

Archaea Biotechnology

Dr. Simon K.-M. R. Rittmann

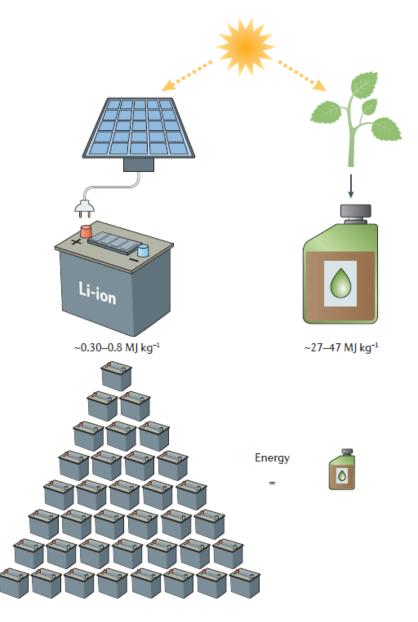
What is Biotechnology?

Any technological application using biological systems, living organisms, or derivatives thereof, to manufacture or modify products or processes for specific use.

Biotechnology

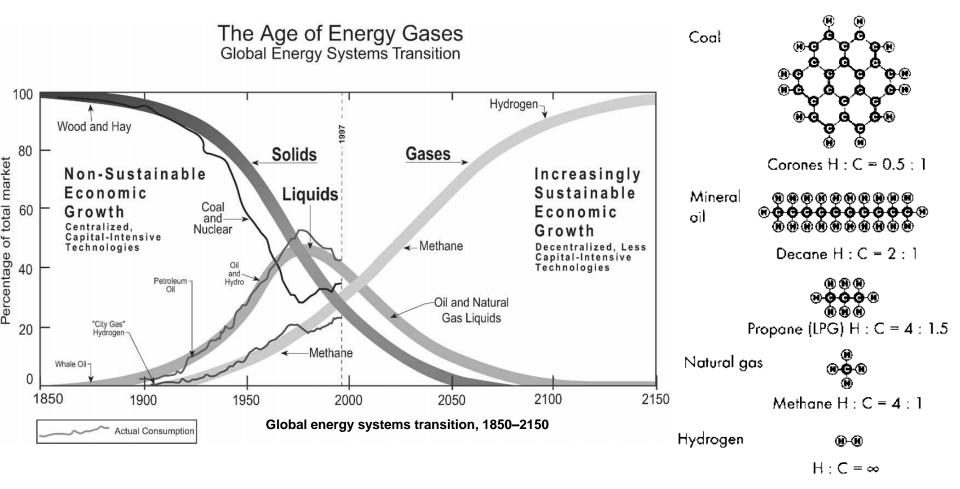
Area	Application in
Green biotechnology	Agriculture, plant biotechnology, forestry, food science
Red biotechnology	Medicine, pharmaceutics, nanobiotechnology
White Biotechnology	Industrial biotechnology, industrial (bio)chemistry, industrial bioprocessing, biorefinery
Grey biotechnology	Environmental biotechnology, waste (water) management and treatment, biorefinery, renewable energy production
Blue biotechnology	Seafood and freshwater food production; supply, safety and control of aquatic organisms
Yellow biotechnology	Insect biotechnology, food science and technology

Currently archaea (or componets thereof) are or could be applied in the area of red, white and grey biotechnology

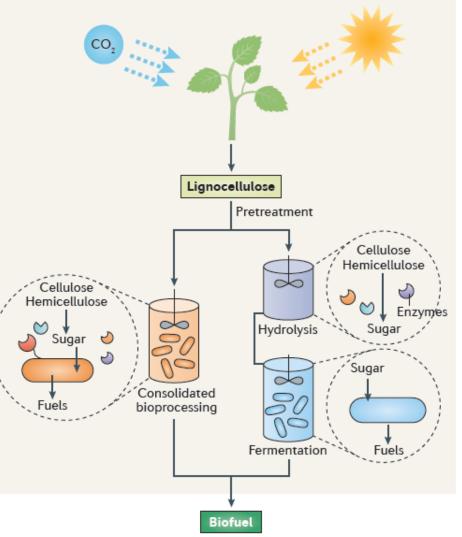

Archaea Biotechnology

- **1. Biogas production, anaerobic waste water treatment**
- 2. Bioleaching
- 3. Nanobiotechnology (S-layer, lipids)
- 4. Brine treatment (reduction of organic contamination and/or PHA production with extreme halophiles)
- 5. Utilization of novel (e.g. themotolerant) enzymes
- 6. Metabolic engineering for CO₂ utilization and/or production of specific compounds
- 7. Biofuel production (e.g. biomethane, biohydrogen)

Biofuels

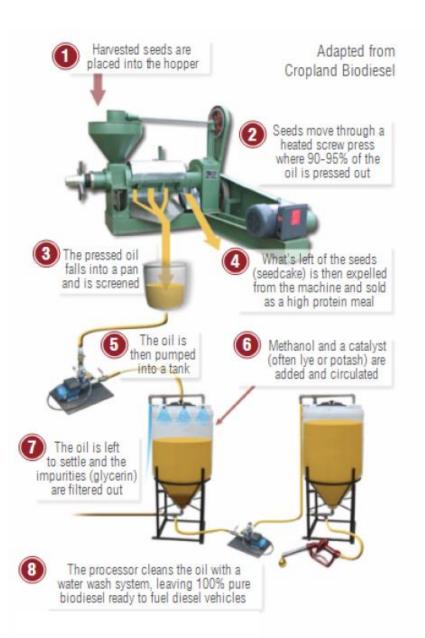


Biofuels: Why?



The atomic hydrogen to carbon ratio

Biofuels



1st generation biodiesel 1st generation bioethanol 2nd generation 3rd generation 4th generation 5th generation

Biodiesel – 1st generation

Unloading
 Pressing
 Filtering
 Extraction of meal
 Pumping
 Addition of reactants
 Transesterification and settling
 Washing

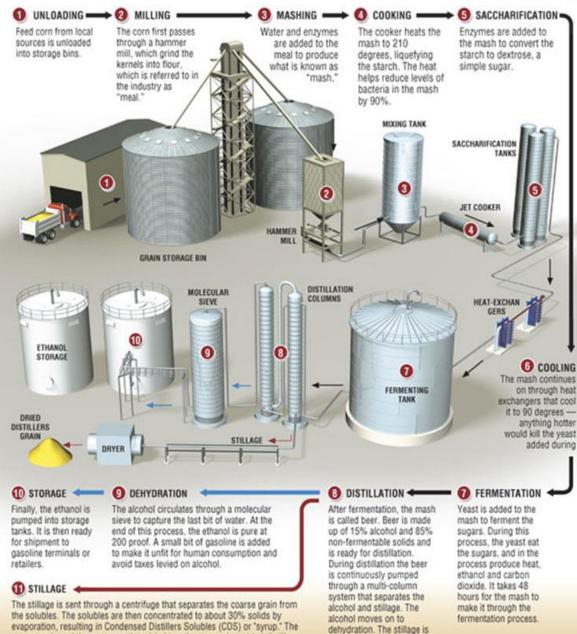
desmoinesregister.com &Eco Energie Etoy

Biodiesel – 1st generation

The Biodiesel Cycle

C GreenerPro

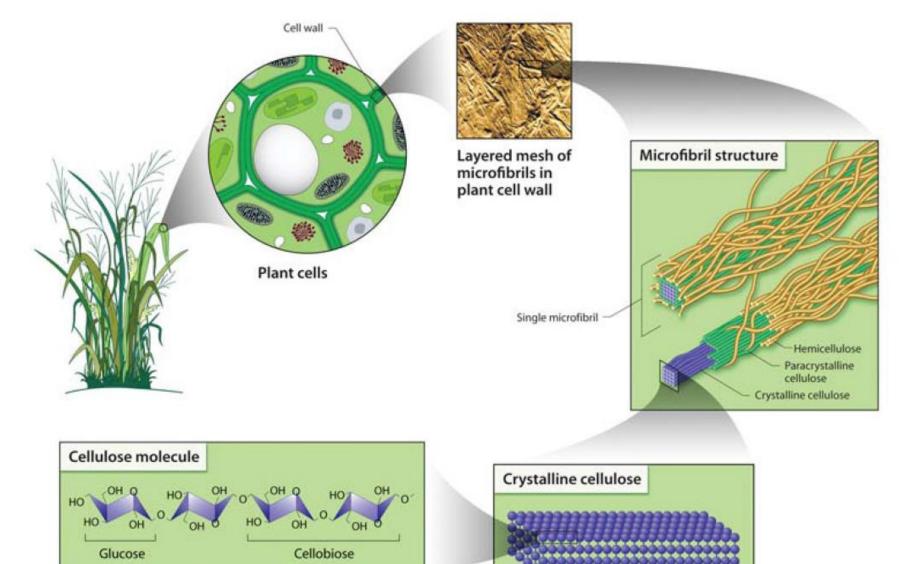
Bioethanol – 1st generation


- Unloading
 Milling
- 2 Milling
- 3 Mashing
- Ocooking
- Hydrolysis
- 6 Cooling
- Fermentation
- Distillation
- Dehydration
- Storage
- Stillage treatment

Bioethanol – 1st generation

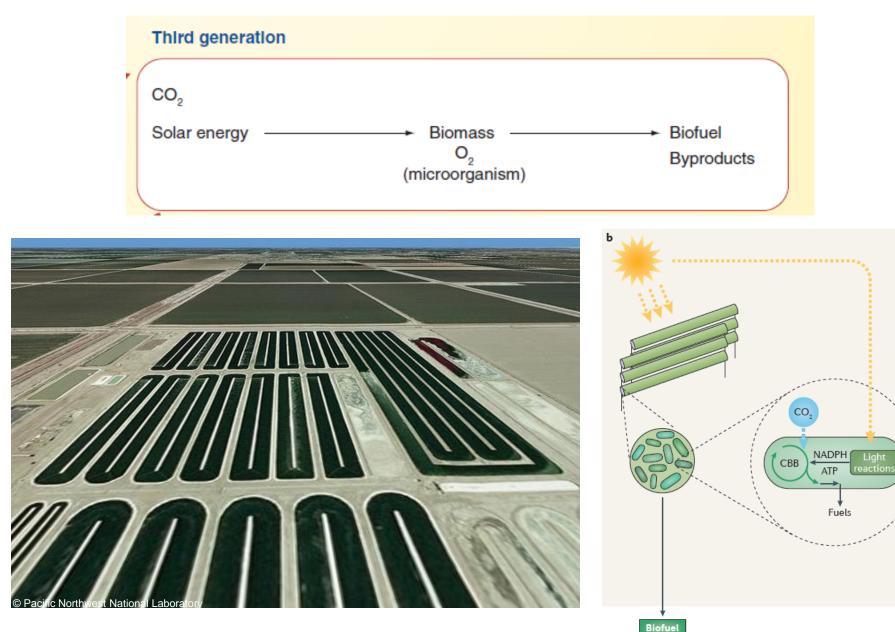
coarse grain and the syrup are then dried together to produce dried distillers

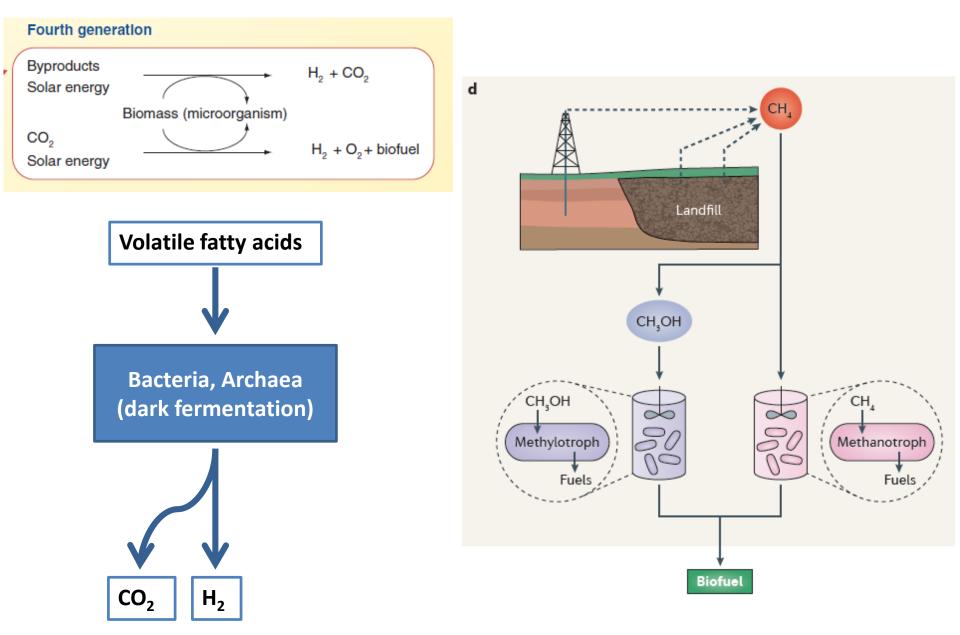
grains with solubles (DDGS), a high quality, nutritious livestock feed.


