, it may make sense to have the first look at what is rather 

intuitive and familiar. It may also seem possible to rely on the simple calculation of mean 

and variance and not bothering about the underlying principles. But then, you run into the 

risk of misuse these statistics such as using the arithmetic mean to determine final grades at 

schools (school grades indeed do not follow the normal distribution and arithmetic mean is a 

very poor estimator of the central tendency of their distribution). Note also that the 

principles of statistical inference (e.g. the distinction between sample and population) 



described here have very universal importance and represent the core of statistical theory. 

So it seems to make sense to be familiar with them. 

 

How to do in R 

Normal distribution probability: pnorm 

parameter q in this function refers to quantiles, i.e. the values 

of the original variable. 

parameter lower.tail with possible values T (the default) or F 

indicates whether probability of observing lower or higher value 

than a given threshold is to be computed, respectively.  

 

Normal distribution quantile function: qnorm 

parameter p in this function refers to probability(ies), i.e. 

the values of normal probability distribution function for which 

the corresponding quantiles (values of the original variable) 

should be computed. 

 

Function rnorm can be used to generate a sample (series of 

values) of normal distribution (was employed e.g. for Fig. 3) 

 

Functions for parameter estimates: 

arithmetic mean: mean 

standard error of the mean: there is no dedicated function in 

the default packages. Function se can be found in package 

sciplot. Alternatively, it is possible to create a custom 

function for this: 

se<-function(x) sd(x)/sqrt(length(x}) 

variance: var 

standard deviation: sd 

 



5. Hypothesis testing and pattern detection; goodness-of-fit test 

Scientific statements 

In chapter 1, I explained that science consists of theories and these comprise hypotheses. 

Scientists formulate these hypotheses as universal statements describing the world but they 

never know whether a hypothesis is true until it is rejected based on the empirical evidence. 

This makes science an infinite process of searching for true, to which we hopefully approach 

but never know whether we reach it or not.  

 Let’s now return to the term universal statement I used in the previous paragraph 

and in chapter 1 because this is crucial to understand how empirical science works and 

hypothesis testing proceeds. Statements describing the world can be classified into two 

classes: 

1. Universal statements apply generally on all objects concerned. E. g. “All (adult) swans 

are white” is a universal statement. This can be converted to a negative form: “Swans 

of other color than white do not exist.” You can see that the universal statements 

prohibit certain patterns or events (e.g. observing a black swan here); therefore, they 

have the form of “natural laws”. They can also be used to make predictions. If the 

white swan hypothesis is true, the next swan I will see will be white (and this is not 

dependent on how many white swans I saw before). A universal statement cannot be 

verified, i.e. confirmed to be true. We would need to inspect color of all swans living 

on the Earth (and in the Universe) to do so and even if we did so, we can never be 

sure that the next baby swan hatching from an egg would not be different from white 

at adulthood. By contrast, it is very easy to reject such universal statement on the 

basis of empirical evidence. Observing only a single swan of other color than white is 

sufficient for that.  

 

2. Singular statements are asserted only on specific objects. E.g. “The swan I see is 

white.” Such statement refers to a particular swan and does not predict anything 

about other swans. A specific class of singular statements are existential statements 

which can be derived from singular ones. The fact that I see a white swan (singular 

statement) can be used to infer that there is at least one swan which is white, i.e. 

white swans do exist. Based on the previous paragraph, you would probably not 

consider such statement any novel since it is in agreement with the universal 

statement on white swans. However, seeing a single black swan (Fig 5.1) completely 

changes the situation. It means, that at least one black swan exists and that the 

universal statement on white swans is not true. In general terms, this existential 

statement rejected the universal statement.  

To sum up, scientific hypothesis must have a form of universal statements in order to have a 

predictive power, which we need to explain patterns in nature. They cannot be verified but 

can be rejected by empirical existential statements which are in conflict with the prediction 

of the hypothesis. 



 

Fig. 5.1 A black swan in Perth (Western Australia). 

Hypotheses and their testing 

Empirical science is largely the process of hypothesis testing. This means searching for 

conflicts between predictions of hypotheses and collected/measured data. Once a 

hypothesis is rejected, a new hypothesis can be formulated to replace the old one. Note, 

here that there is no “objective” way how to formulate new hypotheses – they are rather 

genuine guesses. 

An important implication from this is that for every scientific theory or hypothesis, it should 

be possible to define singular observations which if they exist would reject it. This means, 

that each scientific hypothesis must be falsifiable. Universal statements that are not 

falsifiable may be components of art, religion or pseudoscience but definitely not of science. 

Various conspiracy theories also belong to this class. These statements need not to be only 

dogmatic, they may also be tautological. Example of this is e.g. recently published theory of 

stability-based sorting in evolution (https://www.ncbi.nlm.nih.gov/pubmed/28899756), a 

“theory” which says that evolution operates with stability, i.e. organisms and traits which are 

more stable, persist for longer. The problem is that long persistence is a synonym for 

stability. So in fact the theory says “What is stable is stable” - not very surprising.  The 

authors declare the theory to explain everything (see the ending of the abstract), and this is 

indeed true, but the problem is that the theory neither produces any useful predictions nor 

can be tested by empirical data. 

If we select only hypotheses which are falsifiable, and as such can be considered scientific 

statements, we may discover that there are multiple theories without any conflicts with the 

https://www.ncbi.nlm.nih.gov/pubmed/28899756


data. It is a natural question to ask, which one to choose over the others. Here, we should 

use the Occam’s razor (https://en.wikipedia.org/wiki/Occam%27s_razor) principle and use 

the simplest (and also most universal and most easily falsifiable) hypothesis available. This is 

also termed “minimum adequate model” – i.e. choose the model with minimum number of 

parameters which fits adequately with the data.  

Pattern detection  

Biological and ecological systems display high complexity arising from an interplay among 

complicated biochemical processes, evolutionary history and ecological interactions. As a 

result, quite large proportion of the research is exploratory aiming at discovering effects 

which were not anticipated yet. Therefore, no previous theory could have informed about 

them, or such information on absence of effect would be just redundant. These are special 

cases of hypothesis testing, which can be called pattern detection. In pattern detection tests 

we test the universal statement, that the effect under investigation is zero (i.e. there is no 

correlation between two quantitative variables). Rejecting such statement (null hypothesis) 

means that our observations are significantly different from what could be observed just by 

chance, i.e. we demonstrate significance of a singular statement – and this can be 

consequently used to formulate a new universal hypothesis 

Hypothesis testing with statistics 

In statistics, we work with numbers and probabilities. Therefore, we do not record a clear-

cut evidence to reject a hypothesis as in the example with swans. In other words, even 

improbable events do happen by chance and their observation may not be sufficient 

evidence to reject a hypothesis.  

