

Natural and anthropogenic processes generate carbon monoxide (CO). They are responsible for a CO emission of 2500–2600 teragram (Tg) per year.

Most CO is emitted by natural processes including atmospheric CH₄ oxidation, natural hydrocarbon oxidation, volcanic activity, production by plants and photochemical degradation of organic matter in water, soil, and marine sediments or from the enzymatic degradation of heme.

Anthropogenic processes such as **incomplete combustion** of fossil fuels and various **industrial processes** are responsible for an annual release of 1200 Tg of CO to the atmosphere.

Chemical and biological processes are responsible for CO removal. The major part of CO in the atmosphere becomes oxidized to CO_2 by rapid reaction with hydroxyl radicals in the troposphere (2000–2800 Tg/yr), reducing the half-life of CO in the troposphere to a few months.

Biological processes are relevant to remove CO and keep it at low trace gas concentrations. Microbes consume CO by using it as a source of carbon and energy.

Soil and marine microbes reduce the global budget of CO by 20% per year, to which soil microbes contribute with 200–600 Tg of CO removal per year.

CO-oxidizing bacteria have a natural enrichment in the top layer of burning charcoal piles from where several of these soil microbes have been isolated. CO is also consumed by pathogenic Mycobacteria, like the tubercle bacillus *Mycobacterium tuberculosis*, which can grow on CO as sole source of carbon and energy.

Carboxydotrophic microorganisms

Reaction equations and their standard Gibbs free energy (G0) for several modes of carboxydotrophic growth

Metabolism		Reaction	∆G ⁰ (kJ)
Fermentative	Hydrogenogenic Methanogenic Acetogenic Solventogenic (ethanol)		
	Hydrogenogenic	$CO + H_2O \longrightarrow CO_2 + H_2$	-20
	Methanogenic	$4 \text{ CO} + 2 \text{ H}_2\text{O} \longrightarrow \text{CH}_4 + 3 \text{ CO}_2$	-210
	Acetogenic	$4 \text{ CO} + 2 \text{ H}_2\text{O} \longrightarrow \text{CH}_3\text{COO}^- + \text{H}^+ + 2 \text{ CO}_2$	-174
	Solventogenic (ethanol)	$6 \text{ CO} + 3 \text{ H}_2\text{O} \longrightarrow \text{C}_2\text{H}_5\text{OH} + 4 \text{ CO}_2$	-224
Respiratory			
	Oxygen	$2 \text{ CO} + \text{O}_2 \longrightarrow 2 \text{ CO}_2$	514
	Sulfate	$4 \text{ CO} + \text{SO}_4^{2-} + \text{H}^+ \longrightarrow 4 \text{ CO}_2 + \text{HS}^-$	-231

Isolated microorganisms capable of conserving energy from the water-gas shift reaction

Species	Origin	Temperature optimum (°C)	Carboxydotrophic generation time (h)	Reference
Mesophilic bacteria				
Rhodospirillum rubrum	Various environments	30	5 (dark, acetate)	Kerby et al., 1995
Rubrivivax gelatinosa	Lake sediment	34	6.7 (dark, trypticase) 10 (light, autotrophically) 1.5 (light, malate)	Uffen, 1976; Maness et al., 2005
Rhodopseudomonas palustris	Anaerobic wastewater sludge digester	30	2 (light, autotrophically)	Jung et al., 1999

Isolated microorganisms capable of conserving energy from the water-gas shift reaction

Species	Origin	Temperature optimum (°C)	Carboxydotrophic generation time (h)	Reference
Thermophilic bacteria				
Caldanaerobacter subterraneus ssp. pacificus	Submarine hot vent, Okinawa Trough	70	7.1	Sokolova et al., 2001; Fardeau et al., 2004
Carboxydocella sporoproducens	Hot spring, Karymskoe Lake	60	1	Slepova et al., 2006
Carboxydocella thermoautotrophica	Terrestrial hot vent, Karnchatka Peninsula	58	1.1	Sokolova et al., 2002
Carboxydothermus hydrogenoformans	Freshwater hydrothermal spring, Kunashir Island	70	2	Svetlichny et al., 1991
Carboxydothermus islandicus	Hot spring, Hveragerdi	65	2	Novikov et al., 2011
Carboxydothermus pertinax	Volcanic acidic hot spring, Kyushu Island	65	1.5	Yoneda et al., 2012
Carboxydothermus siderophilus	Hot spring, Kamchatka Peninsula	65	9.3	Slepova et al., 2009
Dictyoglomus carboxydivorans	Hot spring, Karnchatka Peninsula	75	60	Kochetkova et al., 2011
Moorella stamsii	Digester sludge	65	N.D.	Alves et al., 2013
Thermincola carboxydiphila	Hot spring, Lake Baikal	55	1.3	Sokolova et al., 2005
Thermincola ferriacetica	Hydrothermal spring, Kunashir Island	60	N.D.	Zavarzina et al., 2007
Thermincola potens	Thermophilic microbial fuel cell	55	N.D.	Byrne-Bailey et al., 2010
Thermolithobacter carboxydivorans	Mud and water, Calcite Spring	73	1.3	Sokolova et al., 2007
Thermosinus carboxydivorans	Hot spring, Norris Basin	60	1.15	Sokolova et al., 2004a
Thermoanaerobacter thermohydrosulfuricus ssp. carboxydovorans	Geothermal spring, Turkey	70	N.D.	Balk et al., 2009
Desulfotomaculum carboxydivorans	Paper mill wastewater sludge	55	N.D.	Parshina et al., 2005b
Thermophilic archaea				
Thermococcus onnurineus	Deep-sea hydrothermal vent	80	5	Bae et al., 2006, 2012
Thermocuccus AM4	Hydrothermal vent	82	5	Sokolova et al., 2004b
Thermofilum carboxyditrophus	Kamchatka hot springs	90	N.D.	Kochetkova et al., 2011

Carboxydotrophic microorganisms

Figure 1 The Wood-Ljungdahl pathway. ACS, acetyl-CoA synthase; CODH, Ni,Fe-containing carbon monoxide dehydrogenase; CoFeSP, corrinoid iron-sulfur protein; MeTr, methyl-tetrahydrofolate:corrinoid iron-sulfur protein methyltransferase. The figure is modified from Ragsdale and Pierce [26].

Carboxydotrophic microorganisms

Figure 11 Subunit composition of Ni,Fe-containing CODHs. Connected circles indicate multiprotein complexes consisting of the corresponding subunits. Homology is indicated by arrows. The figure was adapted from Lindahl [74]. Details are given in the text.

Kroneck et al., 2014

Cu,Mo-containing CO dehydrogenases

Figure 3 The structure of Cu,Mo-CODHs. (a) Overall structure of the dimer of trimers, (LMS)₂. The L subunit of the right monomer is colored in cyan, the M subunit in orange, and the S subunit in green. (b) Cofactors of one LMS monomer with shortest distance between the redox active sites of the cofactors. (c) Active site architecture including residues in the second coordination sphere of the metals.