processed into distillers

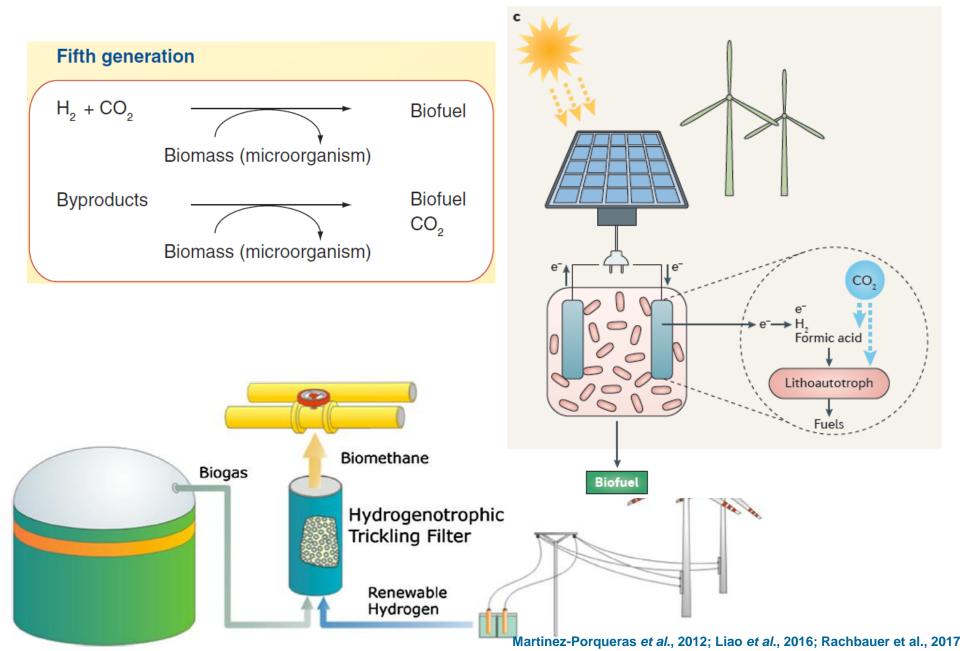
grains.

South Plains Ethanol

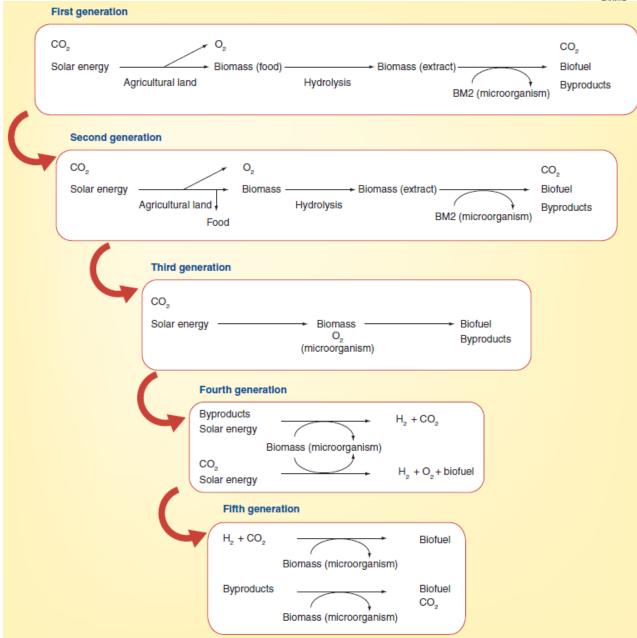

2nd biofuel generation


3rd biofuel generation

4th biofuel generation

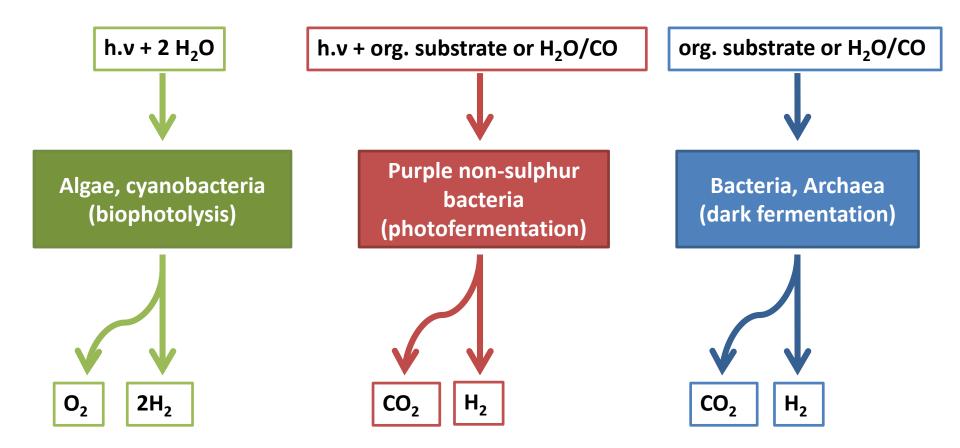


Martinez-Porqueras et al., 2012; Liao et al., 2016, Rittmann, unpublished


5th biofuel generation

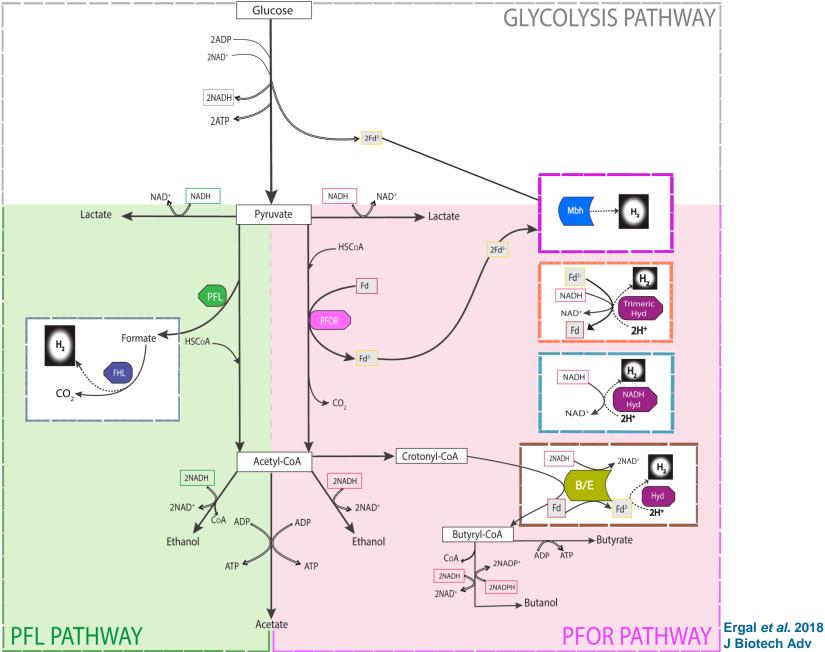
Summary biofuels

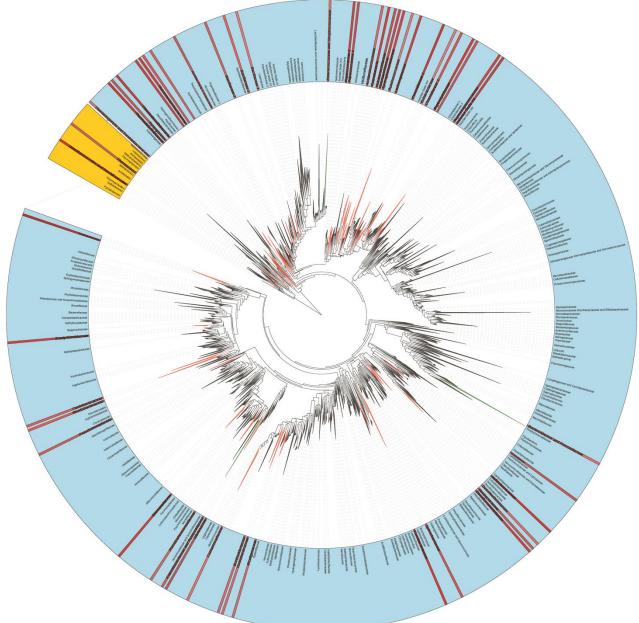
Martinez-Porqueras et al., 2012


Summary biofuels

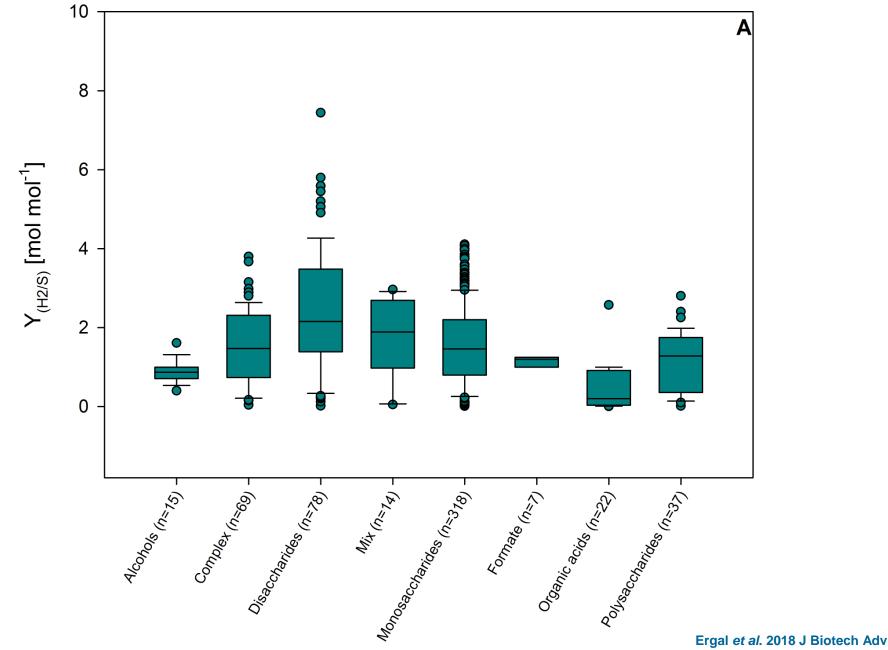
	First generation	Second generation	Third generation	Fourth generation	Fifth generation
Examples	Ethanol/biodiesel Biogas/H ₂	Bioethanol/H ₂ Biodiesel/biogas	Biodiesel	H ₂ Bioethanol	CH ₄
Raw materials	Corn Vegetable oil	Lignocellulosic residues Organic wastes	CO ₂ Algae	CO ₂ Byproducts	CO ₂ H ₂
Technology	Fermentation by conventional yeasts Transesterification by alkali catalysts	Biochemical or thermochemical routes	Biochemical or thermochemical routes	One step biocatalysis Photofermentation	Dark fermentation
Advantages	Established technology Policy drivers Proven uses	No food for fuel Acceptable carbon balances	No food for fuel No competition with agricultural land Good carbon and energy balances Any location Additional products O ₂ production	Possible CO ₂ neutral process Use of wastes as feedstocks O ₂ production	Consumption of CO ₂ Improvement of CH ₄ production in biogas plants
Disadvantages	Competition with food Increase in food prices Significant CO ₂ production Increased deforestation	Competition with agricultural land CO ₂ production Risky investments None established	New technology Unstable biofuel Slow production Large cultivation areas	Slow Expensive Low productivity Large cultivation areas	Laboratory scale Neutral CO ₂ process only when the H ₂ to CO ₂ ratio is equal or higher than four