A general statistical testing procedure involves computation of test statistic. This statistic 

measures the discrepancy between the prediction of the null hypothesis and the data 

considering also strength of the evidence based on the number of observations. The test 

statistic is a random variable, which follows certain theoretical distribution, if the null 

hypothesis is true. As a result, probability of observing the actual data or data that differ 

even more from the null hypothesis expectation can be quantified. If this probability (called 

the p-value) is below certain threshold we can justify rejection of the null hypothesis.  

The probability of observing certain data under null hypothesis can be very low but never 

zero. As a result, we are left with uncertainty concerning whether we did a right decision 

when rejecting or retaining the null hypothesis. In general, we may take either right decision 

or make an error (Table 5.1). 

 

 

 

 

 

https://en.wikipedia.org/wiki/Occam%27s_razor


Table 5.1. Possible outcomes of hypothesis testing by statistical tests. H0 = null hypothesis 

  Reality 

  H
0
 is true H

0
 is false 

Our 
Decision 

Reject H
0
 Type I 

Error 
Ok 

Not reject H
0
 Ok Type II Error 

 

Two types of error can be made, of which type I error is more harmful because it means 

rejection of a null hypothesis which is true. This is called false positive evidence. It is 

misleading and may even obscure the scientific research of given topic. By contrast, type II 

error (false negative) is typically invisible to anybody except to the researcher itself because 

results not rejecting the null hypothesis are not published. Statistical tools can quite 

precisely control the probability of making type I error, by setting an a-priori limit for the p-

value. Typically, this limit called level of significance (α) is set to α = 0.05 (5%). If the p-value 

resulting from the testing is higher than that, null hypothesis cannot be rejected. Note here, 

that such non-significant result does not mean that the null hypothesis is true. Non-

significant results are indicative of absence of evidence, not of evidence of absence of an 

effect.  

Concerning type II error (probability of which is denoted β), statistical inference is less 

informative. It can be quantified in some controlled experiments, but its precise value is not 

of particular interest. Instead, a useful concept is power of the test, which equals 1 – β and 

its relative rather than absolute size. Power of the test increases with sample size and with 

decreasing α, i.e. if the tester accepts an elevated risk of type I error. 

Goodness-of-fit test 

Let’s have a look at an example of a statistical test. One of the most basic statistical tests is 

called goodness-of-fit tests (sometimes inappropriately chi-square test following the name 

of the test statistic). It is particularly suitable for testing frequencies (counts) of categorical 

data although the χ2 distribution is quite universal and approximates e.g. very general 

likelihood ratio.  

the formula is this: χ2 = ∑
(𝑂−𝐸)2

𝐸
 

where O indicates observed and frequencies and E indicates frequencies expected under the 

null hypothesis. The sum is repeated for each of the categories under investigation.  

The χ2 value is subsequently compared with corresponding χ2 distribution to determine the 

p-value. There are many χ2 distributions which differ in the number of degrees of freedom 

(DF; Fig 5.2). The DF is a more general concept common to all statistical tests as it quantifies 



size of the data and/or complexity of the model. Here, it is important to know that for 

ordinary goodness-of-fit test: 

DF = number of categories – 1.  

 

Fig. 5.2 Probability densities of two χ2 distributions differing in the number of degrees of 

freedom. Dashed line indicates cut-off values for 0.05 probabilities on the upper tail.  

Goodness-of-fit test example 

A typical application of the goodness-of-fit test is in genetics as demonstrated in the 

following example: 

You are a geneticist interested in testing the Mendelian rules. To do so, you cross red and 

white flowering bean plants. Red is dominant and white recessive, so in the F1 generation 

you only get red flowering individuals. You cross these and get 44 red flowering and 4 white 

flowering individuals in the F2 generation. What can you say about the universal validity of 

the second Mendelian rule (which predicts 3:1 ratio between dominant and recessive 

phenotypes) at the level of significance α = 0.05? 

First, you need to calculate the expected frequencies. These are: 

Ered = 48 x 3 / 4 = 36 

Ewhite = 48 x 1 / 4 = 12 

then, computation of test statistic follows: 

χ2 = (44-36)2/36+(4-12)2/4 = 7.11 

DF = 1 



p(χ2= 7.11, DF = 1) = 0.0077 

Conclusion (to be written in the text): Heredity in our bean-crossing system is significantly 

different from the second Mendelian rule (χ2= 7.11, DF = 1, p = 0.0077). As a result, the 

second Mendelian rule is not universally true. 

Here you can see that our experiment produced a singular statement on the number of bean 

plants. This was translated by the statistics into an existential statement that at least one 

(the our) genetic system exists which does not follow the Mendelian rule. This was then used 

to reject the universal statement. 

How to do in R 

Goodness-of-fit test: chisq.test 

Parameter x is used for inputting the observed frequencies 

Parameter p is used for inputting the null hypothesis-derived 

probabilities 

Example with output: 

chisq.test(x=c(44,4), p=c(3/4,1/4)) 

 Chi-squared test for given probabilities 

data:  c(44, 4) 

X-squared = 7.1111, df = 1, p-value = 0.007661 
 

Probabilities of χ2 distribution can be computed by pchisq (do 

not forget to set lower.tail=F to get the p=value). 

pchisq(7.11, df=1, lower.tail = F) 

[1] 0.007665511 

 



6. Contingency tables – association of two (or more) categorical variables 

Contingency tables – introduction 

Contingency tables are tables that summarize frequencies (counts) of two (or more) 

categorical variables. Their analysis allows to test (in)dependence between the two 

variables. Table 6.1 is a contingency table summarizing frequencies of people of different 

eye and hair colors.  

Table 6.1. Contingency table of two variables: eye and hair color with basic frequency 

statistics (marginal sums and grand total). 

  Hair color  

  black brown blonde 
marginal 
sums 

Eye color 
blue 12 45 14 71 

brown 51 256 84 391 

 
marginal 
sums 63 301 98 

grand 
total: 462 

 

Basic analysis by goodness-of-fit test 

Association between the variables (i.e. the null hypothesis which states that the variables 

are independent) can be tested by a goodness-of-fit test. This is a universal approach 

suitable for tables of any size and dimensions but its explanatory power is limited.  

For goodness-of-fit test, we need expected frequencies under null hypothesis which are 

calculated on the basis of probability theory: P(event 1 and event 2) = P (event 1) x P (event 

2), if the two events are independent. In contingency tables, this can be used to calculate 

expected frequencies as the product of ratios of corresponding marginal totals and the 

grand total.  

For instance, expected probability of observing a blue-eyed and black-haired person in Table 

6.1 can be calculated as P(blueE and blackH) = 63/462 x 71/462 = 0.02096. Multiplication of 

the probability then gives the expected frequency Freq(e) = 0.02096 x 462 = 9.68.  