Figure 5 Homodimeric structure of monofunctional CODH $II_{Ch^{r}}$ (a) Cartoon-representation of dimeric Ni,Fe-CODH. The two subunits of CODH are shown with different colors, where one subunit is highlighted in blue, green, and red for the N-terminal, middle and C-terminal domain, respectively, and the other in grey. The metal clusters encountered are depicted as spheres (Fe is colored in orange, S in yellow, Ni in cyan, and O in red). (b) Cluster arrangement in CODH. Cluster D is connecting the two subunits covalently and is in electron transfer distance to clusters B and B'. Cluster C/C' is situated on the end of the electron transfer chain, in close distance to cluster B of the opposing subunit. The distances between Fe atoms of individual clusters are given in Ångstrom.

Monofunctional Ni, Fe-containing CO dehydrogenases

niversität

Figure 8 Channels involved in substrate/product transfer in monofunctional CODH II_{Ch}. Hydrophobic channels around cluster C have been calculated with the program Hollow [159] and are shown as blue surface. Metal clusters are depicted as spheres and colored in cyan for Ni, orange for Fe, and yellow for S. Water molecules are represented by red spheres. Charged and hydrophilic residues form a water channel network. The electron transfer network from clusters $C \leftrightarrow B' \leftrightarrow D$ is indicated by an arrow. The proton relay shuttle is compromised of histidine residues H₉₆, H₉₉, and H₁₀₂, where the last residue has direct contact to the protein surface. The surface is contoured in grey.

Kroneck et al., 2014

CODH dimer

H₂O

Cys

Ni

S

Cys

Cys

ACS

Cys

Fe

A

niversität

Figure 12 The structure of bacterial CODH/ACS. (a) Cartoon representation of the overall structure of the $\alpha_2\beta_2$ CODH/ACS complex from *Moorella thermoacetica* (PDB 10AO) [111]. Metal clusters are presented as balls and sticks and are labeled with A to D. CODH subunits are colored in blue and red and ACS subunits are colored in yellow for the Ni-Ni-containing cluster A (A_o) and green for the Zn,Ni-containing cluster A (A_c). (b) Schematic representation of the gas channel connecting the CODH/ACS active sites. (c) Schematic representation of the Ni-Ni containing cluster A, based on PDB 1RU3 [81]. Details are given in the text.

Rittmann et al., 2015

niversität

(A) C. hydrogenoformans Z-2901 (B) T. onnurineus NA1

Fig. 4. Structural model of the CO-oxidizing, H2-forming enzyme complex in Carboxydothermus hydrogenoformans (Hedderich, 2004) (A) and Thermococcus onnurineus NA1 (B) and the proposed mechanism of coupling of CO oxidation with ATP synthesis.

Carboxydotrophic microorganisms

FIGURE 2 | Carbon monoxide metabolism of Moorella thermoacetica.

Stoichiometric conversion of CO to acetate by *M. thermoacetica* is disaplayed. Reactions marked blue indicate CO oxidizing activity by CODH, bifurcating reactions are marked purple. The EcH is assumed to transport one proton per hydrogen formed whereas the ATPase is assumed to generate one ATP per four protons translocated. EcH, energy converting hydrogenase; ATPase, ATP synthase; Fd, ferredoxin; THF, tetrahydrofolate.

FIGURE 4 | Carbon monoxide metabolism of *Clostridium ljungdahlii*. Stoichiometric conversion of CO to acetate for *C. ljungdahlii* is displayed. The pathways of ethanol formation are indicated by the dotted line in red, and are not taken into account for the energy yield displayed. Reactions marked blue indicate CO oxidizing activity by CODH, bifurcating reactions are marked purple. The RnF complex is assumed to transport two protons per Fd oxidized whereas the ATPase is assumed to generate one ATP per four protons translocated. Rnf, RnF complex; ATPase, ATP synthase; Fd, ferredoxin; THF, tetrahydrofolate.

Diender et al., 2015

wien wien

А

Carboxydotrophic microorganisms

FIGURE 3 | Carbon monoxide metabolism of Acetobacterium woodii. Acetogenic CO metabolism of A. woodii is displayed. (A) The proposed theoretical pathway and energetic yield of CO conversion to acetate. Pathways prone to CO inhibition are shown in red. (B) Proposed metabolism and energetic yield of acetogenic metabolism driven by CO co-fermented with formate. Reactions marked blue indicate CO oxidizing activity by CODH. The RnF complex is assumed to transport two sodium ions per Fd oxidized whereas the ATPase is assumed to generate one ATP per four sodium ion translocated. Rnf, RnF complex; ATPase, ATP synthase; Fd, ferredoxin; THF, tetrahydrofolate.

Methanogenesis

Dr. Simon K.-M. R. Rittmann

Methanogens

>are obligate anaerobic prokaryotes from the domain Archaea, exclusively belong to the phylum Euryarchaeota (and possibly Bathyarchaeota, Lokiarchaeota); produce methane as end product of their energy metabolism; use carbon substrates such as C_1 -, C_2 - and methylated compounds

M. marburgensis

Methanothermobacter marburgensis DSM 2133, phase contrast micrograph (magnification x 1000)

M. barkeri

Nomura et al., 2007, Advanced Powder Technology

M. solegelidi

Wagner et al., 2007, IJSEM

The cell wall is composed of pseudomurein. Cell wall of Sarcina is composed of a S-layer lattice, but under special environmental conditions Sarcina also form a methanochondoitin layer encapsulating an association of cells enabling intercellular e- transfer.

Six classes of methanogens

Fig. 3. Phylogeny of novel halo(alkali)philic methanogens from hypersaline lakes based on the 16S rRNA gene (a) and full amino acid sequences of the α -subunit of methyl coenzyme M reductase (McrA or MrtA) (b). The trees were built with the PhyML program and the approximate likelihood-ratio test for branches [33]. Bootstrap values above 70 % are shown at the nodes. Bar, 0.10 changes per position.

Sorokin et al., 2018

- 1. Methanobacterales
- 2. Methanocellales
- 3. Methanococcales
- 4. Methanomassiliicoccales
- 5. Methanomicrobiales
- 6. Methanonatronarchaeles
- 7. Methanopyrales
- 8. Methanosarcinales

wien Methanogenesis – Global carbon cycle

Methanogenesis – Global carbon cycle

Sources of GHG emissions

Sources of CH₄ emissions

Sources	Methane emission (Tg of CH_4 per year)	Percentage (%) ^a			
Natural sources			Hydrates		
Wetlands	92-237	15-40	Oceans 2%		
Termites	20	3 T	ermites <u>3%</u>		
Ocean	10-15	2-3	3% Plants		Ruminants
Methane hydrates	5-10	1 - 2	6%		17% Rice culture
Subtotal	127 - 282	21 - 47		Anthropogenic	10%
Anthropogenic sources				sources	Fossil fuel
Ruminants	80-115	13 - 19	Wetlands	03%	18%
Energy generation ^{b}	75-110	13 - 18	23%		Landfills
Rice agriculture	25-100	7-17			7%
Landfills	35-73	6 - 12			Waste treatment Biomass burning
Biomass burning	23-55	4-9			4%
Waste treatment	14 - 25	2-4			Nazaries <i>et al.</i> , 2013
Subtotal	267-478	45-80			
Total sources	500-600				

Source: Modified from Lowe² and Prather and Ehhalt.¹⁴⁰

^{*a*}Estimates of the relative contribution of methane emission from a source to the total global emissions of 600 Tg of CH_4 per year.