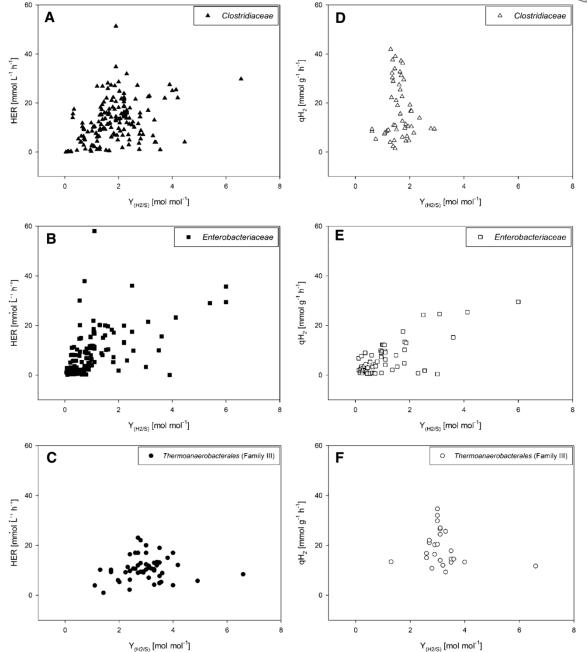
Biohydrogen production




hydrogen evolution rate (HER) of **0.1 to 0.4** mol m⁻³ h⁻¹

HER up to 200 mol $m^{-3} h^{-1}$





Ergal et al. 2018 J Biotech Adv

Rittmann et al., 2012

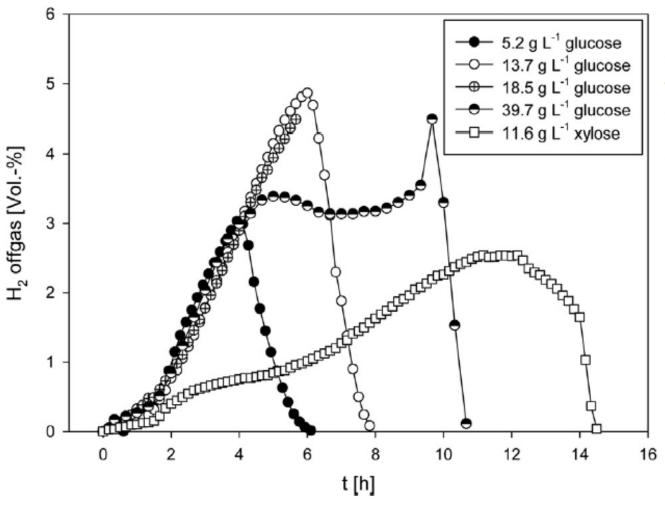


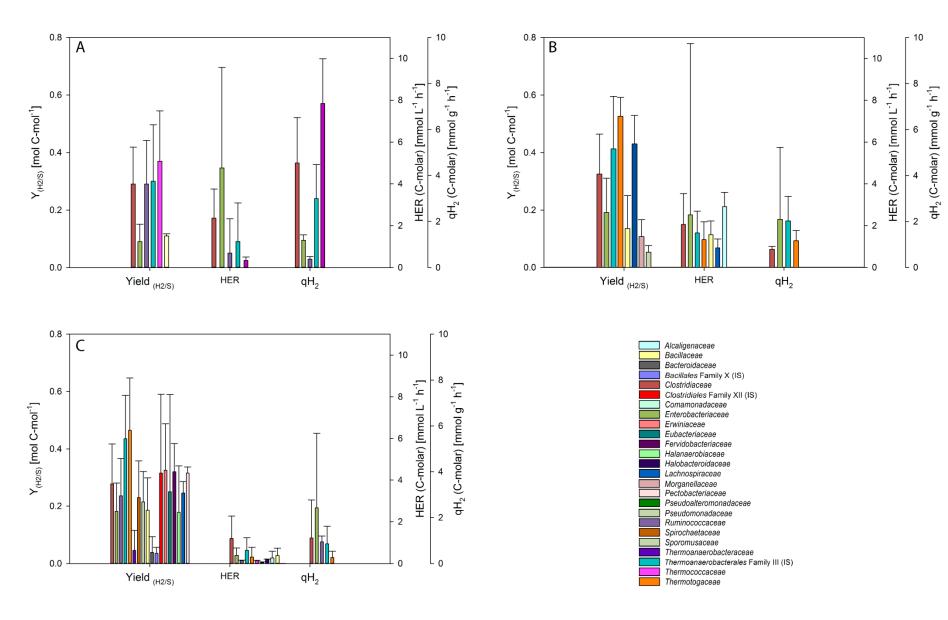
Fig. 1 – Normalized plots of H_2 production from *E. aerogenes* in repetitive batch mode on glucose or on xylose in defined medium at 30 ± 1 °C and pH = 6.80 ± 0.05, both in the presence of citrate. H_2 production signals obtained with 5.2 g/L, 13.7 g/L and 18.5 g/L glucose showed identical biohydrogen production kinetics, whereas H_2 production kinetics from 39.7 g/L glucose concentration resulted in a prominent plateau phase. Cultivation of *E. aerogenes* on 11.6 g/L citrate and xylose revealed a diauxic growth like during H_2 production, compared to the growth of *E. aerogenes* on citrate and glucose. These H_2 production curves clearly show that K_s -value for the uptake of xylose is much higher than the K_s -value for the uptake of glucose.

Table 1 – Product yields and specific hydrogen
productivities at the maximum hydrogen evolution rates
in repetitive batch fermentations of E. aerogenes on
glucose on defined medium at 30 ± 1 °C and
$pH = 6.80 \pm 0.05.$

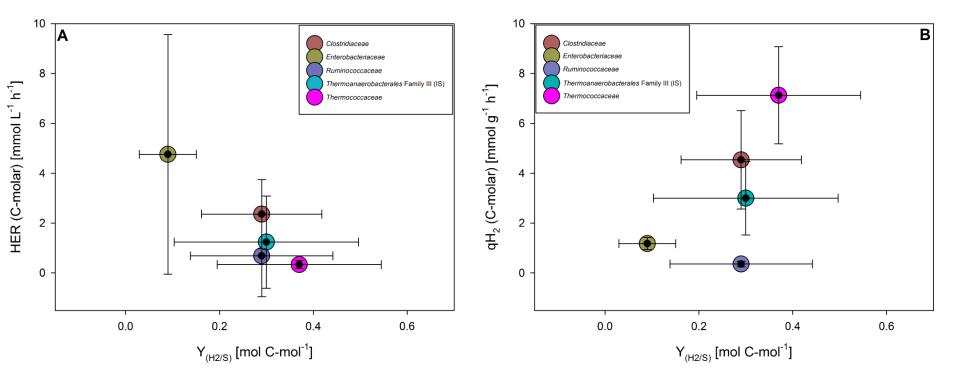
C _{s,t=0}	HER	q_{H_2}	μ	$Y_{\left(H_2/CO_2\right)}$	$Y_{\left(H_{2}/s\right)}$
[g/L]	[mmol/L/h]	[mmol/g/h]	[h ⁻¹]	[mol/	[mol/
				C-mol]	C-mol]
5.2	29.09 ± 0.58	$\textbf{71.0} \pm \textbf{3.55}$	0.57 ± 0.01	0.82 ± 0.03	0.65 ± 0.02
13.7	39.92 ± 0.80	$\textbf{59.1} \pm \textbf{4.44}$	0.53 ± 0.01	0.92 ± 0.04	0.55 ± 0.02
39.7	25.39 ± 0.51	54.6 ± 4.09	0.58 ± 0.01	0.62 ± 0.02	0.35 ± 0.01

Table 2 – Physiological key parameters at the maximum hydrogen evolution rate in repetitive batch fermentations of C.
saccharolyticus on xylose (5 g/L) on complex or defined medium at 70.0 \pm 0.5 °C and pH = 6.50 \pm 0.05.

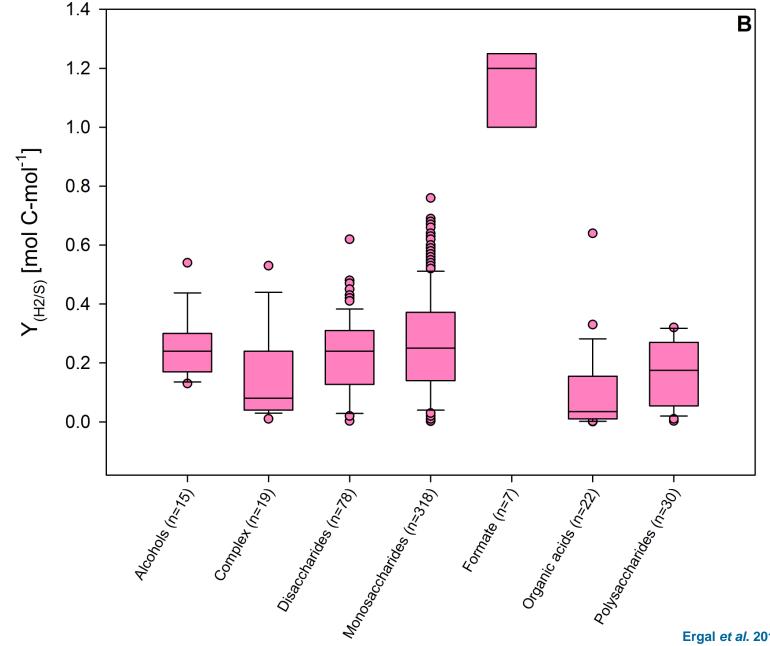
		ΔC_s	HER	\boldsymbol{q}_{H_2}	$Y_{\left(H_{2}/CO_{2}\right)}$	$Y_{\left(H_{2}/s\right)}$	$Y_{(\text{CO}_2/\text{s})}$	Y _(Ac/s)	$Y_{(Lact/s)}$	Y _(x/s)	C-balance
		[g/L]	[mmol/ L/h]	[mmol/ g/h]	[mol/ C-mol]	[mol/ C-mol]	[C-mol/ C-mol]	[C-mol/ C-mol]	[C-mol/ C-mol]	[C-mol/ C-mol]	[C-mol]
Medium 2	YE + Trypticase	3.39 ± 0.05	3.39 ± 0.07	8.39 ± 0.63	1.48 ± 0.06	0.48 ± 0.02	0.32 ± 0.01	0.52 ± 0.02	0.01 ± 0.0	0.13 ± 0.01	0.97 ± 0.04
Medium 3	YE + Vitamins	2.84 ± 0.04	2.84 ± 0.06	8.03 ± 0.60	1.40 ± 0.06	0.44 ± 0.02	0.31 ± 0.01	0.57 ± 0.02	0.02 ± 0.0	0.16 ± 0.01	1.05 ± 0.04
Medium 4	Vitamins	2.06 ± 0.03	2.01 ± 0.04	8.29 ± 0.62	1.44 ± 0.06	$0.57\pm.0.02$	0.40 ± 0.01	0.70 ± 0.02	0.00 ± 0.0	$\textbf{0.21} \pm \textbf{0.01}$	1.25 ± 0.05


Table 3 – Product yields and volumetric and specific hydrogen productivities in continuous cultures of E .aerogenes on glucose (18.5 g/L) on defined medium at 30 \pm 1 °C and different pH values.