The same approach can be used to calculate expected frequencies in all cells but is done 

automatically by software nowadays. Goodness-of-fit test can consequently be computed (in 

the same way as described in chapter 5). Note, however, that the number of degrees of 

freedom is determined as DF = (number of rows – 1) x (number of columns – 1) 

In our example: We did not find a significant association between eye and hair color (χ2 = 

0.785, DF = 2, p = 0.6755). 

The goodness-of-fit test does not provide much more information on the result, though in 

case of significant result, it may make sense to report also the difference between observed-

expected frequencies (i.e. the residuals), or their standardized values (residuals divided by 



square root of corresponding expected frequencies) as supplementary information. In 

particular, standardized residuals are useful as they indicate excess or deficiency of which 

combinations cause association between the variables. 

2x2 tables and their analysis 

These tables represent a special and the simplest cases of contingency tables (Table 6.2).  

Table 6.2. Structure of a 2x2 table. 

 Var2  

level 1 level 2  

Var 1 level 1 f11 f12 R1 

level 2 f21 f22 R2 

  C1 C2 n 
 

Their simplicity allows additional statistics to be computed to express how tight the 

association between the two variables is. Most important of these is the phi-coefficient: 

𝜑 =  
𝑓11𝑓22 − 𝑓12𝑓21

√𝑅1𝑅2𝐶1𝐶2
= ±√

𝜒2

𝑛
 

where f, R C symbols correspond to cells in Table 6.2 and χ2 is the χ2 statistics of the table 

and n is the grand total.  

The phi-coefficient can thus be viewed as an average contribution of each observation to the 

association between the variables. This implies its important advantage which lies in 

comparability of the phi coefficients between datasets with unequal numbers of 

observations.  

The 2x2 tables may seem trivial and not of much use. However, they and especially the phi-

coefficient is frequently used in vegetation ecology to measure association between 

occurrences of two species or as a fidelity measure of a species with a vegetation unit. In 

that case Var1 describes frequency of given species and Var2 frequency of the vegetation 

unit in the dataset.  

Advanced analysis of contingency tables – odds and odds ratios 

Odds and odds ratios are additional important statistics that can be used to analyze 

contingency tables. They are defined for 2x2 tables only but can also be used in larger (in 

particular n x 2) tables, which can be subdivided into a series of 2x2 tables. For table 6.1, we 

can calculate the odds for the level 1 of Var1 as: 

odds1 = p/(1-p) = (f11/R1)/(f12/R1) 

where p is the probability of one outcome of the second variable and 1-p is probability of the 

second outcome of the second variable. We can do the same for the second level of Var1 to 

get odds2. Odds ratio then equals: 



OR = odds1/odds2 

Odds ratio directly indicates how probability of observing level 1 of Var1 changes with 

respect to the levels of Var2. 

OR values range between 0 and infinity, with OR < 1 indicating negative association, OR = 1 

independence and OR > 1 positive association.  

OR is a population parameter and the computation summarized above is actually its 

maximum-likelihood estimation procedure. As a result, OR estimate has associated standard 

error and confidence intervals (i.e. intervals within which the population OR lies with 95% 

probability). A confidence interval directly indicates significance – if a confidence interval of 

OR contains 1, the OR is not significantly different from 1 and thus independence between 

the two variables cannot be rejected.  

A worked example 

Malaria is a dangerous disease widespread in tropical areas. It is caused by protozoans of the 

genus Plasmodium and transmitted by mosquitos. To prevent infection, it is possible to take 

prophylaxis, i.e. treatment which blocks the infection after mosquito bite. This is only 

possible for short time journeys to areas with malaria since the prophylaxis drugs are not 

safe for long-term use. Here we asked whether the prophylaxis is efficient and whether 

there is significant difference between two types of prophylaxis. The data are summarized in 

Table 6.3. 

Table 6.3. Table summarizing frequencies of travelers to the tropics infected by malaria (or 

not) and anti-malaria prophylaxis they used. 

Prophylaxis Infected by malaria Frequency 

none (control) 0 40 

none (control) 1 94 

doxycycline 0 130 

doxycycline 1 80 

lariam 0 180 

lariam 1 15 

Note here, that contingency table can also have a form of a table with individual factor 

combinations and corresponding frequencies. This is actually a bit better for computation 

than the cross-tabulated form.  

Goodness of fit test demonstrates, that there is a significant association between the two 

variables: 

Chisq = 137.45, df = 2, p-value = 1.42e-30 



Odds ratios summary then follows. Two odds ratios are produced comparing the second and 

third level of to the first one (here control). The “lower” and “upper” values indicate limits of 

confidence intervals. We can see that both types of prophylaxis are associated with 

significantly decreased infection rate. 

         infected 
prophylax   0        p0  1         p1  oddsratio      lower      upper      p.value 
  control  40 0.1142857 94 0.49735450 1.00000000         NA         NA           NA 
  doxy    130 0.3714286 80 0.42328042 0.26186579 0.16479825 0.41610692 6.790312e-09 
  lariam  180 0.5142857 15 0.07936508 0.03546099 0.01862937 0.06749997 8.847446e-34 

 

To compare just the two prophylaxis types, we can select just the corresponding part of the 

data for analysis (specifying this by square brackets in R). The result shows that taking Lariam 

is associated with significantly lower infection rate than taking doxycycline. 

         infected 
prophylax   0        p0  1        p1 oddsratio      lower     upper      p.value 
   doxy   130 0.4193548 80 0.8421053 1.0000000         NA        NA           NA 
   lariam 180 0.5806452 15 0.1578947 0.1354167 0.07462922 0.2457171 1.531487e-13 

 

In a paper/thesis, the result can by summarized as Table 6.4 

Table 6.4. Summary of a contingency table analysis testing the association between malaria 

prophylaxis and infection. Overall test of independence χ2 =  137.45, df = 2, p < 10-6. 

 Odds ratio lower 95% conf. limit upper 95% conf. limit p 

Lariam vs. none 0.035 0.019 0.067 < 10
-6

 

doxycycline vs. none 0.262 0.165 0.416 < 10
-6

 

Lariam vs. doxycycline 0.135 0.075 0.246 < 10
-6

 

 

Coincidence and causality 

Note here, that significant results of a contingency table analysis indicate significant 

association. This can be caused either by coincidence or causality. Causality means that if we 

manipulate one variable, the other also changes, i.e. one variable has a direct effect on the 

other. By contrast coincidence may happen due to another variable affecting the two ones 

analyzed. In such case, manipulation of one variable has no effect on the other in case of 

coincidence.  

Considering the malaria example, the travelers using prophylaxis are simultaneously more 

likely to use mosquito repellents, which in reality can strongly decrease infection risk. 