^bMethane deposits released by coal mining, petroleum drilling, and petrochemical production.

Liu and Whitman, 2008

Ruminants, agriculture and fossil fuel exploitation are large anthropogenic sources of methane emissions

Ruminants and methane

Rumen and reticulum are hydrolysis and fermentation chambers, anaerobic, 100-150 L, 200-250 liters CH₄ d⁻¹ (~ 3.4 mmol L⁻¹ h⁻¹).

Figure 1 | Effect of RSO on methanogens *in vivo.* Relative abundances of transcripts from RCC (upper row) and from *Methanobacteriales* (bottom row) from individual cows on control and rapeseed oil (RSO)-supplemented diets, respectively. Relative fraction of archaeal SSU ribo-tags affiliated to RCC and *Methanobacteriales* is shown as % of total SSU reads, and fraction of *mcrA*, *mcrB* and *mcrG* transcripts detected for RCC and other methanogens (that is, *Methanobrevibacter ruminantium* and *Methanosphaera stadtmanae*), shown as ‰ of all mRNA transcripts with a significant homologue in Genbank nr (e-value < 1e-5) for each sample. *P*-values ≤ 0.05 are considered representing significant effects of fat supplementation (*marked) using paired *t*-test. The *mcrG* of RCC was trend-wise affected by fat supplementation (*P*<0.10). n.s., not significant; suppl, supplement.

TMA, Methanomassiliicoccales and health

Origin and fate of TMA in the human gut, and the **Archaebiotics** concept. Gut microbiota synthesis of TMA is realized from TMAO , choline. PC and Lcarnitine. The TMA is then absorbed and goes to the liver, routes (A) or (B). In the case of route (A), a partial or total defect in a flavincontaining monooxygenase 3 (FMO 3)-oxidation into TMAO leads to increased level and diffusion of TMA in

and diffusion of TMA in breath, urine and sweat. When FMO 3 (liver oxidation) is functional (B), the increase of TMAO in blood is associated with atherosclerosis.2.7.11

Therefore, converting TMA directly in the gut Archaebiotics using belonging to the seventh methanogenic order. naturally-occurring in the gut, route (C) should be envisaged. Interestingly, these archaea are only perform able to methanogenesis using methyl compounds (see Fig. 2), because the two pathways other are absent (CO2 reduction with H2 and aceticlastic pathway): this would increase the efficiency of TMA conversion.

Brugère et al., 2014

Methane from coal

Methane from coal

Coal seams produce natural gas (methane) through the activity of microbial food chains or the methanogen *Methermicoccus* discovered by Mayumi *et al.*

Methane from coal

Methoxydotrophic methanogenesis from various MACs. (A) Methanogenesis from seven types of MACs by 10 type strains and one isolate belonging to the order Methanosarcinales. Each MAC was supplied with methoxy groups to a final concentration of 30 mM. Methane produced was measured after incubation for 9 months. Data are means of three individual incubations; error bars represent SD of these triplicates. (B) Substrate ranges of Methermicoccus shengliensis strains AmaM and ZC-1 for 40 types of MACs; an asterisk designates MACs analyzed for the media with coal samples. For each substrate, the average amount of methane produced (n = 3) is expressed by one of four ranges. Detailed methane production data are shown in table S1.

.

. .

Methane from coal

A 14- -12- -01 -0 -0 -14- -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0		-±	- <u>+</u>	_+	-+	Т +	(†) +	T + Inoculation
В	Lignite			Subbituminous coal		Bituminous coal		o substrate
Substrates (µmol/g-coal)	L-A	L-B	L-C	S-A	S-B	B-A	B-B	
3-methoxy-benzoate	0.02	0.08	0.12	0.14	0.09	0.07	ND	Ι
4-methoxy-benzoate	0.02	0.16	0.22	0.29	0.07	0.02	ND	Ι
3,4-dimethoxy-benzoate	ND	0.01	0.03	TR	ND	ND	ND	
3,5-dimethoxy-benzoate	ND	TR	ND	TR	ND	ND	ND	
Methanol	0.40	2.01	1.60	ND	ND	ND	ND	Fig. 2. Mathemat
Methylamine	0.14	0.13	0.09	0.12	ND	ND	ND	Fig. 2. Methanog
Dimethylamine	ND	0.12	0.10	ND	ND	ND	ND	production in a med
Trimethylamine	ND	ND	ND	ND	ND	ND	ND	or bituminous coal.
Total	0.58	2.51	2.16	0.55	0.16	0.09	ND	shown in fig. S2. A s

Fig. 2. Methanogenesis from coal samples by Methermicoccus shengliensis AmaM. (A) Methane production in a medium with lignite, subbituminous coal, or bituminous coal. Information for each coal sample is shown in fig. S2. A small amount of methane in the media without substrate was detected as a result of carryover from methanol-grown preculture. Data are means of three individual incubations; error bars represent SD of these triplicates. +, inoculated; –, not inoculated. (B) MACs, methanol, and methylamines detected in the media with coal samples before inoculation of *M. shengliensis* AmaM. The GC-MS analyses were performed in duplicate; average concentrations are shown. ND, not detected; TR, detected but below the range of concentration for which the calibration curve could be applied.

Methane from coal

Fig. 3. Methanogenesis from 2-methoxy-benzoate by *Methermicoccus shengliensis* AmaM. All symbols represent means of three individual incubations; error bars represent SD of these triplicates.

Mayumi et al., 2016

Methane from coal

Fig. 4. Stable isotope tracer experiments to elucidate the mode of metabolism in methoxydotrophic methanogenesis. (A) Carbon isotopic relationship between methane produced by *M. shengliensis* AmaM and either methanol or the methoxy group of 2-methoxy-benzoate added to the media. The slopes of the regression lines show the efficiency of carbon incorporation from each substrate into methane. (B) Carbon isotopic relationship between methanol or 2-methoxy-benzoate and carbon dioxide. The slopes of the regression lines show the efficiency of carbon incorporation from each substrate into methane. (B) Carbon methane. The slopes of the regression lines show the efficiency of carbon incorporation from each substrate into methane. (B) Carbon dioxide. The slopes of the regression lines show the efficiency of carbon incorporation from carbon dioxide into methane. Each symbol represents one of three individual incubations.

Mayumi et al., 2016

Methanogenesis – Thawing permafrost

Figure 1 | Seasonal abundance of Candidatus 'M. stordalenmirensis' along a thaw gradient. (a) Schematic of the sampling sites at Stordalen Mire, Sweden; the white area indicates permafrost, hashed area indicates the active layer and blue area indicates water. Boxes denote coring sites and coloured dots represent the sampling site and depth: intact (brown), thawing (green) and thawed (blue), and thick, thin and no borders representing deep, middle and surface, respectively. (b) Relative abundance of dominant methanogens in the bog and fen sites, compared with the total number of archaeal sequences. (c) Relative abundance of '*M. stordalenmirensis*' in microbial communities between 2010 and 2011. Coloured dots represent sampling site and depth: intact (brown), thawing (green) and thick, thin and no borders representing deep, middle and surface, respectively. Arrow indicates the two samples used for metagenomic sequencing. Histograms indicate associated methane flux for each site averaged across the week before cores were taken (2010 and June 2011 represent a 10 year flux average⁷, July-October 2011 measured *in situ*). All error bars represent s.e.