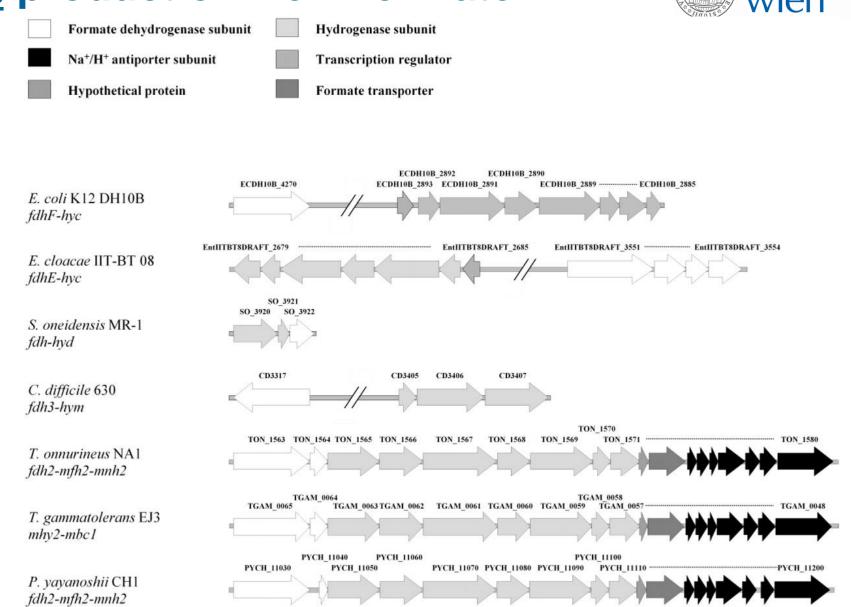
D	pН	HER	q_{H_2}	$Y_{\left(H_2/CO_2\right)}$	$Y_{\left(H_{2}/s\right)}$	Y _(Ac/s)	Y _(EtOH/s)	Y _(x/s)
$[h^{-1}]$	[-]	[mmol/L/h]	[mmol/g/h]	[mol/C-mol]	[mol/C-mol]	[C-mol/C-mol]	[C-mol/C-mol]	[C-mol/C-mol]
0.13	6.81	11.72 ± 0.23	5.30 ± 0.40	$\textbf{0.72} \pm \textbf{0.03}$	$\textbf{0.15} \pm \textbf{0.01}$	$\textbf{0.30} \pm \textbf{0.01}$	$\textbf{0.19} \pm \textbf{0.00}$	$\textbf{0.16} \pm \textbf{0.01}$
0.25	6.81	19.82 ± 0.40	9.01 ± 0.68	$\textbf{0.61} \pm \textbf{0.02}$	$\textbf{0.13} \pm \textbf{0.00}$	$\textbf{0.28} \pm \textbf{0.00}$	$\textbf{0.16} \pm \textbf{0.00}$	$\textbf{0.15} \pm \textbf{0.01}$
0.25	6.60	16.53 ± 0.33	7.45 ± 0.56	$\textbf{0.48} \pm \textbf{0.02}$	$\textbf{0.11} \pm \textbf{0.00}$	0.27 ± 0.00	0.17 ± 0.00	$\textbf{0.15} \pm \textbf{0.01}$
0.25	6.40	13.12 ± 0.26	5.99 ± 0.45	$\textbf{0.38} \pm \textbf{0.02}$	$\textbf{0.09} \pm \textbf{0.00}$	$\textbf{0.22}\pm\textbf{0.00}$	$\textbf{0.16} \pm \textbf{0.00}$	$\textbf{0.14} \pm \textbf{0.01}$

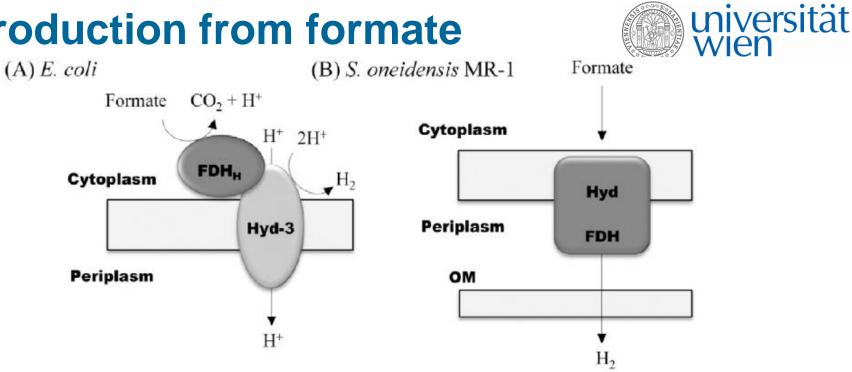

Table 4 – Physiological key parameters in continuous cultures of C. saccharolyticus on glucose (4.5 g/L) on non defined medium at 70.0 \pm 0.7 °C and pH = 6.70 \pm 0.05.

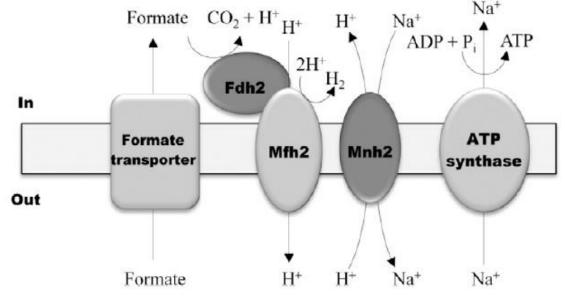
D	х	HER	\boldsymbol{q}_{H_2}	Y_{H_2/CO_2}	$Y_{H_2/s} \\$	Y_{CO_2}	$Y_{acet/s}$	$Y_{lact/s}$	Y _{x/s}	C-balance
[h ⁻¹]	[g/L]	[mmol/ L/h]	[mmol/ g/h]	[C-mol/ C-mol]	[mol/ C-mol]	[C-mol/ C-mol]	[C-mol/ C-mol]	[C-mol/ C-mol]	[C-mol/ C-mol]	[C-mol]
0.05	0.52 ± 0.02	2.49 ± 0.05	4.82 ± 0.24	1.37 ± 0.05	0.34 ± 0.01	0.25 ± 0.01	0.55 ± 0.02	0.06 ± 0.00	$\textbf{0.14} \pm \textbf{0.01}$	1.00 ± 0.04
0.1	0.86 ± 0.03	4.26 ± 0.09	4.98 ± 0.25	1.37 ± 0.05	0.29 ± 0.01	0.21 ± 0.01	0.46 ± 0.01	0.07 ± 0.00	$\textbf{0.24} \pm \textbf{0.02}$	0.98 ± 0.04
0.15	0.77 ± 0.02	6.79 ± 0.014	$\textbf{8.81} \pm \textbf{0.44}$	1.35 ± 0.05	0.31 ± 0.01	$\textbf{0.23} \pm \textbf{0.01}$	0.46 ± 0.01	0.07 ± 0.00	$\textbf{0.21} \pm \textbf{0.01}$	0.97 ± 0.04


- 117 years of dark fermentative H₂ production are reviewed (results extracted from 305 papers, the data-set comprised 1732 individual data points)
- H₂ productivity and Y_(H2/S) are compared on C-molar level
- The best substrate for H_2 production is formate
- Thermococcaceae spp. comprise high Y_(H2/S) and high qH₂ in continuous culture
- Thermococcales are the superior organisms for H₂ production

H₂ production by Thermococcus spp.


Strain	Isolation site	H ₂ production	growth
T. gammatolerans	Hydrothermal chimney samples from the Guaymas basin	+	+
T. alcaliphilus	Shallow marine hydrothermal system from Vulcano	-	—
T. celer	Solfataric marine water holes from Vulcano	-	—
T. chitonophagus	Hydrothermal vent off the Mexican west coast	-	—
T. profundus	Deep-sea thermal vent from the middle Okinawa trench	-	—
T. peptonophilus	Izu-Bonin arc	-	—
T. stetteri	Marine volcanic crater fields from Kraternya cove	-	-
T. sibiricus	Oil wells in western Siberia	-	-
T. onnurineus NA1	Deep-sea hydrothermal vent in the PACMANUS field	+	+
T. barophilus Ch5	Deep-sea hydrothermal field on the Mid-Atlantic Ridge	+	+
Thermococcus sp. DS-1	Hydrothermal field on the East Pacific Rise	+	+
Thermococcus sp. DT-4	Deep-sea hot vents from the southern Pacific basin	+	+
T. litoralis Sh1B	Shallow water hot vent off the Kuril Islands	-	-
T. stetteri K1A	Shallow water hot vent off the Kuril Islands	-	—
Thermococcus sp. AM4	Deep-sea hot vent on the East Pacific Rise	-	-
Thermococcus sp. Ch1	Hydrothermal structures on the Mid-Atlantic Ridge	-	-




Ergal et al. 2018 J Biotech Adv

(C) T. onnurineus NA1

Rittmann et al. 2015 J Biotech Adv

Strain	Strategy	HER [mmol L ⁻¹ h ⁻¹]	Reference
Cupriavidus necator ATCC 17699	Immobilization of cells	5.8	Klibanov et al., 1982
Salmonella enterica	Closed batch mode	0.3	Pakes and Jollyman, 1901
Escherichia coli SH5	Fed-batch mode with immobilized cells	73.3	Seol et al., 2011
Escherichia coli SR13	hycA disruption and fhIA overexpression	11625	Yoshida et al., 2005
Clostridium butyricum IFO 3847t1	Addition of co-substrate mannitol	0.21	Heyndrickx et al., 1989
<i>Desulfovibrio vulgaris</i> Hildenborough	Optimization of reaction conditions	0.67	Martins and Pereira, 2013
Thermococcus onnurineus NA1	Use of high cell density	2820	Lim et al., 2012

HER: hydrogen evolution rate

Archaea perform autocatalytic hydrogen production from formate whereas bacteria only perfrom whole cell biocatalysis from formate

Rittmann *et al.* 2012 Microb Cell Fact Rittmann *et al.* 2015 J Biotech Adv

H₂ production from CO

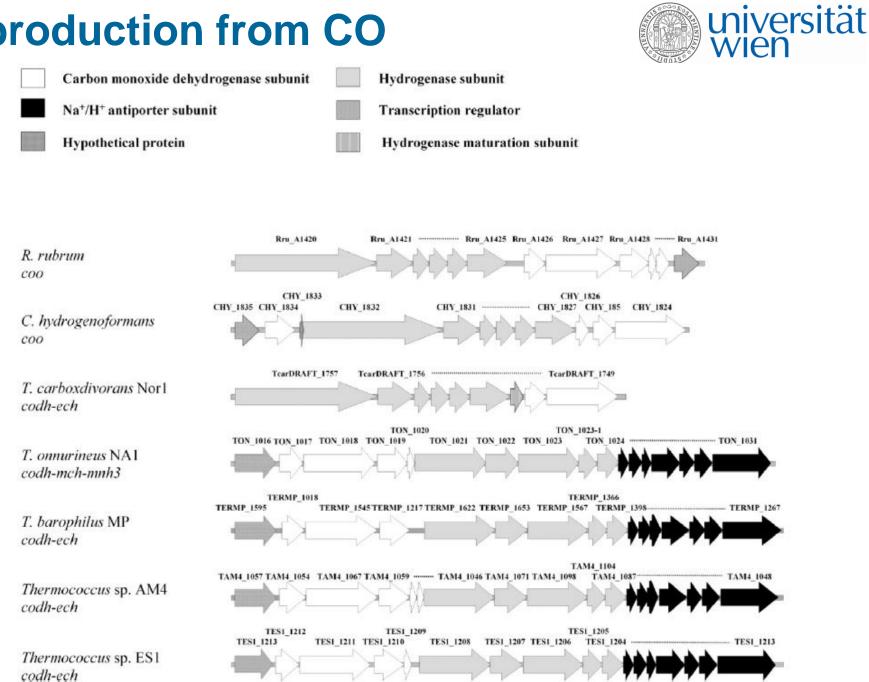
Reaction equations and their standard Gibbs free energy (G0) for several modes of carboxydotrophic growth

Metabolism		Reaction	∆G ⁰ (kJ)
Fermentative			
	Hydrogenogenic	$CO + H_2O \longrightarrow CO_2 + H_2$	-20
	Methanogenic	$4 \text{ CO} + 2 \text{ H}_2\text{O} \longrightarrow \text{CH}_4 + 3 \text{ CO}_2$	-210
	Acetogenic	$4 \text{ CO} + 2 \text{ H}_2\text{O} \longrightarrow \text{CH}_3\text{COO}^- + \text{H}^+ + 2 \text{ CO}_2$	-174
	Solventogenic (ethanol)	$6 \text{ CO} + 3 \text{ H}_2\text{O} \longrightarrow \text{C}_2\text{H}_5\text{OH} + 4 \text{ CO}_2$	-224
Respiratory			
	Oxygen	$2 \text{ CO} + \text{O}_2 \longrightarrow 2 \text{ CO}_2$	-514
	Sulfate	$4 \text{ CO} + \text{SO}_4^{2-} + \text{H}^+ \longrightarrow 4 \text{ CO}_2 + \text{HS}^-$	-231

Isolated microorganisms capable of conserving energy from the water-gas shift reaction