Therefore, if somebody from the no-prophylaxis travelers decided to take prophylaxis, it may 

have much lower (or even no) effect than our analysis suggests. 

People in general like causal explanations (and expect them). As a result, association is 

frequently interpreted as causal relationship, which is however inappropriate. Association 

may only suggest causality at best, which can be consequently demonstrated by a 



manipulative experiment. In our case, this would mean to select a group of people, assign 

them randomly into three groups according to prophylaxis, send them to the tropics and see 

what happens. In this particular case however, such research would not be approved by an 

ethics committee.  

How to do in R 

1. Chisq analysis of contingency tables 

Option 1: apply chisq.test on matrix containing frequencies 

Option 2: If the data are formatted in data frame as in Table 

6.3, they can be converted to contingency table by function 

xtabs 

data.table<-xtabs(freq~var1+var2, data=data.frame) 

chisq.test can then be applied on the contingency table. If 

its result is saved in an object: 

test.res<-chisq.test(data.table) 

running test.res$std.resid can then be used to display 

standardized residuals. 

2. Phi – coefficient 

function phi (package psych) applied on a 2x2 matrix  

3. Odds ratios 

function epitab (package epitools) applied on contingency 

table produced by xtabs. Square brackets can be used to select 

the levels to compare. 

 



7. t-distribution, confidence intervals and t-tests 

t-distribution 

For any fixed value X, a t-value can be computed from a sample of a quantitative random 

variable using this formula: 

𝑡 =  
𝑋 −  �̅�

𝑠�̅�
 

where, �̅� is sample mean and 𝑠�̅� is its associated standard error. Remember here, that �̅� is 

the estimate of population mean and 𝑠�̅� quantifies its accuracy. As a result, the t-value 

represents the estimate of difference between X and the population mean. Because  �̅� is a 

random variable, t-value is also a random variable and its probability distribution is called t-

distribution. Its shape is closely similar to Z (standard normal distribution). In contrast to Z, t 

distribution has a single parameter – number of degrees of freedom, which equals number 

of observations in given sample minus 1. In fact, t approaches Z asymptotically for high DF 

(Fig 7.1).  Similarly, to normal distribution, t-distribution is symmetric and its two tails 

must be considered when computing probabilities {Fig 7.2). 

 

Fig. 7.1 Probability density plot of t-distributions with different DF and their comparison to 

standard normal distribution (Z). 

 

 

 



Fig 7.2. t-distribution with its two tails and 2.5% and 97.5%-quantiles.  

Confidence intervals for mean value and single sample t-test 

t-distribution can be used to compute confidence intervals (CI), i.e. intervals within which 

the population mean value lies with certain probability (usually 95%). The confidence limits 

(CL) within which the CI lies are determined using these formulae: 

𝐶𝐿𝑙𝑜𝑤 =  �̅� + 𝑡(𝑑𝑓,𝑝=0.025)𝑠�̅� 

𝐶𝐿ℎ𝑖𝑔ℎ =  �̅� + 𝑡(𝑑𝑓,𝑝=0.975)𝑠�̅� 

where t(df, p) equals 2.5% or 97.5% probability quantile of t-distribution with given df. These 

intervals can be used as error bars in barplots or dotcharts. In fact, they represent the best 

option to be used like this (in contrast to standard error or 2 x standard error). 

Confidence intervals can also be used to determine whether population mean is significantly 

different from a given value: a value lying outside the CI is significantly different (at 5%-level 

of significance) while a value lying inside is not. This is closely associated with single sample 

t-test, which tests a null hypothesis that given values X equals the populations mean. Using 

the formula for t-value, and DF, the t-test determines type I error probability associated with 

rejection of such hypothesis. 

 

 

Student t-test 



If means can be compared with an a-priori given value, two means of different samples 

should also be comparable with each other. This is done by two-sample t-test1, which 

quantifies uncertainty about the values of both means considered:  

𝑡 =  
�̅�1 − �̅�2

𝑠�̅�1−�̅�2

 

where �̅�1 and �̅�2 are arithmetic means of the two sample and 𝑠�̅�1−�̅�2
is standard error of their 

difference. This is then computed using following formula: 

𝑠�̅�1−�̅�2
=  √

𝑠𝑝
2

𝑛1
+ 

𝑠𝑝
2

𝑛2
   

where 𝑠𝑝
2 is pooled variance of the two samples and n1 and n2 are sample sizes of the two 

samples. Pooling variance like this is only possible if the two variances are equal. Equality of 

population variances, called homogeneity of variance is one of the t-test assumptions. In 

addition, t-test assumes that the samples come from populations that are normally 

distributed. There is also the universal assumption that individual observations are 

independent. 

t-test is relatively robust to violations of the assumptions about homogeneity of variance 

and normality (i.e. their moderate violation does not produce strongly biased test 

outcomes). If variances are not equal, Welch approximation of t-test (Welch t-test) can be 

used instead of the original Student t-test. A slightly modified formula is used for t-value 

computation and also the degrees of freedom are approximated (as a result, DF is usually 

not an integer). Note, that Welch t-test is used by default in R. In original (two-sample) 

Student t-test, the DF is determined as  

DF = n1 – 1 + n2 – 1  

Paired t-test 

Paired t-test is used to analyzed data composed of paired observations. For instance, 

difference of length between left and right arms of people would be analyzed by a paired t-

test. Null hypothesis in this case is that the difference within the pair is zero. In fact, paired t-

test is fully equivalent to single sample t-test comparing the within-pair difference 

distribution with zero. Because in paired t-test, there is just one sample (of paired values) DF 

= n – 1. 

 

 

 

 

 

                                                      
1 Called also Student t-test after its inventor William Sealy Gosset (1976-1937)  who used the pen name 
Student. 



How to do in R 

1. t distribution computations 

functions pt and qt are available. For instance qt(0.025, df) 

can be used to compute the difference between lower confidence 

limit and the mean.  

2. t-test 

Function t.test. For two sample, the best way is to use a 

classifying factor and response variable in two columns. Then, 

t.test(response~factor) can be used. But t.test(sample1, 

sample2) is also okay.  

important parameters:  

var.equal – switches between Welch and Student variants. 

Defaults to FALSE (Welch) 

mu – a priori null value of the difference (relevant for 

single sample test) 

paired – TRUE specifies a paired t-test analysis. 

 

 



8. F-test and distribution, analysis of variance (ANOVA) 

F-test 

Normally distributed data can be described by two parameters – mean and variance. We 

discussed testing the difference in the mean between two samples in previous chapter. 