Mondav et al. (2014) Nature Communications

Figure 3 | Global distribution of *Candidatus 'M. stordalenmirensis'-like sequences.* Each dot represents an instance where one or more published *SSU rRNA* gene sequences with >97% identity to '*M. stordalenmirensis*' was observed. Dots are colour coded according to ecosystem type, and the star indicates Stordalen Mire. Purple shading indicates permafrost distribution and classification. This figure was drawn using the R⁵⁸ package 'maps' version 2.2-6 (http://cran.r-project.org/web/packages/maps/) then modified with Gimp (gimp.org) and Inkscape (inkscape.org). Overlayed permafrost distribution was derived from http://svs.gsfc.nasa.gov/goto?3511 (NASA/Goddard Space Flight Center Scientific Visualization Studio, National Snow and Ice Data Center, World Data Center for Glaciology).

wien Methanogenesis – psychrophilic strains

Table 1. Summary of currently known psychrophilic strains and their main temperature and pH features.

Strain	Т	emp. [°C]	pН			Ref.
	min.	opt	max	min.	opt.	max.	
Methanospirillum psychrodurum	4	25	32	6.5	7	8	[92]
Methanosarcina baltica	3	21	28	6.3	7.2	7.5	[32]
Methanosarcina lacustris	1	25	35	4.5	7	8.5	[93]
Methanolobus psychrophilus	0	18	25	6	7-7.2	8	[94]
Methanogenium marinum	5	25	25	5.5	6-6.6	7.7	[95]
Methanogenium frigidum	0	15	17	6.3	7.5–7.9	8	[33]
Methanohalobium evestigatum	50	n.a. ¹	n.a.	n.a.	7.4	n.a.	[96]
Methanogenium cariaci	15	20-25	35	6	6.8–7.2	7.5	[97]
Methanogenium boonei	5	19.4	25.6	6.4	n.a.	7.8	[98]
Methanoculleus marisnigri	15	20-25	48	6	6.2–6.6	7.6	[99]
Methanoculleus chikugoensis	15	25	40	6.7	6.7–7.2	8	[100]
Methanococcoides alaskense	2.3	23.6	28.4	6.3	n.a.	7.5	[101]
Methanococcoides burtonii	1.7	23.4	29.5	6.8	n.a.	8.2	[102]
Methanospirillum stamsii	5	20-30	37	6.0	7.0–7.5	10	[31]
Methanosarcina soligelidi	0	28	54	4.8	7.8	9.9	[34]
Candidatus "Methanoflorens stordalenmirensis"	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	[36]

¹ not available.

Methanogenesis – growth rate

A plot of specific growth rates (μ) of four methanogenic strains

Methanogenesis – 4 pathways

Purwatini et al., 2014

Methanogenesis – 4 pathways

Thermodynamically, two reactions are exergonic and, hence, involved in energy conservation:

1)The methyl transfer from H₄MPT to CoM by methyl-tetrahydromethanopterin:CoM methyltransferase (Mtr)

2) The reduction of the CoM-S-S-CoB heterodisulfide by heterodisulfide reductase (Hdr)

Thauer et al., 2008; Borrel et al., 2013

Methanogenesis – Gibbs free energy

Reaction	$\Delta G^{\circ\prime \ a}(\rm kJ/mol\ CH_4)$	Organisms
I. CO ₂ -type		
$4 \operatorname{H}_2 + \operatorname{CO}_2 \to \operatorname{CH}_4 + 2 \operatorname{H}_2 \operatorname{O}$	-135	Most methanogens
$4 \text{ HCOOH} \rightarrow \text{CH}_4 + 3 \text{ CO}_2 + 2 \text{ H}_2\text{O}$	-130	Many hydrogenotrophic methanogens
$CO_2 + 4$ isopropanol $\rightarrow CH_4 + 4$ acetone $+ 2 H_2O$	-37	Some hydrogenotrophic methanogens
$4 \text{ CO} + 2\text{H}_2\text{O} \rightarrow \text{CH}_4 + 3 \text{ CO}_2$	-196	Methanothermobacter and Methanosarcina
II. Methylated C1 compounds		
$4 \text{ CH}_3\text{OH} \rightarrow 3 \text{ CH}_4 + \text{CO}_2 + 2 \text{ H}_2\text{O}$	-105	<i>Methanosarcina</i> and other methylotrophic methanogens
$CH_3OH + H_2 \rightarrow CH_4 + H_2O$	-113	Methanomicrococcus blatticola and Methanosphaera
$2 (CH_3)_2 - S + 2 H_2O \rightarrow 3 CH_4 + CO_2 + 2 H_2S$	-49	Some methylotrophic methanogens
$4 \operatorname{CH}_3-\operatorname{NH}_2 + 2 \operatorname{H}_2\operatorname{O} \rightarrow 3 \operatorname{CH}_4 + \operatorname{CO}_2 + 4 \operatorname{NH}_3$	-75	Some methylotrophic methanogens
$2 (CH_3)_2 - NH + 2 H_2O \rightarrow 3 CH_4 + CO_2 + 2 NH_3$	-73	Some methylotrophic methanogens
$4 (CH_3)_3 - N + 6 H_2O \rightarrow 9 CH_4 + 3 CO_2 + 4 NH_3$	-74	Some methylotrophic methanogens
$4 \operatorname{CH}_{3}\mathrm{NH}_{3}\mathrm{Cl} + 2 \operatorname{H}_{2}\mathrm{O} \rightarrow 3 \operatorname{CH}_{4} + \operatorname{CO}_{2} + 4 \operatorname{NH}_{4}\mathrm{Cl}$	-74	Some methylotrophic methanogens
III. Acetate		
$CH_3COOH \rightarrow CH_4 + CO_2$	-33	Methanosarcina and Methanosaeta

SOURCE: Modified from Hedderich and Whitman¹ and Zinder.⁴³

^{*a*}The standard changes in free energies were calculated from the free energy of formation of the most abundant ionic species at pH 7. For instance, CO_2 is $HCO_3^- + H^+$ and HCOOH is $HCOO^- + H^+$.

Methanogenic archaea capable of metabolizing CO

Species	Native physiology	Experimental procedure used	Inhibitory levels ^A	Products from CO	Generation time on CO (h)	Reference
Mesophilic						
Methanobrevibacter arboriphilicus	Hydrogenotrophic	Enzyme assay	N.D.	N.D.	N.D.	Hammel et al., 1984
Methanosarcina acetivorans C2A	Aceticlastic	Cultivation/enzyme assay	>150 kPa	Methane, acetate, formate	~20	Rother and Metcalf, 2004; Oelgeschläger and Rother, 2009
Methanosarcina barkeri	Aceticlastic	Cultivation/enzyme assay	>100 kPa	Hydrogen, Methane	~65	O'Brien et al., 1984; Bott et al., 1986
Methanobacterium formicicum	Hydrogenotrophic	Cultivation	N.D.	N.D.	No growth	Kluyver and Schnellen, 1947
Methanosaeta concillii	Aceticlastic	Enzyme assay	N.D.	N.D.	No growth	Jetten et al., 1989
Thermophilic						
Methanothermobacter thermoautotrophicus	Hydrogenotrophic	Cultivation/enzyme assay	50 kPa	Methane, hydrogen	~200	Daniels et al., 1977; Wasserfallen et al., 2000
Methanosarcina thermophila	Aceticlastic	Cultivation	>2 kPa	Hydrogen, Methane	N.D.	Zinder and Anguish, 1992
Methanothrix sp. Strain CALS-1	Aceticlastic	Cultivation	<2 kPa	Methane	No growth	Zinder and Anguish, 1992
Archaeoglobus fulgidus ^B	Sulfate reducer	Cultivation	>136 kPa	Acetate, formate	~10	Henstra et al., 2007a

Not determined parameters are marked N.D.