Species	Origin	Temperature optimum (°C)	Carboxydotrophic generation time (h)	Reference
Mesophilic bacteria				
Rhodospirillum rubrum	Various environments	30	5 (dark, acetate)	Kerby et al., 1995
Rubrivivax gelatinosa	Lake sediment	34	6.7 (dark, trypticase) 10 (light, autotrophically) 1.5 (light, malate)	Uffen, 1976; Maness et al., 2005
Rhodopseudomonas palustris	Anaerobic wastewater sludge digester	30	2 (light, autotrophically)	Jung et al., 1999

H₂ production from CO



Isolated microorganisms capable of conserving energy from the water-gas shift reaction

pecies	Origin	Temperature optimum (°C)	Carboxydotrophic generation time (h)	Reference
hermophilic bacteria				
aldanaerobacter subterraneus ssp. acificus	Submarine hot vent, Okinawa Trough	70	7.1	Sokolova et al., 2001; Fardeau et al., 2004
arboxydocella sporoproducens	Hot spring, Karymskoe Lake	60	1	Slepova et al., 2006
arboxydocella thermoautotrophica	Terrestrial hot vent, Kamchatka Peninsula	58	1.1	Sokolova et al., 2002
Carboxydothermus hydrogenoformans	Freshwater hydrothermal spring, Kunashir Island	70	2	Svetlichny et al., 1991
arboxydothermus islandicus	Hot spring, Hveragerdi	65	2	Novikov et al., 2011
Carboxydothermus pertinax	Volcanic acidic hot spring, Kyushu Island	65	1.5	Yoneda et al., 2012
arboxydothermus siderophilus	Hot spring, Karnchatka Peninsula	65	9.3	Slepova et al., 2009
lictyoglomus carboxydivorans	Hot spring, Karnchatka Peninsula	75	60	Kochetkova et al., 2011
loorella stamsii	Digester sludge	65	N.D.	Alves et al., 2013
hermincola carboxydiphila	Hot spring, Lake Baikal	55	1.3	Sokolova et al., 2005
hermincola ferriacetica	Hydrothermal spring, Kunashir Island	60	N.D.	Zavarzina et al., 2007
hermincola potens	Thermophilic microbial fuel cell	55	N.D.	Byrne-Bailey et al., 2010
hermolithobacter carboxydivorans	Mud and water, Calcite Spring	73	1.3	Sokolova et al., 2007
hermosinus carboxydivorans	Hot spring, Norris Basin	60	1.15	Sokolova et al., 2004a
hermoanaerobacter hermohydrosulfuricus ssp. arboxydovorans	Geothermal spring, Turkey	70	N.D.	Balk et al., 2009
lesulfotomaculum carboxydivorans	Paper mill wastewater sludge	55	N.D.	Parshina et al., 2005b
hermophilic archaea				
hermococcus onnurineus	Deep-sea hydrothermal vent	80	5	Bae et al., 2006, 2012
hermocuccus AM4	Hydrothermal vent	82	5	Sokolova et al., 2004b
	nyarotherna vent		-	

Rittmann et al., 2015

H₂ production from CO

(A) C. hydrogenoformans Z-2901 (B)

(B) T. onnurineus NA1

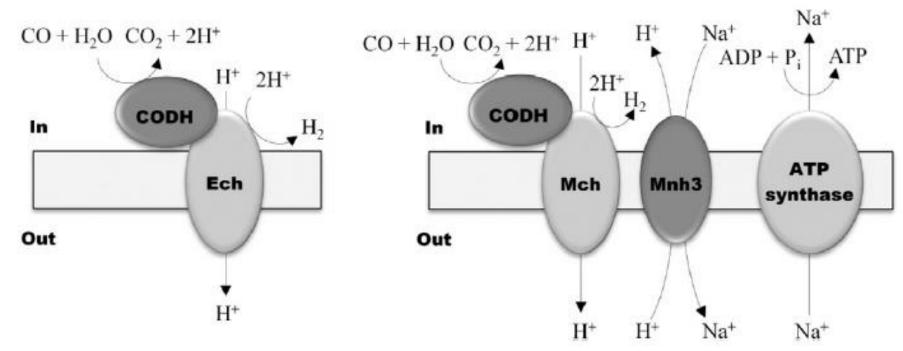
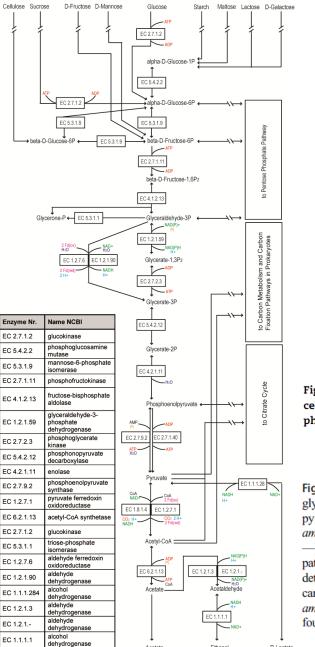


Fig. 4. Structural model of the CO-oxidizing, H2-forming enzyme complex in Carboxydothermus hydrogenoformans (Hedderich, 2004) (A) and Thermococcus onnurineus NA1 (B) and the proposed mechanism of coupling of CO oxidation with ATP synthesis.

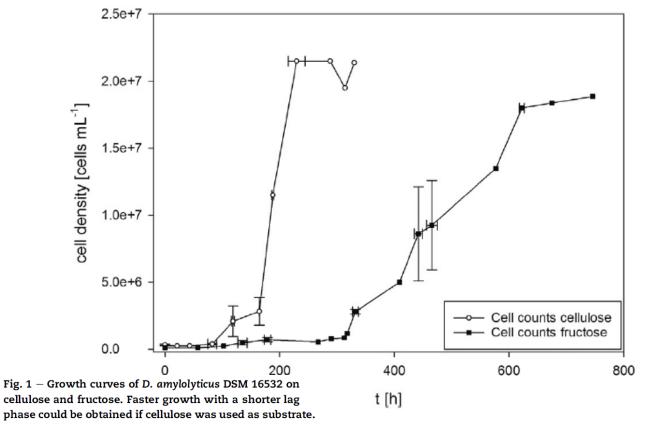
Archaeal biohydrogen production


Strain	Substrate	Temp [°C]	HER [mmol L ⁻¹ h ⁻¹]	Yield [mol mol ⁻¹]	Reference
Pyrococcus furiosus	cellobiose	90	3.8	6.2	Chou et al. 2007
Pyrococcus furiosus	maltose	90	2.4	2.4	Chou et al. 2007
Thermococcus onnurineus	formate	80	2820	n.a.	Lee et al., 2012
Thermococcus onnurineus	СО	85	n.a.	1.1	Lee et al., 2012
Thermococcus kodakarensis	starch	85	3.9	1.1	Kanai et al., 2005
Thermococcus kodakarensis	pyruvate	85	3.2	3.3	Kanai et al., 2005
Desulfurococcus fermentans	starch	80	n.a.	n.a.	Perevalova et al., 2005
Halothermotrix orenii	glucose	60	n.a.	n.a.	Cayol et al., 1994
Methanococcus maripaludis	formate	37	n.a.	n.a.	Lupa et al., 2008

n.a.: not attainable HER: hydrogen evolution rate

Formate is a cheap feedstock for H₂ production, manufactured from e.g. by-product carbon monoxide (CO) of the steel making process

Archaeal biohydrogen production



Acetate

Ethanol

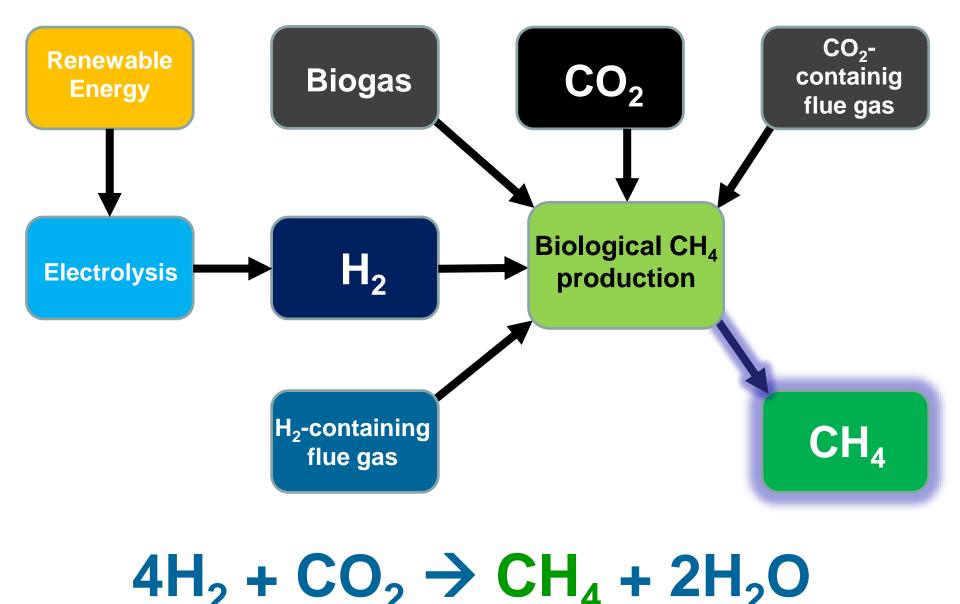
D-Lactate

Table 3 — Comparison of qH _{2,cell} .									
Strain	Substrate	$\begin{array}{c} qH_{2,cell} \\ [fmol \ cell^{-1} \\ h^{-1}] \end{array}$	Reference						
Aminobacterium colombiense DSM 12261	alanine	5.13	[27]						
Clostridium butyricum CGS5	sucrose	0.09	[26]						
Syntrophothermus lipocalidus	butyrate	30.46	[27]						
Salmonella enterica serovar Typhimurium	glucose/ formate	0.84-1.08	[25]						
Desulfurococcus amylolyticus DSM 16532	cellulose	3.41	This study						
Desulfurococcus amylolyticus DSM 16532	fructose	8.42	This study						

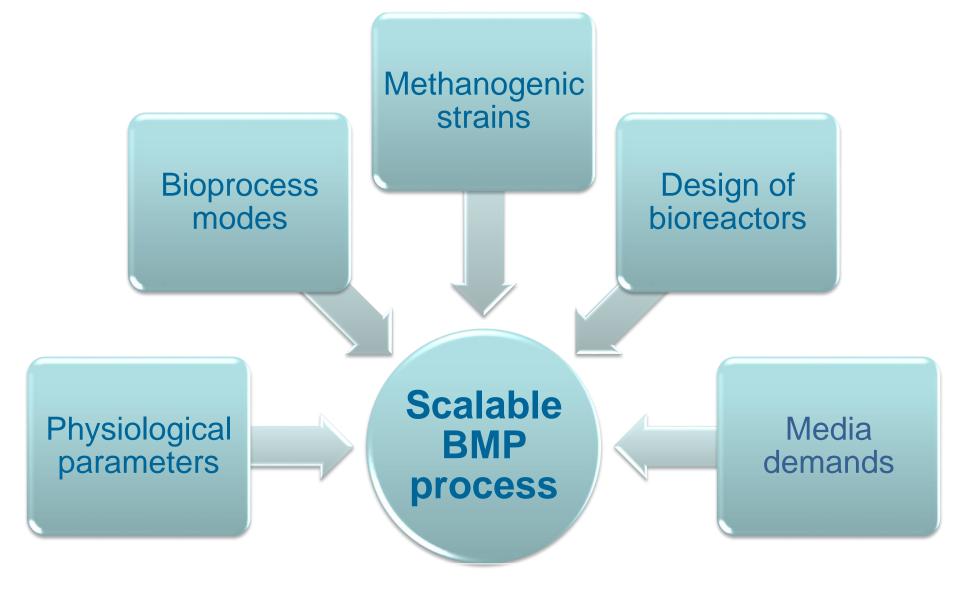
Fig. 1 Predicted glycolysis and glyconeogenesis pathways and pyruvate metabolism of D. amylolyticus DSM 16532. (-// ---): not all enzymes of the pathway are indicated. More detailed information on the carbon metabolism of D. amylolyticus DSM 16532 can be found in Supplementary Fig. 1

Reischl et al. 2018, Folia Microbiol; Reischl et al. 2018 Int J Hydrogen Energ

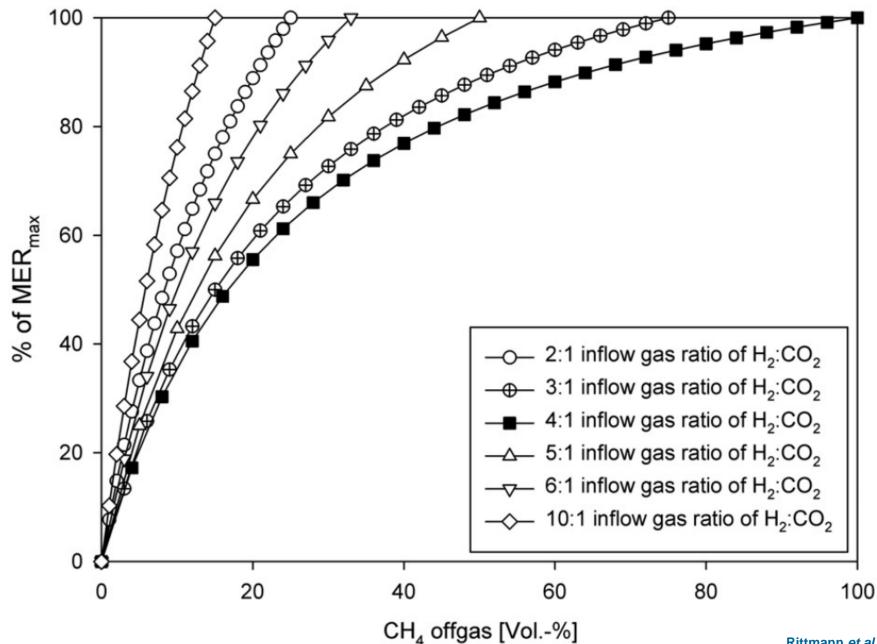
5th biofuel generation



$4H_2 + CO_2 \longrightarrow CH_4 + 2H_2O$


methanogens

Mauerhofer et al., unpublished



Rittmann et al., 2015

Table 2. Overview of quantitative experiments for biological methane production in bioreactors.