However, it is also possible to test whether two samples come from population with the 

same variance, i.e. the null hypothesis stating: 

σ2
1 = σ2

2 

as usual for population parameters, we do not know the σ but they can be estimated by s2 

(sample variances). A comparison between sample variances is then done by F-test  

𝐹 =  
𝑠1

2

𝑠2
2 

which is a simple ratio between sample variances. The F statistic follows F distribution, shape 

of which is defined by two degrees of freedom – DF numerator and DF denominator. These 

are found as n1 – 1 and n2 – 1 (i.e. number of observations in corresponding sample – 1). 

When reporting test results in a text, both DFs must be reported (usually as subscripts). For 

instance, “variances significantly differed between green and red apples” (F20,25 = 2.52, p = 

0.015). 

 

Fig. 8.1 Probability density plot of F-distributions with different DFs. 

 



Analysis of variance (ANOVA) 

F-test is rarely used to test the differences in variance between two samples because 

hypotheses on variance are not that common. However, F-test has its crucial application in 

analysis of variance.  

In chapter 7, we discussed comparison between the means of two samples using t-test. A 

natural question however arises – what if we have more than two samples? We may try 

using pairwise comparisons between each pair of them. That would however lead to 

multiple non-independent tests and result in inflated type I error probability1. Therefore, we 

use analysis of variance (ANOVA) to solve such problems. 

ANOVA tests a null hypothesis on means of multiple samples, which states that the 

population means are equal, i.e. 

μ1 = μ2 = μ3 = ...= μk 

The mechanism of ANOVA is based on decomposing the total variability into two 

components: 1. systematic component corresponding to differences between groups and 2. 

error (or residual) component corresponding to differences within groups. These differences 

are measured as squares. For each observation in the dataset, its total square (measuring 

difference between its value and the overall mean), effect square (measuring difference 

between corresponding group mean and the overall mean), and error square (measuring 

difference between the value and corresponding group mean) can be calculated (Fig 8.2). 

 

Fig. 8.2 Mechanism of ANOVA: definition of squares exemplified with the red data point. 

Subsequently, we can sum the square statistics over the whole dataset and get sums of 

squares (SS): SStotal, SSeffect, SSerror. We can further calculate mean squares (MS) by dividing SS 

by corresponding DF, with DFtotal = n – 1, DFeffect = k – 1, and  

                                                      
1 This comes from the fact that if individual tests are performed at α = 0.05, then probability of making type I 
error in 2 tests (i.e. making error in at least one of the test) is p = 0.05+0.05-0.052 = 0.975. 



DFerror = DFtotal - DFeffect, where n is total number of observations and k number of categories. 

Hence we get: 

MSeffect = SSeffect/DFeffect 

MSerror = SSerror/DFerror 

and now, it comes: the mean squares are actually variances. As a result, we can use an F-

test to test null hypothesis that MSeffect is higher that MSerror which is equivalent to the test 

of the null hypothesis stating that all means are equal: 

FDFeffect,DFerror = MSeffect/ MSerror 

the corresponding p-value are then found based on a comparison with F distribution as in an 

ordinary F-test. Note, that rejecting the null hypothesis means, that at least one of the 

means is significantly different from at least one other.  

In addition, to the p-value, it is also possible to compute proportion of variability explained 

by the groups: 

r2 = SSeffect/SStotal 

Typical report of ANOVA result in the text then reads: Means were significantly different 

among the groups (r2 = 0.70, F2,12 = 14.63, p = 0.0006). 

ANOVA assumptions 

ANOVA application assumes that i. samples come from normally distributed populations and 

variances are equal among the groups. These assumptions can be checked by analysis of 

residuals as they can be restated as i. normal distribution and ii. constant variance of 

residuals.  

There are formal tests testing for normality, such as the Shapiro-Wilk test, but their use is 

problematic as they test the null hypothesis that given sample comes from normal 

distribution. The tests are more powerful (likely to reject the null) if there are many 

observations, but in that case, ANOVA is rather robust to moderate violations of the 

assumption. By contrast, the formal tests of normality fail to identify the most problematic 

cases, when the assumptions are not met and also the number of observations is low. 

Instead, I highly recommend visual check of the residuals. In particular, scatterplot of 

standardized residuals and normal quantile-quantile (QQ) plots 

(https://en.wikipedia.org/wiki/Q%E2%80%93Q_plot) are informative about possible 

problems with ANOVA assumptions. 

 

Post-hoc comparisons 

When we get a significant result in ANOVA (and only in such case!), we may be further 

interested to see, which mean is different from which. Statistical theory does not provide 

much help here, however some pragmatic tools were developed in this respect. These are 

https://en.wikipedia.org/wiki/Q%E2%80%93Q_plot


based on the principle of pair-wise comparisons (similar to a series of pair-wise two-sample 

t-tests), which however control for inflation of type I error probability by adjusting the p-

values upwards. An example of such test is Tukey honest significant difference test (Tukey 

HSD).  

Results of these tests are frequently summarized in plots by letter indices with different 

letters indicating significant differences (Fig. 8.3) 

 

Fig. 8.3 Dotchart displaying means and 95%-confidence intervals for the means of the three 

samples. Means significantly different from each other at α = 0.05 are denoted by different 

letters (based on Tukey HSD test).  

How to do in R 

1. F test, F-distribution 

function var.test; pf, qf for F-distribution probabilities  

2. ANOVA 

Function aov – accepts formula syntax. Note that the predictor 

must be a factor; otherwise linear regression is fitted (which 

is incorrect, but no warning is given). 

summary (aov.object) displays the ANOVA table with SS, MS, F 

and p. 

plot(aov.object) displays the diagnostic plots for checking 

ANOVA assumptions 

3. Post-hoc test 

tukeyHSD(aov.object)-produces just the differences between 

groups. Letters as in Fig. 8.3 must be produced manually. 

 



9. Linear regression, correlation and intro to general linear models 

Regression and correlation 

Both regression and correlation refer to associations between two quantitative variables. 

One variable, the predictor, is considered independent in the case of regression and its 

values are considered not to be random. The other variable, the response, is dependent on 

the values of the predictor with certain level of error variability, i.e. it is a random variable. In 

case of correlation, both variables are considered random. Regression and correlation are 

thus quite different – theoretically. In practice however, they are numerically identical 

concerning both the measure of association and p-values (type I error probabilities) 

associated with rejecting the null hypothesis on independence between the two variables. 

Linear regression 

Linear association between two quantitative variables X and Y, of which Y is a random 

variable, can be described by the equation: 

Y = a + bX + ε 

where a and b are intercept and slope of a linear function, respectively. These represent the 

systematic (deterministic) component of the regression model while ε is the error (residual) 

variation representing the stochastic component. ε is assumed to follow normal distribution 

with mean = 0. The goal of regression model fitting is to estimate the population slope and 

intercept from sample data of Y and X. a and b are thus estimates of population parameters. 