^AForward arrows (>) indicate inhibitory levels have not been reached; numbers displayed are the maximal level tested. Reverse arrows (<) indicate the tested level was the highest tested and the inhibitory concentration lies below this level.

^BArchaeoglobus fulgidus is not capable of generating methane, but is displayed here due to its capacity to generate acetate and formate from CO, like M. acetivorans.

Carboxydotrophic methanogens

FIGURE 5 | Carbon monoxide metabolism of hydrogenotrophic methanogens. CO driven methanogenesis with hydrogen as an intermediate is displayed. xH⁺ or xNa⁺ indicate translocation of an undefined number of protons or sodium ions, respectively. Reactions are not displayed stoichiometrically. EcH, energy converting hydrogenase; Mtr, methyl-H₄MPT:HS-CoM methyltransferase; ATPase, ATP synthase; Fd, ferredoxin; MF, methanofuran; H₄MPT, tetrahydromethanopterin; HS-CoM, coenzyme M; HS-CoB, coenzyme B.

Carboxydotrophic methanogens

Fig. 6 The *Methanosarcina barkeri* $\alpha_2 \varepsilon_2$ CdhAE component.**a** Side view shown as *ribbons* with the α -subunits colored in *cyan* and *green* and the ε -subunits in *tan* and *orange*. Metal cluster atoms are shown

as *spheres*, with iron atoms in *purple*, nickel atoms in *blue*, and the remaining atoms in *CPK*. **b** Side view of the metal clusters. By permission (Gong et al. 2008)

Fig. 7 Proposed coupling of the CO and H₂O species in the C cluster of the Methanosarcina barkeri CdhAE component

Carboxydotrophic methanogens

Methanogens with & without cytochromes

Reaction number	Equation	$\Delta G^{o'}$ (kJ per mole)
1	$4 H_2 + CO_2 \rightarrow CH_4 + 2 H_2O$	-131
2	$\text{CO}_2 + \text{MFR} + \text{Fd}_{\text{red}}^{2-} + 2 \text{ H}^+ \Rightarrow \text{CHO-MFR} + \text{Fd}_{\text{ox}} + \text{H}_2\text{O}$	0
3	$CHO-MFR + H_4MPT \Rightarrow CHO-H_4MPT + MFR$	-5
4	$CHO-H_4MPT + H^+ \rightleftharpoons CH \equiv H_4MPT^+ + H_2O$	-5
5	$CH = H_4MPT^+ + F_{420}H_2 \Rightarrow CH_2 = H_4MPT + F_{420} + H^+$	+6
6	$CH_2 = H_4MPT + F_{420}H_2 \Rightarrow CH_3 - H_4MPT + F_{420}$	-6
7	$CH_3-H_4MPT + HS-CoM \Rightarrow CH_3-S-CoM + H_4MPT$	-30 (coupled with 2 Na ⁺ translocations)
8	CH_3 -S-CoM + HS-CoB \Rightarrow CH_4 + CoM-S-S-CoB	-30
9	$H_2 + Fd_{ox} \Rightarrow Fd_{red}^{2-} + 2 H^+$	+16 (coupled to 2 H⁺, or possibly 2 Na⁺, translocations)
10	$H_2 + F_{420} \rightleftharpoons F_{420} H_2 (x 2)$	-11
11	$H_2 + MP \Rightarrow MPH_2$	–50 (coupled with 2 H $^{+}$ translocations)
12	$MPH_2 + CoM-S-S-CoB \Rightarrow MP + HS-CoM + HS-CoB$	-5 (coupled with 2 H $^{+}$ translocations)
13	$ADP + P_i \approx ATP + H_2O$	–32 (coupled to 4 H⁺, or possibly 4 Na⁺, translocations)
14	2 H ⁺ (outside) + 1 Na ⁺ (inside) \Rightarrow 2 H ⁺ (inside) + 1 Na ⁺ (outside)	0
15	$2 H_2 + CoM-S-S-CoB + Fd_{ox} \approx HS-CoM + HS-CoB + Fd_{red}^{2-} + 2 H^+$	-39
16	$CH_{3}OH + HS-CoM \rightleftharpoons CH_{3}-S-CoM + H_{2}O$	-17.5

 F_{420} , coenzyme F_{420} ; Fd, ferredoxin; H_4 MPT, tetrahydrosarcinapterin; HS-CoB, coenzyme B; HS-CoM, coenzyme M; MFR, methanofuran; MP, methanophenazine. Thauer *et al.*, 2008

Acetoclastic methanogens

Fig. 5 Pathway for the conversion of acetate to methane by *Methanosarcina acetivorans. Ack* Acetate kinase, *Pta* phosphotransacetylase, *CoA-SH* coenzyme A, *THMPT* tetrahydromethanopterin, *Fd_r* reduced ferredoxin, *Fd_o* oxidized ferredoxin, *Cdh* CO dehydrogenase/ acetyl-CoA synthase, *CoM-SH* coenzyme M, *Mtr* methyl-THMPT: CoM-SH methyltransferase, *CoB-SH* coenzyme B, *Cam* carbonic anhydrase, *Ma-Rnf M. acetivorans* Rnf, *MP* methanophenazine, *Hdr-DE* heterodisulfide reductase, *Mrp* multiple resistance/pH regulation Na⁺/H⁺ antiporter, *Atp* H⁺-transporting ATP synthase. Carbon transfer reactions are catalyzed by the enzymes shown in *blue*. Electron transfer reactions are catalyzed by enzymes shown in *green*. By permission (Li et al. 2006) Ferry, 2010

CH₃-S-CoM + HS-CoB

niversität

CH₃-S-CoM + HS-CoB

Fig. 4. Process of ion translocation during acetate utilization. (A) *Ms. mazei*, (B) *Ms. acetivorans.* The scheme gives an overview of ion translocation events and does not indicate the mechanism of ion translocation. Vho, Mph-reducing hydrogenase; Ech, Ech hydrogenase; Rnf, Rnf complex; Hdr, heterodisulfide reductase; Mtr, methyl-H₄SPT-coenzyme M methyltransferase; A₁A₀, ATP synthase; CM, cytoplasmic membrane. Welte & Deppenmeier, 2014