Genus	Species	Strain	Cultivation modes	Bioreactor features	Gassing rate [L min ⁻¹]	D [h ⁻¹]	$\frac{MER}{[mmol L^{-1}h^{-1}]}$	qCH_4 [mmol g ⁻¹ h ⁻¹]	References
Methanobrevibacter	aboriphilus	DSM 2462	Chemostat	10L bioreactor	0.833	0.00875		8	Morii et al., 1987
Methanobrevibacter	aboriphilus	DSM 2462	Chemostat	10 L bioreactor	0.833	0.01083		10	Morii et al., 1987
<i>Methanobrevibacter</i>	aboriphilus	DSM 2462	Chemostat	10 L bioreactor	0.833	0.015		11	Morii et al., 1987
1 ethanobrevibacter	aboriphilus	DSM 2462	Chemostat	10 L bioreactor	0.833	0.0179		13	Morii et al., 1987
<i>Iethanocaldococcus</i>	jannaschii		Chemostat	5 L bioreactor	0.05	0.2		51	Tsao et al., 1994
<i>Iethanocaldococcus</i>	jannaschii		Chemostat	5 L bioreactor	0.15	0.056		130	Tsao et al., 1994
<i>lethanocaldococcus</i>	jannaschii		Chemostat	5 L bioreactor	0.15	0.3		195	Tsao et al., 1994
<i>Iethanocaldococcus</i>	Jannaschii		Chemostat	5 L bioreactor	0.23	0.056	63	175	Tsao et al., 1994
<i>lethanocaldococcus</i>	jannaschii		Chemostat	5 L bioreactor	0.23	0.3	124.8	240	Tsao et al., 1994
<i>lethanocaldococcus</i>	jannaschii		Chemostat	5 L bioreactor	0.23	0.56	130	325	Tsao et al., 1994
lethanosarcina	barkeri	MS	Fed-batch	2 L bioreactor	0.02		5.539		Weimer & Zeikus, 1978
lethanothermobacter	thermoautotrophicus	DSM 1053	Fed-batch	2 L bioreactor	0.2		24.4		Morgan et al., 1997
lethanothermobacter	thermoautotrophicus	DSM 1053	Fed-batch	2 L bioreactor	0.2		54.5		Morgan et al., 1997
lethanothermobacter	thermoautotrophicus	DSM 1053	Fed-batch	1.3 L jar bioreactor	0.4			223	Jee et al., 1987b
lethanothermobacter	thermoautotrophicus	DSM 1053	Chemostat	Hollow fiber bioreactor	0.023	0.26	75		Jee et al., 1988a
lethanothermobacter	thermoautotrophicus	DSM 1053	Chemostat	Hollow fiber bioreactor	0.040	0.26	94		Jee et al., 1988a
1 ethanothermobacter	thermoautotrophicus	DSM 1053	Chemostat	Hollow fiber bioreactor	0.016	0.26	60		Jee et al., 1988a
<i>lethanothermobacter</i>	thermoautotrophicus	DSM 1053	Chemostat	3 L bioreactor	0.100	0.170		70	de Poorter et al., 2007
lethanothermobacter	thermoautotrophicus	DSM 1053	Chemostat	3 L bioreactor	0.155	0.170		100	de Poorter et al., 2007
lethanothermobacter	thermoautotrophicus	DSM 1053	Chemostat	3 L bioreactor	0.300	0.182		110	de Poorter et al., 2007
lethanothermobacter	thermoautotrophicus	DSM 1053	Chemostat	3 L bioreactor	0.450	0.220		115	de Poorter et al., 2007
lethanothermobacter	thermoautotrophicus	DSM 1053	Chemostat	3 L bioreactor	0.450	0.220		145	de Poorter et al., 2007
lethanothermobacter	thermoautotrophicus	DSM 1053	Chemostat	Fixed-bed bioreactor (0.107 L)	0.047	0.295	236.5		Jee et al., 1988b
1ethanothermobacter	thermoautotrophicus	DSM 1053	Chemostat	Fixed-bed bioreactor (0.107 L)	0.047	0.295	152.0		Jee et al., 1988b
lethanothermobacter	thermoautotrophicus	DSM 1053	Chemostat	Fixed-bed bioreactor (0.107 L)	0.047	0.295	156.2		Jee et al., 1988b
lethanothermobacter	thermoautotrophicus	DSM 1053	Chemostat	Fixed-bed bioreactor (0.107 L)	0.047	0.295	147.8		Jee et al., 1988b
lethanothermobacter	thermoautotrophicus	DSM 1053	Chemostat	Anaerobic membrane cultivation	0.01267	11.1	62.8		Jee et al., 1987a
lethanothermobacter	thermoautotrophicus	DSM 1053	Chemostat	Anaerobic membrane cultivation	0.01267	11.1	57.8		Jee et al., 1987a
lethanothermobacter	thermoautotrophicus	DSM 1053	Chemostat	Anaerobic membrane cultivation	0.01267	11.1	47.1		Jee et al., 1987a
lethanothermobacter	thermoautotrophicus	DSM 1053	Chemostat	Bioreactor with ceramic support (0.097 L)	0.04333	0.51	426.1		Jee et al., 1987a
lethanothermobacter	thermoautotrophicus	DSM 1053	Fed-batch	12 L bioreactor	1.8		60	120	Pennings et al., 2000
lethanothermobacter	thermoautotrophicus	DSM 1053	Fed-batch	12 L bioreactor	1.4		66	90	Pennings et al., 2000
lethanothermobacter	thermoautotrophicus	DSM 1053	Fed-batch	3 L bioreactor	0.107			167	de Poorter et al., 2007
lethanothermobacter	thermoautotrophicus	DSM 1053	Fed-batch	3 L bioreactor	0.214			144	de Poorter et al., 2007
lethanothermobacter	thermoautotrophicus	DSM 1053	Fed-batch	3 L bioreactor	0.214			127	de Poorter et al., 2007
lethanothermobacter	thermoautotrophicus	DSM 1053	Fed-batch	3 L bioreactor	0.214			161	de Poorter et al., 2007
lethanothermobacter	thermoautotrophicus	DSM 1053	Fed-batch	3 L bioreactor	0.428			174	de Poorter et al., 2007
<i>lethanothermobacter</i>	thermoautotrophicus	DSM 1053	Fed-batch	3 L bioreactor	0.428			177	de Poorter et al., 2007
lethanothermobacter	thermoautotrophicus	DSM 1053	Fed-batch	3 L bioreactor	0.428			178	de Poorter et al., 2007

Rittmann et al 2015

Table 2. Continued

Genus	Species	Strain	Cultivation modes	Bioreactor features	Gassing rate $[L \min^{-1}]$	$D [h^{-1}]$	$\frac{MER}{[mmol L^{-1}h^{-1}]}$	qCH_4 [mmol g ⁻¹ h ⁻¹]	References
	*					Ելոյ			
Methanothermobacter	thermoautotrophicus	DSM 1053	Fed-batch	3 L bioreactor	0.428			188	de Poorter et al., 2007
Methanothermobacter	thermoautotrophicus	DSM 1053	Fed-batch	1 L glass vessel	0.130		3	111	Roennow & Gunnarsson, 1982
Methanothermobacter	thermoautotrophicus	DSM 1053	Fed-batch	1 L glass vessel	0.130		12	46	Roennow & Gunnarsson, 1982
Methanothermobacter	thermoautotrophicus	DSM 1053	Fed-batch	1 L glass vessel	0.126		7	48	Roennow & Gunnarsson, 1982
Methanothermobacter	thermoautotrophicus	DSM 1053	Fed-batch	1 L glass vessel	0.126		12	37	Roennow & Gunnarsson, 1982
Methanothermobacter	thermoautotrophicus	DSM 1053	Fed-batch	Hollow fiber	0.016	0.26000	62		Jee et al., 1988a
Methanothermobacter	marburgensis	DSM 2133	Fed-batch	0.5 L bioreactor	0.24		281	234	Schoenheit et al., 1980
Methanothermobacter	marburgensis	DSM 2133	Fed-batch	0.5 L bioreactor	0.24		133	475	Schoenheit et al., 1980
Methanothermobacter	marburgensis	DSM 2133	Fed-batch	0.5 L bioreactor	0.24				Schoenheit et al., 1980
Methanothermobacter	marburgensis	DSM 2133	Fed-batch	0.5 L bioreactor	0.24				Schoenheit et al., 1980
Methanothermobacter	marburgensis	DSM 2133	Fed-batch	0.5 L bioreactor	0.24				Schoenheit et al., 1980
Methanothermobacter	marburgensis	DSM 2133	Fed-batch	0.5 L bioreactor	0.24				Schoenheit et al., 1980
Methanothermobacter	marburgensis	DSM 2133	Fed-batch	Glass bioreactor (1.5 L)	1		148.7	99.1	Peillex et al., 1990
Methanothermobacter	marburgensis	DSM 2133	Fed-batch	Glass bioreactor (1.5 L)	1		223.1		Peillex et al., 1990
Methanothermobacter	marburgensis	DSM 2133	Chemostat	1 L bioreactor		0.102	165	53	Rittmann et al., 2012
Methanothermobacter	marburgensis	DSM 2133	Chemostat	1 L bioreactor		0.203	90	63	Rittmann et al., 2012
Methanothermobacter	marburgensis	DSM 2133	Chemostat	Glass bioreactor (1.5 L)	1	0.15	409.0	511.2	Peillex et al., 1990
Methanothermobacter	marburgensis	DSM 2133	Chemostat	Glass bioreactor (1.5 L)	1	0.15	423.8	407.5	Peillex et al., 1990
Methanothermobacter	marburgensis	DSM 2133	Chemostat	Glass bioreactor (1.5 L)	1	0.15	464.7	344.3	Peillex et al., 1990
Methanothermobacter	marburgensis	DSM 2133	Chemostat	Glass bioreactor (1.5 L)	1	0.15	502.0	313.7	Peillex et al., 1990
Methanothermobacter	marburgensis	DSM 2133	Chemostat	1.5 L glass bioreactor	1.03	0.15	427.6	534.5	Peillex et al., 1990
Methanothermobacter	marburgensis	DSM 2133	Chemostat	1.5 L glass bioreactor	1.03	0.15	464.7	258.2	Peillex et al., 1990
Methanothermobacter	marburgensis	DSM 2133	Chemostat	1.5 L glass bioreactor	1.03	0.15	511.2	182.6	Peillex et al., 1990
Methanothermobacter	marburgensis	DSM 2133	Chemostat	1.5 L glass bioreactor	1.03	0.15	535.4	148.7	Peillex et al., 1990
Methanothermobacter	thermoautotrophicus	DSM 3590	Fed-batch	16L bioreactor	2		32	11	Gerhard et al., 1993
Methanothermobacter	thermoautotrophicus	DSM 3590	Fed-batch	16L bioreactor	2		62	19	Gerhard et al., 1993
Methanothermobacter	thermoautotrophicus	DSM 3590	Fed-batch	16L bioreactor	6		114	24	Gerhard et al., 1993
Methanothermobacter	thermoautotrophicus	DSM 3590	Chemostat	2 L calorimeter	1		295		Schill et al., 1996
Methanothermobacter	thermoautotrophicus	DSM 3590	Chemostat	2 L calorimeter	0.5		187		Schill et al., 1996
Methanothermobacter	thermoautotrophicus	DSM 3590	Chemostat	2 L calorimeter	0.2		94		Schill et al., 1996
	1	KN-15	Chemostat	2 L bioreactor	5	0.3-0.4	450	115	Nishimura et al., 1992
		KN-15	Chemostat	2 L bioreactor	5	0.3-0.4	930	169	Nishimura et al., 1992
		KN-15	Chemostat	2 L bioreactor	5	0.3-0.4	1280	158	Nishimura et al., 1992
					-				