There are multiple approaches to conduct such estimates. Maximum-likelihood estimation is 

most common, which provides numerically identical results to least-square estimation in 

ordinary regression. We shall discuss the least square estimation here, as it is fairly intuitive 

and will help us to understand the relationship with ANOVA. The least square estimation 

aims at minimizing the sum of error squares (SSerror), i.e. the squares of the differences 

between fitted and observed values of the response variable (Fig. 9.1). Note that this 

mechanism is notably similar to that of analysis of variance. In parallel with ANOVA, we can 

also define the total sum of squares (SStotal) and regression sum of squares (SSregr). 

Subsequently, we can calculate mean squares (MS) by dividing SS by corresponding DF, with 

DFtotal = n – 1, DFregr = 1, and  

DFerror = DFtotal – DFeffect = n – 2, where n is total number of observations. Hence, we get: 

MSregr = SSregr/DFregr 

MSerror = SSerror/DFerror 

As in ANOVA, the ratio between MS can be used in an F-test of a null hypothesis that there is 

no linear relationship between the two variables: 

FDFregr,DFerror = MSregr/ MSerror 

Rejecting the null hypothesis means, that the two variables are linearly related. Note 

however, that non-significant result may be produced also in cases when the relationship 

exists but is not linear (e.g. when it is quadratic). 



 

Fig. 9.1 Mechanism of least square estimation in regression: definition of squares 

exemplified with the red data point. 

In regression, we are usually interested not only in statistical significance but also in the 

strength of the association, i.e. the proportion of variability in Y explained by X. That is 

measured by the coefficient of determination (R2): 

R2 = SSregr/SStotal 

which can range from 0 (no association) to 1 (deterministic linear relationship). Alternatively, 

so-called adjusted-R2 may be used (and is reported by R), which accounts for the fact that 

the association is computed from samples and not from populations: 

adjusted-R2 = 1 – MSerror/MStotal 

Coming back to the regression coefficients – the fact that these are estimates means that 

associated errors of such estimates may be computed. Their significance (i.e. significant 

difference from zero) may thus be tested by a single sample t-test. The p-value of such test 

for the slope (b) is identical to that of the F-test in simple regression with single predictor. 

Note, that the test of the intercept (reported by R or other statistical software) is irrelevant 

for significance of the regression itself. Significant intercept only indicates that mean(Y) is 

significantly different from zero.  

Regression diagnostics 

We have discussed the systematic component of the regression equation. However, the 

stochastic component is also important. This is because its properties can provide crucial 

information on validity of regression assumptions and thus validity of the whole model. The 

stochastic component of the model, called model residuals, can be computed using 

equation: 

ε = Y – a – bX = Y – fitted(Y) 



Residuals form a vector of values for each of the data points. As such, they can be analyzed 

by descriptive statistics. They may also be standardized by division of their standard 

deviation. The basic assumptions concerning the residuals are: 

1. Residuals should follow the normal distribution  

2. Size of their absolute value should be independent of fitted value. 

3. There should be no obvious trend in residuals associated with fitted values, which 

would indicate non-linearity of the relationship between X and Y. 

These assumptions are best evaluated on a regression-diagnostics plot (Fig 9.2). In addition, 

it may be worth to check that the regression result is not driven by a single extreme 

observation (or few of these), which is provided on the bottom-right plot on Fig 9.2.  

 

Fig 9.2. Regression diagnostics plots. 1. Residuals vs. fitted values indicate potential non-

linearity of the relationship (smoothed trend displayed by red line). 2. Normal Q-Q plot 

displays agreement between normal distribution and distribution of residuals (dashed line). 

3. Square root of absolute value of residuals indicate potential correlation between the size 

of residuals and fitted values. 4. Residuals vs. leverage 

(https://en.wikipedia.org/wiki/Leverage_(statistics))   plot detect points, which have high 

influence on the regression parameter estimates (these points have high Cook distance; 

https://en.wikipedia.org/wiki/Cook%27s_distance).  

Correlation 

Correlation is a symmetric measure of the association between two random variables, of 

which neither can be considered a predictor or a response. Correlation is most commonly 

measured by Pearson correlation coefficient: 

https://en.wikipedia.org/wiki/Leverage_(statistics)
https://en.wikipedia.org/wiki/Cook%27s_distance
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Its values can range from -1 (absolute negative correlation) to +1 {absolute positive 

correlation), with r = 0 corresponding to no correlation. r2 then refers to the amount of 

shared variability. Numerically, Pearson r2 and regression R2 have identical values for given 

data and have basically the same meaning. Pearson r is also an estimate of population 

parameter; its significance (i.e. significant difference from zero) can thus be tested by a 

single sample t-test with n – 2 degrees of freedom. 

On correlation and causality 

Note, that significant result of a regression of observational data may only be interpreted as 

correlation (or coincidence) despite there is a variable called the predictor and the response. 

Causal explanations imply that a change of predictor value causes a directional change in the 

response. Causality may therefore only be tested in manipulative experiments, where the 

predictor is manipulated. See more details on this in Chapter 6. 

 

How to do in R 

1. Regression (or a linear model) 

start with function lm to fit the model and save the lm output 

into an object: 

model.1<-lm(response~predictor)  

or model.2<-lm(response~predictor1+predictor2+…) 

anova(model.1) performs analysis of variance of the model 

(i.e. tests its significance by an F test). Models may also be 

compared by anova(model.1, model.2) 

summary(model.1) displays summary of the model, including the 

t-tests of individual coefficients. 

resid(model.1) extracts model residuals 

predict(model.1) returns predicted values 

plot(model.1) plots regression diagnostic plots of the model 

2. Pearson correlation coefficient 

cor(Var1~Var2) computes just the coefficient value 

cor.test(Var1~Var2) computes the coefficient value together 

with significance test  



10. When assumptions are violated - data transformation and non-parametric methods 

Log-normally distributed data 

Log-normal distribution is very common in many kinds of real data. These are random 

variables logarithm of which follows normal distribution. As a result, log-normal variables 

may range from zero limit (excluding zero itself) to plus infinity – that is pretty realistic e.g. 

for dimensions, mass, time etc. In contrast to normal distribution, log-normal variables are 

positively skewed (i.e. are not distributed symmetrically around the mean) and display a 

positive correlation between mean and variance (Fig. 10.1). A straightforward suggestion for 

such data is to apply log-transformation of the values to obtain normally distributed 

variables (Figs 10.1, 10.2, Table 10.1). ANOVA applied on non-transformed and transformed 

data provides quite different results (Table 10.1.). 

Fig. 10.1. Example of a log-normal variable: length of phone calls in dependence of job of the 

person calling. Left panel shows the boxplot on the ordinary linear scale, while the right 

panel shows the same values on the log-scaled y-axis.  