Fig. 2. Pathways of methanogenesis. Carbon fluxes through the three pathways of methanogenesis in *Methanosarcina* and *Methanosarcina* and *Methanosaeta* strains. Red arrows indicates aceticlastic methanogenesis with the different acetate activation mechanisms in *Methanosarcina* and *Methanosaeta*. Blue arrows indicate reactions of methylotrophic methanogenesis. Green arrows indicate the pathway of hydrogenotrophic methanogenesis by a subgroup of *Methanosarcina* strains, e.g. *Ms. mazei*. Welte & Deppenmeier, 2014

niversität

Fig. 3. All ion-translocating enzymes of *Ms. mazei* in action. (A) methylotrophic methanogenesis, (B) hydrogenotrophic methanogenesis. The scheme gives an overview of ion translocation events and does not indicate the mechanism of ion translocation. Vho, Mph-reducing hydrogenase; Ech, Ech hydrogenase; Hdr, heterodisulfide reductase. Fpo, F₄₂₀H₂ dehydrogenase; FpoF, input module of the Fpo complex; Mtr, methyl-H₄SPT-coenzyme M methyltransferase; A₁A₀, ATP synthase; CM, cytoplasmic membrane. Please note that in *Ms. acetivorans* Vho and Ech are replaced by the Na⁺-translocating Rnf complex. Welte & Deppenmeier, 2014

Fig. 5. Structure of hydrogenases. Schematic overview of subunits and prosthetic groups found in the Mph-reducing hydrogenase Vho (A) and Ech hydrogenase (B). Red colour indicates the initial oxidizing subunit, blue colour indicates membrane integral subunits.

Fig. 6. Rnf complex. Tentative model of the Rnf complex of *Ms. acetivorans*. The additional small hydrophobic subunit (MA0665) is indicated as part of the membrane module. The multi-heme cytochrome *c* is termed MA0658. The exact topology of the subunits, the electron flow and the sodium ion translocation mechanism have not been determined in the methanogenic enzyme. Red colour indicates the initial oxidizing subunit, blue colour indicates membrane integral subunits.

universität

Fig. 7. Tentative model of the F420H2 dehydrogenase. The figure indicates the subunit arrangement, prosthetic groups and the electron flow. Predicted discontinuous TM helices in FpoHLMN are shown as light blue boxes. Putative helix HL is indicated by a dark blue box. Question marks indicate that the exact site of H⁺ translocation is not known. The predicted discontinuous TM helix of FpoL is marked by X because it might be inactive. The function of the hydrophilic subunit FpoO is not known. Therefore, its properties are not discussed. Red colour indicates the initial oxidizing subunit, blue colour indicates membrane integral subunits.

universität

CH₃-S-CoM + HS-CoB

B)

MM_2486	122 KLAREVDIQEGDER	136
MA1500	122 KLAREVDIKEGDEK	136
Mbar_A3407	122 KLAREVDLEEGDEK	136
Mthe_1054	122 RIAVKKFSDKEVAELEAEAKRQAEEKKKAAAAAAKEKAAKAKGKENKAKTKPSEGG	EA 180
Mcon_3064	126 FLATKRFSAKEVADLEAEAKRIAAEKAAAKKAAAKDAAAAGDKKPAKEGANAEKKKAVAKPAEGO	AS 193
Mhar 1414	122 DIAVGLYSDQELAELAEEARKAAEEKKRKAAEAAKAKKEKAAKAADEGDKGSGEKAAKKKKAE	185

Fig. 10. Process of energy conservation in *Methanosaeta* species. (A) Model of electron transport and ion translocation during aceticlastic growth of *Mt. thermophila*. Fpo, F₄₂₀H₂ dehydrogenase without input module FpoF; Hdr, heterodisulfide reductase; Mtr, methyl-H₄SPT-coenzyme M methyltransferase; A₁A₀, ATP synthase. (B) Alignment of FpoI homologues of different methanogenic archaea. FpoI of *Methanosaeta* sp. contain a C-terminal extension with an accumulation of basic lysine residues. MM_2486, *Ms. mazei* NP_634510.1 (the corresponding gene in the database contains a wrong start codon. In the alignment, the correct start amino acid further downstream was chosen); MA1500, *Ms. acetivorans* NP_616434.1; Mbar_A3407, *Ms. barkeri* YP_306860.1; Mthe_1054, *Mt. thermophila* YP_843478.1; Mcon_3064, *Mt. concilii* YP_004385202.1; Mhar_1414, *Mt. harundinacea* YP_005920401.1.

niversität

Fig. 9. Simplified scheme of the HdrDE-type heterodisulfide reductase. Direct involvement of electron transport was demonstrated for the low-spin heme (heme b_{ls}) but not for the high-spin heme (heme b_{hs}). The high potential FeS cluster ([4Fe4S]_H) was also demonstrated to be involved in electron transport whereas the other, low potential FeS cluster ([4Fe4S]_L) is involved in the stabilization of the thigh intermediate that is formed during catalysis. For more details, see text. Blue colour indicates the membrane integral cytochrome *b* subunit.

niversität

H₂ uptake in methanogenic archaea

The metal sites of the three types of hydrogenases involved in interspecies hydrogen transfer (see **Figure 2**) have unusual structural features in common, such as intrinsic CO ligands. Despite this fact, [NiFe]-hydrogenases (5–8), [FeFe]-hydrogenases (9–11), and [Fe]-hydrogenase (12–14) are not phylogenetically related at the level of their primary structure or at the level of the enzymes involved in their active-site biosynthesis (12). Abbreviation: GMP, guanylyl rest.

H₂ uptake in methanogenic archaea

Schematic representation of the structure and function of the energyconverting [NiFe]-hydrogenases EchA-F, EhaA-T, EhbA-Q, and MbhA-N found in methanogenic archaea. The energy-converting hydrogenase EchA-F is composed only of the six conserved core subunits, which are highlighted in color. The energy-converting hydrogenases EhaA-T, EhbA-Q, and MbhA-N also contain several hydrophobic and hydrophilic subunits of unknown function. These subunits are symbolized by areas with dashed boundaries. Abbreviation: Fd, ferredoxin with two [4Fe4S]-clusters. Thauer et al. 2010

The structures and functions of (b) the VhtACG complex. The Vht complex is found only in methanogens with cytochromes.

H₂ uptake in methanogenic archaea

niversität wien

The structures and functions of (*c*) the FrhABG complex.

H₂ uptake in methanogenic archaea

The proposed function and localization within the cell of the [NiFe]-hydrogenases involved in methanogenesis from H2 and CO2 are shown for methanogens (a) with cytochromes and (b) without cytochromes Thauer et al. 2010

Figure 4 | Proposed scheme for the reduction of CoM-S-S-CoB with H₂ that is catalysed by the hydrogenase (MvhADG)-heterodisulphide reductase (HdrABC) complex in methanogens without cytochromes. The enzyme complex is proposed to couple the endergonic reduction of ferredoxin with H₂ to the exergonic reduction of CoM-S-S-CoB with H₂ by flavinbased electron dismutation that involves the FAD in HdrA. The redox potentials are standard potentials at pH 7.0 ($E^{0'}$). The $E^{0\prime}$ of ferredoxin was set at -500 mV, which is the $E^{0\prime}$ of the CO₂/CHO-MFR couple (discussed in the main text). The sequence of HdrB contains ten conserved cysteines that are organized into two so-called CCG domains $(CX_{31-30}CCX_{35-36}CXXC)$. The carboxy-terminal CCG domain is involved in an unusual [4 Fe-4 S] cluster formation and the amino-terminal domain is involved in zinc binding. The zinc in HdrB is ligated by three sulphurs and one histidine nitrogen, as revealed by Zn-K-edge X-ray absorption spectroscopy⁸². The '4C' in HdrA represents a conserved sequence motif that contains four cysteines, and in HdrA from Methanococcus spp., one of the four cysteines is a selenocysteine. Fd, ferredoxin; HS-CoB, coenzyme B; HS-CoM, coenzyme M.