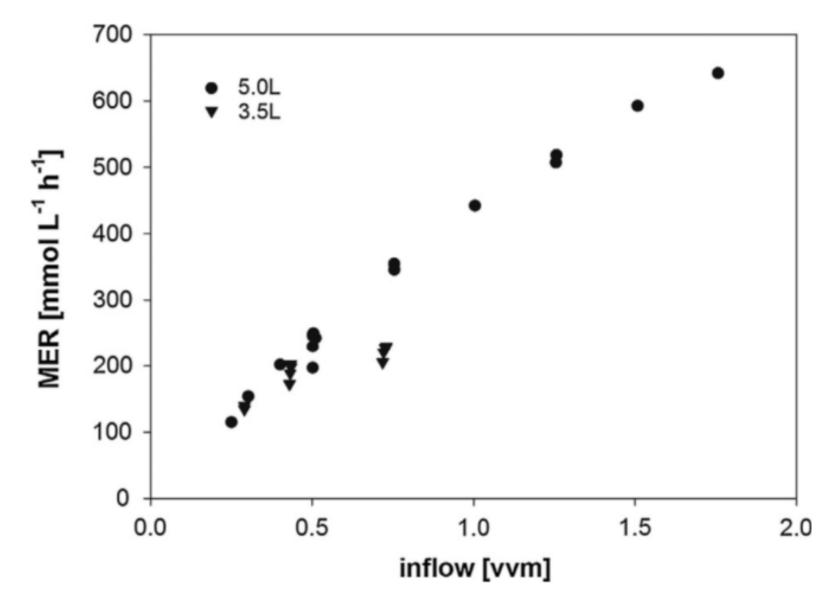
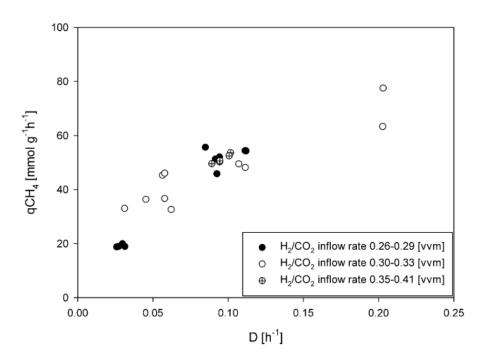


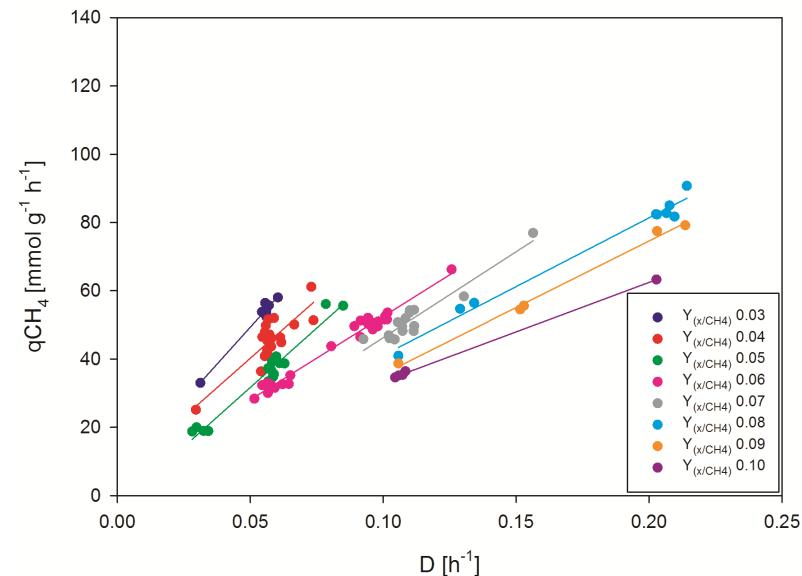
Fig. 6. Increase of MER with increased gasflow at 3.5 L and 5 L culture volume.


(a)	(c)	BMP mode	MER [mmol L ⁻¹ h ⁻¹]	CH ₄ [Vol%]	References
1 as the second		CSTR	1280	18.3	Nishimura et al., 1992
(- a - date		CSTR	530	96	Peillex et al., 1990
		CSTR	950	60	Seifert et al., 2014
(b)		Fixed- bed	267	26	Jee et al., 1987
THE FERRE		Fixed- bed	228	58	Jee et al., 1988b
·····································		Hollow fibre	145	14.5	Jee et al., 1988a
Burkhardt et al. 2013	© Simon KM. R. Rittmann	Trickle bed	1.6*	97.9	Burkhardt and Busch, 2013

(a,b) Anaerobic biofilm growing on matrix material for biomethane production in a trickle bed bioreactor. (c) 2L Lab-scale STR-bioreactor for biomethane production.

* MER calculated per m³ matrix material, MER \rightarrow methane evolution rate, BMP \rightarrow biological methane production

Either high volumetric productivity (MER) or high methane concentration in the fermentation offgas can be achieved - not both in parallel!



200 150 0 qH₂O [mmol g⁻¹h⁻¹] 0 0 00 100 50 H2/CO2 inflow rate 0.26-0.29 [vvm] H₂/CO₂ inflow rate 0.30-0.33 [vvm] 0 H₂/CO₂ inflow rate 0.35-0.41 [vvm] æ 0 0.00 0.05 0.10 0.15 0.20 0.25 $D[h^{-1}]$

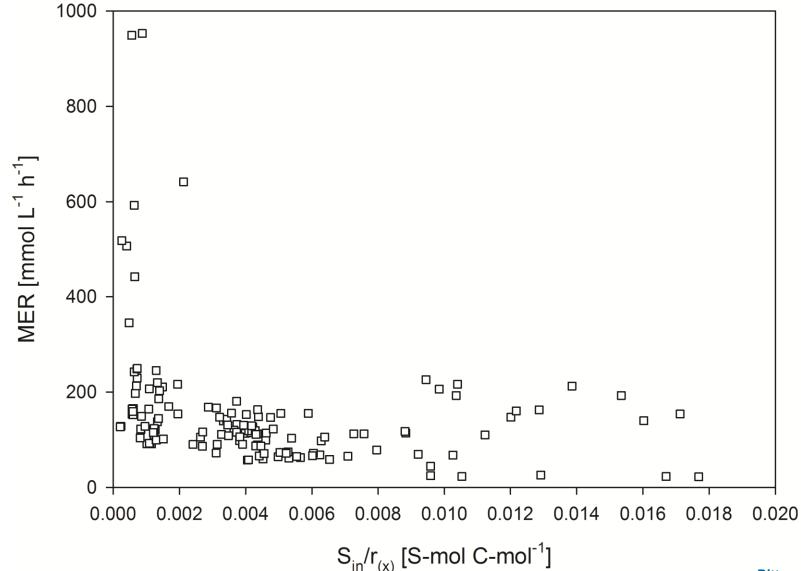
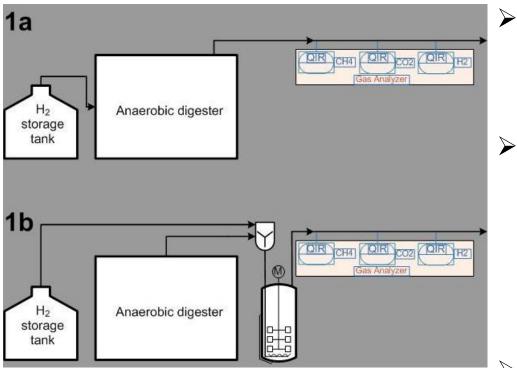

Fig. 2 – Specific methane productivity is shown as a function of the liquid dilution rate. By increasing the liquid dilution rate the specific methane productivity increased. An elevated H_2/CO_2 gassing rate ambiguously influenced qCH₄.

Fig. 5 – Specific water production of M. marburgensis is illustrated as a function of the liquid dilution rate. By increasing the liquid dilution rate the specific water production increased. An elucidation of different H_2/CO_2 gassing rates ambiguously influenced specific water productivity.

Rittmann et al. 2018


•17800 kWh a⁻¹ (100m², 3 persons) Statistik Austria →
 2.032 kWh h⁻¹

•Biological CH₄ production bioreactor produces 950 mmol L⁻¹ h⁻¹ = 212.294 kWh m⁻³ h⁻¹

A ~10L (C)STR would be sufficient to supply three people living a 100 m² flat with bioenergy!

Biogas upgrading

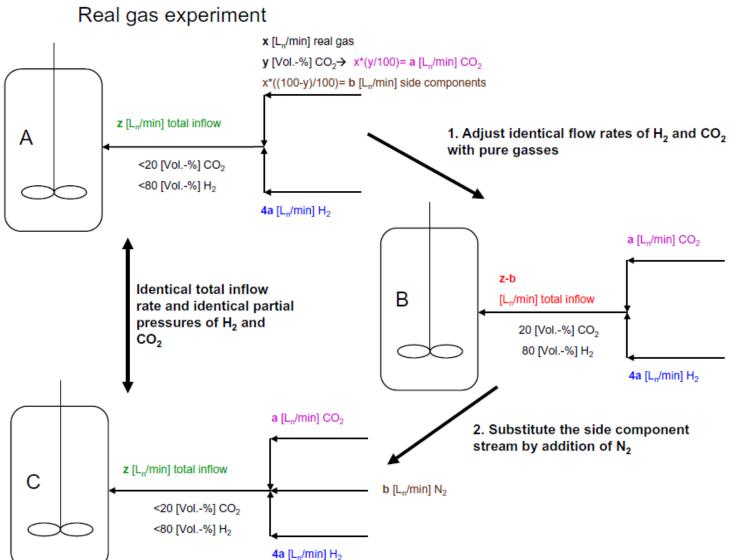
Two principle set-ups for the upgrading of biogas-to-biomethane are indicated. H_2 from renewable energy production is converted *via* water electrolysis (H_2 storage tank). The fermentation offgas needs to be analysed regarding the composition of CH₄, CO₂, H₂ (and putatively also H₂S). **1a** shows *in situ* biogas upgrading by addition of H₂ directly into the anaerobic digester. Due to the simplicity of the set-up a separate bioreactor does not to be included. In **1b** the principle set-up for ex situ upgrading of biogas in a separate bioreactor by contacting H₂, biogas and an enrichment culture comprising mainly of hydrogenotrophic methanogens or a pure culture of hydrogenotrophic methanogens (or also other CO₂ or H₂ containing industrial flue gasses) can be contacted under defined process conditions as well as by using different type of bioreactors.