Table 10.1. Summaries of ANOVA applied on non-tansformed and transformed data 

displayed on Fig. 10.1. 

Analysis R2 F DF p 

non-transformed 0.26 4.13 3,36 0.013 
log-transformed 0.42 8.72 3,36 0.0002 

 



 

Fig. 10.2. Diagnostic plots of ANOVA models applied on non-transformed (upper row of 

plots) and log-transformed data (lower row of plots). Note  improved normal fit on the 

QQplot and homogeneity of variances after transformation (Residuals vs. Fitted and Scale-

Location plots).  

Note, that log-transformation is not a simple utility procedure, it also affects the 

interpretation of the analysis. Log-transformation changes the scale from additive to 

multiplicative, i.e. we test the null hypothesis stating that the ratio between population 

means is 1 (instead of difference being 0). We also consider different means – analysis on 

log-scale implies testing geometric means on the original scale. The same applies for 

regression coefficients, which become relative rather than absolute numbers e.g. the slope 

indicates how many times the response variable will change with a change in predictor. An 

example with log-transformation in linear regression is displayed on Fig. 10.3., 10.4. and 

Table 10.2. 

Log-transformation is sometimes used also for data, which are not log-normally distributed, 

but are just positively skewed. Such data may contain zeros and thus are not log-

transformable. Instead log (x + constant) transformation must be used. Alternatively, square-

root transformation may be considered for such data.  

Note, that the analysis results do not depend on logarithm used – natural and decadic 

logarithms are used most frquently. Just beware to be consistent in using the same 

logarithm throughout the analysis. 



Fig. 10.3. Example of a regression with log-normal variable: how grain yield of maize 

depends on amount of fertilizer applied. Left panel shows the scatterplot on the ordinary 

linear scale, while the right panel shows the same values on the log-scaled y-axis.  

Table 10.2. ANOVA tables of linear models fitted on non-tansformed and transformed data 

displayed on Fig. 10.3. 

Analysis R2 F DF p 

non-transformed 0.10 11.0 1,98 0.0013 
log-transformed 0.14 16.05 1,98 0.0001 
     

 

Fig. 10.4. Diagnostic plots of linear models fitted on non-transformed (upper row of plots) 

and log-transformed data (lower row of plots). Note  improved normal fit on the QQplot and 

improved homogeneity of variances after transformation (Scale-Location plot).  

Non-parametric tests 



Some distributions cannot be approximated by normal distribution and simple 

transformations are not helpful. This applies e.g. on many data on ordinal scale, such as 

schoolgrades, subjective rankings etc. For such cases, non-parametric tests were developed 

(Table 10.3.). These tests replace original values by value order and use these data to test 

differences in central tendencies (which are not exactly means) between the samples. These 

tests are however still based on the assumption, that the samples come from the same 

distribution.  

Table 10.3. List of parametric tests and treir non-parametric counterparts together with 

appropriare R functions.  

Parametric test Non-parametric test R function 

two-sample t-test Mann-Whitney U test  wilcox.test 
paired t-test Wilcoxon test wilcox.test with 

parameter paired=T 
One way ANOVA Kruskal-Wallis test* kruskal.test 
Pearson correlation Spearman correlation cor.test with parameter 

method=”spearman” 
* Dunn test may be used for post-hoc comparisons (function dunnTest in package FSA) 

Permutation tests 

Permutation tests represent useful alternatives to parametric tests. First, a statistic of 

difference from null hypothesis (between samples) is defined. That may be raw or relative 

difference or an F-ratio if multiple groups are analyzed. This statistic is computed for 

observed data (observed statistic). Subsequently, values of response variable are repeatedly 

permuted (reshuffled) and the same statistic is computed in each permutation. P-value is 

then determined by the formula: 

𝑝 =  
𝑥 + 1

𝑛𝑝𝑒𝑟𝑚 + 1
 

where x is the number of permutations in which test statistic was higher than observed test 

statistic and nperm is the total number of permutations. 

 

 

 

 

 

 

 

 

 



 

How to do in R 

1. Log-scaling of graph axis: parameter log=’axis to be log-

scaled’, i.e. mostly log=’y’ 

2. Log-transformation: function log for natural logarithm, 

log10 for decadic 

3. Non-parametric tests: see Table 10.3. 

4. Permutation tests are available in library coin: 

a. permutation-based ANOVA: function oneway_test 

b. permutation-based correlation: spearman_test 

Both methods require parameter 

distribution=approximate(B=number of permutations) 

to be set; B is usually set to 999 or 9999.  



11. Brief introduction to multi-way ANOVA, multiple regression and general linear 

models 

Multiple regression and interaction 

In regression, multiple predictors may be used in the model: 

Y = a + b1X1 + b2X2 +… + bnXn + ε 

predictors may be both quantitative and categorical variables. This is based on the fact, that 

categorical variables may be decomposed into k-1 binary (0-1) variables (where k is number 

of categories/levels). In general, the maximum number of predictors is limited by degrees of 

freedom in the model.  Complexity of the model measured by the model number of degrees 

of freedom may never exceed total df (i.e. number of observations – 1).  

Models containing two or more predictors may also contain interaction terms: 

Y = a + b1X1 + b2X2 + c1X1X2+ … + ε 

interaction means that the dependence of the response variable on one predictor (X1) 

depends on the value of second predictor (X2). Interaction it typically tested in multi-way 

ANOVA, where even higher-order interactions can be considered. Interaction may be 

positive (i.e. the value of response is higher than expected from additive sums of main 

effects; in such case c1 > 0; Fig. 11.1) or negative (response value is lower that the additive 

sum; c1 < 0). 

The interaction is formally notated by × (Alt + 0215), i.e. Y ~ X1 + X2 + X1 × X2. In R, interaction 

may be represented by “*” which indicates both additive and interaction effects or by “:” 

which indicates just the interaction term. 

No that 1. testing the interaction is very common in manipulative experiments and 2. 

interaction does not mean correlation between predictors. As you will see later, correlation 

between predictors is a serious problem which among other issues prevents from 

reasonable assessment of interactive effects.  

 



 

Fig. 11.1. Interaction plot showing positive interactive effects of fertilizer application and 

watering on plant growth. The interaction is directly visible from the graph as non-parallel 

lines connecting the mean values.  

Testing of linear models and their terms 

Statistical significance testing of linear models (as whole predictor structures) using e.g. an F-

test is easy and largely follows the same principles as in simple regression. It is more difficult 

to decide which predictors to include in the model and which not. Finding the best model is 

done by a model selection procedure which aims at finding the model which contains only 

the predictors, which have significant effect on the response while those effect of which is 

non-significant (i.e. do not contribute to the predictive power of the model) are left out. 

Such models are called minimum adequate models. Philosophically, they are based upon the 

principle of Occam’s razor or parsimony (https://en.wikipedia.org/wiki/Occam's_razor).  