H₂ uptake in methanogenic archaea

Methanogens – e⁻ bifurcation

FIGURE 5 | Electron bifurcation in Methanogenesis. HS-CoB or HS-HTP, coenzyme B; HS-CoM, coenzyme M; CoM-S-S-CoB, heterodisulfide of coenzyme M and coenzyme B. Heterodisulfide reductase (Hdr) utilizes bifurcated energy electrons for two purposes: (i) converting CoM-S-S-CoB to HS-CoM and HS-CoB, using high potential electrons; and (ii) reducing a low potential ferredoxin using low potential electrons, which is energetically suitable for the highly endergonic reduction of CO_2 and generation of formyl-MF (Thauer et al., 2008; Thauer, 2012; Costa and Leigh, 2014).

Purwatini et al., 2014

Methanogens – e⁻ bifurcation

Methanogens – e⁻ bifurcation

FIG 5 Protein interactions in the Hdr supercomplex. Formate dehydrogenase (FdhAB) and hydrogenase (VhuAGU) compete for binding to VhuD. VhuA and VhuU are drawn together, since they form the catalytic site of H2 oxidation (30, 31). Electrons flow to HdrA, where their path is bifurcated to both FwdABCDF and HdrBC. Black double arrows indicate known interactions between subcomplexes. The dashed line between HdrA and Fwd signifies a hypothesized site of interaction between these subcomplexes. Reactions catalyzed by the individual enzymes are shown. The model only shows one of each enzyme, despite the fact that two of each are in the M. maripaludis genome (8). This reflects that, for the most part, the alternative forms are not expressed under the growth conditions used. HdrA, Vhu, and Fwd (as well as Fru) contain selenocysteine. M. maripaludis also encodes cysteine-containing versions, but these are repressed by selenium (19, 32). Additionally, Fwd contains tungsten, and its paralog, the molybdenum-containing formylmethanofuran dehydrogenase Fmd, requires high molybdenum for expression (33). In the case of Fdh, the genes for the alternative form of the enzyme are only expressed when cells are grown with limiting concentrations of formate in the absence of H₂ (20). Analysis of the M. maripaludis proteome verifies that only one form of these enzymes is highly expressed under our culture conditions (28, 34).

Costa et al., 2013(c)

Thauer 2012

Figure 6 | Proposed energy conservation by the Ehb complex in Methanosphaera stadtmanae growing on methanol and H_2 . The numbers in bold correspond to the reaction numbers in BOX 1. Reactions 9 and 15 are coupled by flavin-based electron bifurcation. The redox potentials are standard potentials at pH 7.0 ($E^{0'}$). The $E^{0'}$ of ferredoxin was set at -500 mV (discussed in the main text). The scheme can explain the described effects of dicyclohexylcarbodiimide, protonophores and sodium ionophores at high and low sodium ion concentrations⁶⁷ if the presence of an active electrogenic Na⁺/2 H⁺ antiporter is taken into account. The reaction that is catalysed by the cytoplasmic MvhADG–HdrABC complex (reaction 15) is delineated by a thicker grey arrow. C₁ units are highlighted in red. Fd, ferredoxin; HS-CoB, coenzyme B; HS-CoM, coenzyme M.

Thauer et al., 2008

Metabolism of methanogens – Ca. M. termitum

FIG 3 Time course of methane accumulation in the culture headspace of *Methanomassiliicoccus luminyensis* (A and C) and "*Ca*. Methanoplasma termitum" (B and D) incubated in bicarbonate-buffered medium supplemented with H_2 (ca. 50 kPa), methanol (50 mM), or acetate (30 mM) (A and B) or H_2 combined with different methylamines (10 mM) (C and D). To avoid a transfer of residual methanol with the inoculum, the precultures were grown under methanol limitation. The values are means of three replicate cultures; standard deviations are shown only if they are larger than the symbols.

Metabolism of methanogens – Ca. M. termitum

FIG 2 Energy metabolism of "*Ca*. Methanoplasma termitum" and other members of the order *Methanomassiliicoccales*. Black arrows indicate reactions whose enzymes are encoded in all genomes; red arrows indicate the proposed reaction of the heterodisulfide reductase (HdrD) coupled to the Fpo-like complex (Fig. 6). Blue-green arrows indicate that the enzymes are not present in "*Ca*. Methanoplasma termitum" but are present in the genomes indicated by colored dots (blue, *Methanomassiliicoccus luminyensis*; green, "*Ca*. Methanomassiliicoccus intestinalis," red, "*Ca*. Methanomethylophilus alvus"). Abbreviations: Mta, methanol:CoM methyltransferase; Mvh, non- F_{420} -reducing hydrogenase; Hdr, heterodisulfide reductase; Mcr, methyl-CoM reductase; Fpo-like, $F_{420}H_2$ -dehydrogenase-like complex; MtbA, methylcobamide:CoM methyltransferase; Mtm, monomethylamine methyltransferase; Mtb, dimethylamine methyltransferase; Mtt, trimethylamine methyltransferase; Aha, A_0A_1 -ATP synthase.

Metabolism of methanogens – Ca. M. termitum

MPH₂

F₄₂₀

MPH,

Methanosarcina (Fpo)

H+

В

н

D

Escherichia coli (Nuo)

FIG 6 Redox processes catalyzed by the 11-subunit core complexes and their specific electron-transferring modules in *Methanosarcina mazei* (Fpo) and *Escherichia coli* (Nuo) and hypothetical processes and potential interaction partners of the Fpo-like complexes in *Methanosaeta thermophila* (59) and *Methanomassiliicoccales* (this study). The common core complex of 11 subunits is shown in gray, and specific subunits of the different complexes are indicated by different colors. In all cases, the complex serves as a redox-driven proton pump. For further explanations, see the text. F_{420} , coenzyme F_{420} ; Fd, ferredoxin; MP, methanophenazine; UQ, ubiquinone.

niversität

Methanosaeta (Fpo-like)

В

Fdox

Fdred

н

н

D

Methanomassiliicoccales (Fpo-like)