- In situ upgrading of biogas-tobiomethane by addition of H₂ into the anaerobic digester
 - Ex situ upgrading of biogas-tobiomethane in a separate bioreactor by contacting H₂, biogas and an enrichment culture including hydrogenotrophic methanogens
- Ex situ upgrading of biogas-tobiomethane in a separate bioreactor by contacting H₂, biogas and a pure culture of hydrogenotrophic methanogens

Biogas upgrading

Upgrading technology	H ₂ gassing rate [vvm]	Stirrer speed [rpm]	Temp. [°C]	Bioprocess mode, comments	Vessel and working volume	CH₄ offgas [Vol %]	MER [mmol L ⁻¹ h ⁻¹]	Reference
in situ	0.0005	100	55	semi-continuous	4.5 L bioreactor, 3.5 L working volume	65 ± 3.3	0.25 *	[18]
in situ	0.0012	150	55	semi-continuous, column diffuser	1 L bottle, 0.6 L working volume	53 ± 3	0.56 *	[19]
in situ	0.0012	300	55	semi-continuous, column diffuser	1 L bottle, 0.6 L working volume	68 ± 2.5	0.66 *	[19]
in situ	0.0012	150	55	semi-continuous, ceramic diffuser	1 L bottle, 0.6 L working volume	75 ± 3.4	0.69 *	[19]
ex situ, mixed culture	0.0021	500	55	semi-continuous	1 L bottle, 0.6 L working volume	93.5 ± 4.4	1.35 *	[5]
ex situ, mixed culture	0.0042	500	55	semi-continuous	1 L bottle, 0.6 L working volume	95.4 ± 2.8	2.74 *	[5]
ex situ, mixed culture	0.0083	500	55	semi-continuous	1 L bottle, 0.6 L working volume	89.9 ± 4.1	5.25 *	[5]
ex situ, mixed culture	0.0083	800	55	semi-continuous	1 L bottle, 0.6 L working volume	94.2 ± 2.8	5.39 *	[5]
ex situ, mixed culture	0.0167	800	55	semi-continuous	1 L bottle, 0.6 L working volume	90.8 ± 2.8	10.59 *	[5]
ex situ, mixed culture	n.a.	n.a.	60	continuous culture	n.a.	n.a.	258.77 *	[20]
ex situ, mixed culture	n.a.	n.a.	60	continuous culture, with cell recycle	n.a.	n.a.	446.15 *	[20]
ex situ, mixed culture	n.a.	n.a.	37	continuous culture	n.a.	n.a.	24.75 *	[20]
ex situ, mixed culture	n.a.	n.a.	37	continuous culture, with overpressure	n.a.	n.a.	40.15 *	[20]
ex situ, pure culture	n.a.	n.a.	62	fed-batch	n.a.	96	26000 #	[21]
ex situ, pure culture	0.325	1500	65	chemostat culture, overpressure	10 L bioreactor, 5 L working volume	n.a.	n.a.	[15]
ex situ, pure culture	0.067	700	60	chemostat culture	bioreactor, 3 L working volume	n.a.	23.42 °	[22]
ex situ, pure culture	0.533	700	60	chemostat culture	bioreactor, 3 L working volume	n.a.	50.01 °	[22]
ex situ, pure culture	0.067	700	60	chemostat culture	bioreactor, 3 L working volume	n.a.	22.31 °	[22]

n.a.: not attainable


* calculated from volumetric H₂ uptake rate divided by four

presumably the authors presented total MER (including MER from biogas production) °calculated from volumetric methane production rate

Rittmann (2015) Advances in Biochemical Engineering/Biotechnology

(Bio)gas upgrading

Reference experiment

(Bio)gas upgrading

Table 1

Composition of the tested real gasses.

Type of gas	Convertable component	Concentration (Vol%)	Other components
Synthetic H ₂ enriched waste gas	H ₂	~60	CO, CO ₂ , short-chain alkanes
Impure biogas	CO ₂	~50	CH ₄ , unknown
Combustion gas	CO ₂	~10	Mainly N ₂ , O ₂

Table 2

Overview over the performed real gas and corresponding reference experiments and the resulting quotient of MER_{Real}/MER_{Ref}. Total gassing rates given as volume gas per volume liquid per minute (vvm).

	Synthetic	H ₂ enriched w	aste gas				ogas	Combustion gas		
Experiment Nr.	1		2		3		4		5	
	Real gas	Reference	Real gas	Reference	Real gas	Reference	Real gas	Reference	Real gas	Reference
Reactor	2		2		1		2		1	
Total flow rate (vvm)	0.54		0.23		0.31		0.501		0.625	
Flow rate H_2 (L_n /min)	0	1.527	0	0.65835	0	0.13734	1.625	1.625	0.2224	0.2224
Flow rate $CO_2(L_n/min)$	0.3	0.348	0.12	0.1409	0.029	0.03336	0	0.4048	0.0276	0.0556
Flow rate real gas/ N_2 (L_n /min)	2.424	0.848	1.045	0.36575	0.218	0.0763	0.88	0.4752	0.25	0.222
Real gas content (Vol%)	89.0	-	89.7	-	88.3	-	35.1	-	50.0	-
Reactor volume (L)		5		5		0.8	5		().8
Reactor pressure (barg)		0		0		0		1.5	0	
MER _{Real} /MER _{Ref}	1.07	± 0.08	1.12	± 0.14	1.11	±0.14	0.98	± 0.05	1.07	± 0.12

Further reading $-H_2$

REVIEW

Open Access

A comprehensive and quantitative review of dark fermentative biohydrogen production

Simon Rittmann and Christoph Herwig*

Microbial Cell Factories, 2012

Biohydrogen production characteristics of Desulfurococcus amylolyticus DSM 16532

Analysis of H₂ to CO₂ yield and physiological key parameters of Enterobacter aerogenes and Caldicellulosiruptor saccharolyticus

International Journal of Hydrogen Energy, 2013

Ester Martinez-Porqueras¹, Simon Rittmann¹, Christoph Herwig*

Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorferstraße 1a, 1060 Vienna, Austria

International Journal of Hydrogen Energy, 2018

Barbara Reischl, İpek Ergal, Simon K.-M. R. Rittmann

Metabolic reconstruction and experimental verification of glucose utilization in Desulfurococcus amylolyticus DSM 16532

Barbara Reischl¹ · İpek Ergal¹ · Simon K.-M. R. Rittmann¹

Research review paper

One-carbon substrate-based biohydrogen production: Microbes, mechanism, and productivity

Simon K.-M.R. Rittmann^{a,1}, Hyun Sook Lee^{b,c,1}, Jae Kyu Lim^b, Tae Wan Kim^{b,c}, Jung-Hyun Lee^{b,c}, Sung Gyun Kang^{b,c,*}

^a Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, University of Vienna, Althanstraße 14, 1090 Wien, Austria ^b Korea Institute of Ocean Science and Technology, Ansan, South Korea

^c Department of Marine Biotechnology, University of Science and Technology, Daejeon, South Korea

Biotechnology Advances, 2015

Research review paper

The physiology and biotechnology of dark fermentative biohydrogen production

İpek Ergal^a, Werner Fuchs^b, Benedikt Hasibar^b, Barbara Thallinger^c, Günther Bochmann^b, Simon K.-M.R. Rittmann ^a ^A ^{III}

Biotechnology Advances, 2018

Further reading – CH₄

Quantitative analysis of media dilution rate effects on Methanothermobacter marburgensis grown in continuous culture on H₂ and CO₂

Biomass & Bioenergy, 2012

S. Rittmann, A. Seifert, C. Herwig*

Short Communication

Method for assessing the impact of emission gasses on physiology and productivity in biological methanogenesis

A.H. Seifert¹, S. Rittmann¹, S. Bernacchi, C. Herwig*

Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorferstraße 1a, 1060 Vienna, Austria

Bioresource Technology, 2013

Analysis of process related factors to increase volumetric productivity and quality of biomethane with *Methanothermobacter marburgensis*

A.H. Seifert, S. Rittmann, C. Herwig*

Vienna University of Technology, Institute of Chemical Engineering, Gumpendorferstraße 1a/166-4, 1060 Vienna, Austria

Applied Energy, 2014

Research article

Experimental methods for screening parameters influencing the growth to product yield $(Y_{(x/CH4)})$ of a biological methane production

(BMP) process performed with Methanothermobacter marburgensis

Sébastien Bernacchi¹, Simon Rittmann^{1,2}, Arne H. Seifert^{1,3}, Alexander Krajete³, Christoph Herwig^{1,*} AIMS Bioengineering, 2014

REVIEW ARTICLE

Essential prerequisites for successful bioprocess development of biological CH_4 production from CO_2 and H_2

Simon Rittmann*†, Arne Seifert*, and Christoph Herwig

Critical Reviews in Biotechnology, 2015

A Critical Assessment of Microbiological Biogas to Biomethane Upgrading Systems

Advances in Biochemical Engineering/Biotechnology, 2015

Simon K.-M.R. Rittmann

Review

Assessing the Ecophysiology of Methanogens in the Context of Recent Astrobiological and Planetological Studies Life, 2015

Ruth-Sophie Taubner $^{1,2,\ast},$ Christa Schleper 3, Maria G. Firneis 1,2 and Simon K.-M. R. Rittmann 3,*

Method for Indirect Quantification of CH₄ Production via H₂O Production Using Hydrogenotrophic Methanogens Frontiers in Microbiology, 2016

Ruth-Sophie Taubner^{1,2,2} and Simon K.-M. R. Rittmann^{3*}

The physiology of trace elements in biological methane production

CrossMark

Annalisa Abdel Azim ^{a,b}, Christian Pruckner ^a, Philipp Kolar ^a, Ruth-Sophie Taubner ^{a,c}, Debora Fino ^b, Guido Saracco ^{b,d}, Filipa L. Sousa ^a, Simon K.-M.R. Rittmann ^{a,*}

Bioresource Technology, 2017

Further reading – CH₄

Biological methane production under putative Enceladus-like conditions

Ruth-Sophie Taubner^{1,2}, Patricia Pappenreiter³, Jennifer Zwicker⁴, Daniel Smrzka⁴, Christian Pruckner¹, Philipp Kolar¹, Sébastien Bernacchi⁵, Arne H. Seifert⁵, Alexander Krajete⁵, Wolfgang Bach⁶, Jörn Peckmann ⁽⁶⁾ ^{4,7}, Christian Paulik ⁽⁶⁾ ³, Maria G. Firneis², Christa Schleper¹ & Simon K.-M.R. Rittmann ⁽⁶⁾

Nature Communications, 2018

Intact polar lipid and core lipid inventory of the hydrothermal vent methanogens *Methanocaldococcus villosus* and *Methanothermococcus okinawensis*

Lydia M.F. Baumann ^{a,1}, Ruth-Sophie Taubner ^{b,1}, Thorsten Bauersachs ^c, Michael Steiner ^b, Christa Schleper ^b, Jörn Peckmann ^a, Simon K.-M.R. Rittmann ^b, Daniel Birgel ^{a,*}

Organic Geochemistry, 2018

Evidence for archaeal methanogenesis within veins at the onshore serpentinite-hosted Chimaera seeps, Turkey

J. Zwicker^a, D. Birgel^b, W. Bach^c, S. Richoz^{d,e}, D. Smrzka^a, B. Grasemann^a, S. Gier^a, C. Schleper^f, S.K.-M.R. Rittmann^f, E. Koşun^g, J. Peckmann^{a,b,*}

Chemical Geology, 2018

Kinetics, multivariate statistical modelling, and physiology of CO_2 -based biological methane production

Simon K.-M.R. Rittmann^{a,*}, Arne H. Seifert^b, Sébastien Bernacchi^b

Applied Energy, 2018

Physiology and methane productivity of Methanobacterium thermaggregans

Lisa-Maria Mauerhofer¹ • Barbara Reischl^{1,2} • Tilman Schmider¹ • Benjamin Schupp¹ • Kinga Nagy^{1,3} • Patricia Pappenreiter⁴ • Sara Zwirtmayr⁴ • Bernhard Schuster³ • Sébastien Bernacchi² • Arne H. Seifert² • Christian Paulik⁴ • Simon K.-M. R. Rittmann¹

Applied Microbiology and Biotechnology, 2018

RESEARCH

CrossMark

The physiological effect of heavy metals and volatile fatty acids on *Methanococcus maripaludis* S2

Annalisa Abdel Azim^{1,2,3,4}, Simon K.-M. R. Rittmann^{2*}, Debora Fino³ and Günther Bochmann¹

Biotechnology for Biofuels, 2018

Methods for quantification of growth and productivity in anaerobic microbiology and biotechnology

Lisa-Maria Mauerhofer¹ • Patricia Pappenreiter² • Christian Paulik² • Arne H. Seifert³ • Sébastien Bernacchi³ • Simon K.-M. R. Rittmann¹

Folia Microbiologica, 2018