Statistical methods are very efficient if applied on model testing and/or comparisons 

between models. However, there are no universal guidelines, which could be used for 

model/predictor selection in all cases. In models with few candidate predictors, it is possible 

to fit all possible models and select the one with the highest explanatory power. Frequently 

(but certainly not always), simple testing of significance of individual predictors (which is 

based on statistical comparison between models excluding and including given predictor) 

can also be used.  

For efficient model selection, we need 1. a measure of model quality (or quality comparison 

between models) and 2. a strategy how to build the model. 

 

https://en.wikipedia.org/wiki/Occam's_razor


Measures of model quality 

There are several measures of model quality or parameters for model comparison. 

F-test: the F-test may not only be used to test the significance of a model but also to test 

whether one model is significantly better that another. Works generally well for models with 

up to moderate number of observations (~200). With large n almost all predictors tend to be 

significant even if explaining very little variability in response. 

R2: proportion of explained variation is a property of a model itself. It is easy to interpret. For 

model comparisons, its main disadvantage is, that addition of more predictors always 

increases R2 even if the predictor added has little effect. As such, it is not suitable to 

compare models of different complexity. 

AIC (Akaike information criterion; 

https://en.wikipedia.org/wiki/Akaike_information_criterion): This measure is derived from 

information theory and allows straightforward comparisons of model quality. Models with 

lower AIC value are better. The AIC is computed using the following formula: 

AIC = 2k – 2log(L)  

where, k is number of parameters of the model and log(L) is log-likelihood of the model. 

Likelihood-ratio. Likelihood ratio is a very general approach, which can be used to compare 

many types of models. It is based on the principle that the logarithm of likelihood ratio 

(which numerically equals the difference between log-likelihoods) multiplied by 2 follows the 

χ2 distribution; thus the goodness-of-fit test may be used for testing of models differing in 

numbers of df. 

Model building strategies 

There are several options how to build a model. Theoretically, the best way would be to fit 

all possible models and choose the best fitting one based e.g. on AIC. However, number of 

possible models could be very large (increases with numbers of predictors and complexity of 

interaction terms) and fitting of models may be demanding for computer power (with 

increasing availability of big data even with current fast computers). Therefore, it may be 

useful to use a pragmatic approach to model building. There are two reasonable approaches 

each of which has its advantages and disadvantages – forward and backward selection. 

Forward selection starts with the null (intercept-only) model. Next step includes testing 

every model containing single predictor against the null model. Such comparisons are 

indicative of individual predictor explanatory power and on this basis the best fitting 

predictor (using R2 or AIC) can be added to the model. In the next step the model containing 

the selected predictor is used as the null against with the other predictors are tested and so 

on until there is no significant candidate predictor left. With two or more predictors in the 

model, interactions between the predictors may also be tested to be included in the model. 

An advantage of this approach is its intuitiveness and possibility to use a large number of 

candidate predictors (though multiple testing issue should be considered here). However, 

there are also disadvantages related with this approach including often high risk of selecting 

https://en.wikipedia.org/wiki/Akaike_information_criterion


of non-optimal model due to constraints related to the procedure. Still forward selection is a 

reasonable choice for observational data, in particular when large number of predictors is 

available. 

Backward selection uses an opposite strategy – first a saturated model is fitted (i.e. model 

containing all candidate predictors together with all their interactions – these may be limited 

up to a specified order). Non-significant terms are then removed from the model one-by-one 

starting with poorest predictors (again measures by AIC). Note that in the case of a 

significant interaction, main effects are retained in the model even if they are not significant 

themselves (if the same model was built-up in a forward manner, such interactions would 

never be tested). 

Correlation between predictors 

Correlation between predictors is a serious issue in multiple regression analysis. This issue 

concerns observational data because in experimental studies, we should use an 

experimental design which ensures independence of tested predictors. The problem is, that 

if there are two inter-correlated candidate predictors to be included in the model, one of 

them may be included just by chance (because it may look slightly better with given data). 

The other predictor will then never be included in the model, because its effect is already 

accounted for by the first predictor. Depending on the actual data, either one or the other 

predictor may be included while the other left out. Such inconsistency may lead to very 

different conclusions even if the relationships between the variables are the same and the 

data are just slightly different. Such cases are quite common in nature, e.g. soil pH and Ca 

concentration represent a common case in ecological studies. Unfortunately, none of the 

model building strategies or model quality measures can control this. However, a detailed 

exploration of the associations between the predictors themselves and between individual 

predictors and the response may be useful.  

As a part of this exploration, we may first analyze marginal effects – i.e. effects of given 

predictor on the response which ignore the effects of other variables. These are simple 

linear regressions (or one-way ANOVAs) and are indicative of the correlation structure in the 

study system. Conversely, partial effects can be computed (i.e. unique effects of individual 

predictors), which are computed by testing a given predictor against a model containing all 

other predictors. Such effects are greatly affected by predictor inter-correlation but if 

significant, they may really point to mechanisms underlying the correlations.  

Computing marginal and partial effects is then a part of a more general approach called 

variation partitioning. With this approach, you can describe the correlation structure among 

the predictors (or frequently groups of predictors) and quantify their unique or shared 

effects on the response variable. 

 

 

 



How to do in R 

1. Fitting a model – function lm (see chapter 9 for basics). 

Individual predictors are included in the formula on the 

predictor side separated either by + (additive effects) 

or by * (additive and interactive effects) 

2. Testing candidate predictors to be included in the model 

– function add1; e.g. add1(lm.model, scope 

=~predictor1*predictor2,…). Parameter test is then used 

for specification of the model quality criterion. AIC is 

displayed always; for ordinary linear models, it makes 

sense to ask for an F-test by setting test=”F”. 

3. Testing predictors to be removed from the model – 

function drop1. The use is similar to add1, just the 

parameter scope is not specified. 

4. Changing model structure – function update; adding a 

predictor: new.model<-update(old.model, 

.~.+added.predictor), removing a predictor new.model<-

update(old.model, .~.-removed.predictor). Update can be 

used to change also other parameters of a model. 

5. Comparison of model quality - function anova; e.g. 

anova(model1, model2) compares  

6. Testing individual terms – anova(lm.model) displays 

sequential F-tests for individual terms. Sequential 

testing means, that order of the predictors affects the 

results (unless the predictors are perfectly independent 

- orthogonal). summary(lm.model) displays detailed model 

statistics – F-test of the whole model and t-tests of 

individual regression coefficients. These t-tests are not 

sequential and thus are independent term order in the 

model. 

7. Model coefficients may be called by function coef – i.e. 

coef(lm.model) 

8. Model residuals may be called by function resid – i.e. 

resid(lm.model) 

 