Candidatus phylum Barthyarchaeota

Fig. 1. Phylogenetic trees showing the placement of the BA1, BA2, and EO9 genomes in the archaeal phylum Bathyarchaeota. (A) Maximum-likelihood tree of 295 archaea, inferred from a concatenated alignment of 144 proteins and rooted with the DPANN (Diapherotrites Parvarchaeota Aenigmarchaeota Nanoarchaeota Nanohaloarchaeota) superphyla (27). Support values are shown with white (≥80%) and black (≥90%) circles and indicate the minimum support under nonparametric bootstrapping, gene jackknifing, and taxon jackknifing (supplementary materials). (B) Maximum-likelihood 16S rRNA gene tree

showing the placement of bathyarchaeotal representatives relative to environmental sequences, including genes recovered from Coal Oil Point. Thaumarchaeota and Aigarchaeota 16S rRNA sequences from reference genomes were used as an outgroup. Bathyarchaeota (formerly MCG) groups are based on the classification in (9). Nonparametric support values are shown with white (\geq 80%) and black (\geq 90%) circles. Environmental context and genomes or National Center for Biotechnology Information accession numbers are given. Scale bars indicate expected number of substitutions per site.
Candidatus phylum Barthyarchaeota

niversität

Fig. 3. Maximum-likelihood trees of McrA. (A) Placement of nearly full-length McrA protein sequences (\geq 400 amino acids) identified within the Surat Basin and Coal Oil Point metagenomes, in relation to 153 proteins obtained from GenBank. Lineages were collapsed (depicted as wedges) and labeled according to the lowest common ancestor of all taxa in the lineage. (B) Maximum-likelihood tree of nearly full-length and partial McrA sequences identified within the Surat Basin and Coal Oil Point metagenomes. Nonparametric support values are shown with white (\geq 80%) and black (\geq 90%) circles. Information about the Surat Basin wells is given in fig. S1. SBC, Santa Barbara Channel.

Evans et al. (2015) Science

Candidatus phylum Barthyarchaeota

Fig. 2. Key metabolic pathways in the BA1 and BA2 genomes. Genes and pathways found in both BA1 and BA2 (black), only found in BA1 (blue), only found in BA2 (orange), or missing from both genomes (gray) are indicated. Genes associated with the pathways highlighted in this figure are presented in tables S9 (BA1) and S10 (BA2). In the BA1 genome, **mtrH* genes are adjacent to corrinoid proteins. A bathyarchaeotal contig containing *mcrCD* genes was identified in the metagenome, which probably belongs to the BA1 genome (supplementary text). EMP/ED, Embden-Meyerhof-Parnas/Entner–Doudoroff pathway; TCA, tricarboxcylic acid.

Evans et al., 2015

Candidatus phylum Verstraetearchaeota

Figure 1 | Phylogenetic trees showing the placement of the Verstraetearchaeota *mcrA* and 16S rRNA genes. **a**, McrA protein tree showing monophyletic clustering of the divergent McrA sequences from V1-V4 (red) outside known euryarchaeotal and bathyarchaeotal methanogenic lineages. **b**, 16S rRNA gene tree showing the placement of V1-V5 (bolded) with environmental sequences classified as the Terrestrial Miscellaneous Crenarchaeota Group (TMCG), using the Bathyarchaeota 16S rRNA sequences as the outgroup. Bootstrap values were calculated via non-parametric bootstrapping with 100 replicates, and are represented by circles.

Candidatus phylum Verstraetearchaeota

parts of a pathway that are missing in all genomes.

Vanvonterghem et al., 2016

wien wien

Candidatus phylum Methanofastidiosa

WSA2 (a) catabolism and (b) anabolism. (a) WSA2 has genes for H2 oxidation through electron-bifurcating hydrogenase (HdrABC–MvhDGA) and H2 cycling by energy-converting hydrogenase (EhbA-Q); CO oxidation by carbon monoxide dehydrogenase (CODH); and methylated thiol reduction and methanogenesis by methylated thiol Coenzyme M methyltransferase corrinoid fusion protein (MtsA) and methyl coenzyme M reductase (McrABG). The proton motive force (or cation gradient) generated by Ehb can support ATP production by ATP synthase. (b) Malonate decarboxylase and acetyl-CoA synthetase can convert malonate and acetate into acetyl-CoA for downstream co-assimilation with CO2 (bolded) through pyruvate:ferredoxin oxidoreductase, pyruvate carboxylase and tricarboxylic acid (TCA) cycle. As identified for other heterotrophic methanogens, WSA2 does not encode the glyoxylate shunt for acetate assimilation (gray with dotted line). The methylmalonyl-CoA pathway can facilitate co-assimilation of propionate and CO2 also into the TCA cycle. WSA2 can use key TCA cycle intermediates (pink) as building blocks for biosynthesis.

Methanogenesis – cofactors

HS SO3-

2-Mercaptoethanesulfonic acid (coenzyme M, HS-CoM)

7-Mercaptoheptanoylthreonine phosphate (coenzyme B, HS-CoB)

5,6,7,8-Tetrahydromethanopterin (H₄MPT)

Coenzymes cofactors and in participating reactions common to all methanogenic pathways. Methanosarcina species synthesize tetrahydrosarcinapterin (H4SPT), which serves the same function as tetrahydromethanopterin (H4MPT) and has a similar structure except for a terminal α -linked glutamate (113).

5-Hydroxybenzimidazolylcobamide (factor III)

Methanogenesis – cofactors

Figure 6

Coenzymes and cofactors unique to either the aceticlastic or the CO₂ reduction pathway.

Reaction catalyzed by methyl-coenzyme M reductase (MCR) from Methanothermobacter marburgensis. The highest specific rate of methyl-coenzyme M reduction reported for the purified nickel enzyme is 100 U/mg protein (1 U = 1 μ mol/min) [25]. The rate for the back reaction (1 mU/mg protein) was estimated using the Haldane equation (see text). Shima & Thauer, 2005

Ermler *et al.*, 1997

mcrA/mrtA isoenzymes are used as molecular marker for detection of methanogens!

Fig. 5. Hydrogen bonding interactions among MCR active site residues. Red sticks indicate hydrogen bonds at 25°C. The dashed line indicates the weak hydrogen bond between Ser³⁹⁹ and Tyr³³³ above 30°C. Residues are numbered according to MCR from Methanothermobacter marburgensis. See also table S1.

Initial steps in three mechanisms of MCR catalysis. Mechanism I involves nucleophilic attack of Ni(I)-MCRred1 on the methyl group of methyl-SCoM to generate a methyl-Ni(III) intermediate (34). This mechanism is similar to that of B12-dependent methyltransferases (48), which generate a methyl-cob(III) alamin intermediate. In mechanism II, Ni(I) attack on the sulfur atom of methyl-SCoM promotes the homolytic cleavage of the methyl-sulfur bond to produce a methyl radical (•CH3) and a Ni(II)-thiolate. Mechanism III involves nucleophilic attack of Ni(I) on the sulfur of methyl-SCoM to form a highly reactive methyl anion and Ni(III)-SCoM (MCRox1).

Proposed steps of mechanism II.

In the first step, Ni(I) attack on the sulfur of methyl-SCoM leads to homolytic cleavage of the C-S bond and generation of a methyl radical and a Ni(II)-thiolate (MCRox1-silent). Next, Hatom abstraction from CoBSH generates methane and the CoBS• radical, which in the third step combines with the Nibound thiolate of CoM to generate the Ni(II)-disulfide anion radical. Then, oneelectron transfer to Ni(II) generates MCRred1 and the heterodisulfide (CoBSSCoM) product, which dissociates leading ordered binding of to methyl-SCoM and CoBSH and initiation of the next catalytic cycle.