

Meta-Analysis for Omics Datasets

 bcf.isb-sib.chPratyaksha "Asa" Wirapati
Bioinformatics Core Facility, Swiss Institute of Bioinformatics

www.isb-sib.ch

Bioinformatics in Genomic and Proteomic Data November 25-27, 2009, Brno, Czech Republic

Bionformatics Core Facility Swiss Institute of Bioinformatics

Growth of Gene Expression Omnibus (GEO) Database

Technology	\# samples
in situ oligonucleotide	209391
spotted DNA/cDNA	76911
spotted oligonucleotide	54941
oligonucleotide beads	17013
SAGE	1660
other	1193
high-throughput sequencing	853
RT-PCR	497
spotted protein	390
antibody	337
MPSS	194
mixed spotted oligo/cDNA	109
MS	94
SARST	12

\Downarrow
genomics (DNA)
transcriptomics (RNA)
proteomics (protein)
\Downarrow
*omics (everything else)

Other data sources: ArrayExpress, journal suppl. data, investigator's websites

Omics Biology and Medicine

Data "supertable": studies (rows) \times omics variables (columns)

		DNA			RNA			Protein		Phenotype		Environment	
		SNP	$\begin{aligned} & \mathrm{CNV}, \\ & \mathrm{CGH} \end{aligned}$	UHTS	mRNA	miRNA	SAGE	IHC	proteomics	clinical	Imaging, metabolomics, physiology	drug, therapy	pathogen, toxin
Study design 1 human breast cancer patients, retrospective, clinical outcome, drug	Study 1												
	Study 2												
	Study 3												
	Study 4												
	Study 5												
	Study 6												
	...												
Study design 2 experimental, time-series, tissue culture	Study a												
	Study b												
Study design 3 cancer cell lines ...	Study X												
	Study y												
	Study z												
	...												

"Horizontal integration": same samples, various omis variables
"Vertical integration": similar variables, multiple studies \Rightarrow our focus

Why re-analyze existing datasets?

- Critical review of the original findings
- Confirmation/validation of results from other studies
- More solid discoveries based on larger sample size
- New discoveries in larger scopes/contexts

Issues in Co-Analysis of Multiple Datasets
 I. Dataset curation

- Survey of relevant datasets that are available Search literature, public databases, and the web
- Independence of datasets

Reorganize datasets to ensure non-redundant samples

- Non-uniform variable names and representation Rename and recode variables
- Re-mapping probe(set)s and matching across platforms

Align to a reference sequence database; reduce to single probe per gene

- Quality control of quantitative variables (e.g., gene expression)

Ensure same unit/transformation; renormalize and rescale if necessary

Issues in Co-Analysis of Multiple Datasets II. Downstream Analysis

How to do combined analysis of heterogeneous datasets?

- Differences in study designs, populations and sample selection criteria
- Incommensurable quantitative data; systematic measurement artefacts

How to produce the "total" results based on all datasets?
How to assess and incorporate heterogeneity?
How to visualize and present the analysis results?
How to adapt to omics data?
How to adapt to complex analysis, such as hierarchical clustering and prediction?

Outline

- A brief introduction to statistical meta-analysis
- Applications of meta-analysis to omics data
- An example: breast cancer clinical-expression datasets
- Differential expression
- Clustering of genes
- Clustering of samples
- Prediction
- Conclusion and future works

Intro to meta-analysis: an example data

UC Berkeley graduate school admission 1973^{1}

	Male	Female
Admitted	1198	557
Rejected	1493	1278

Was there a sex bias in the graduate school admission process?
odds ratio: $\frac{1278 / 557}{1493 / 1198}=1.84,95 \%$ CI: [1.62, 2.09$]$
p-value: $<2.2 \times 10^{-16}$
${ }^{1}$ Bickel, Hammel, O'Connell (1975) Science 187:398-403

Stratified Analysis and Forest Plot

Simpson's Paradox: "the whole contradicts its parts" the danger of pooling data \Rightarrow biases due to hidden factors

Meta-Analytical Solution

- Analyze each stratum/study separately
- Average using the inverse variance as weight

$$
\hat{\beta}_{0}=\frac{\sum_{i=1}^{k} \hat{\beta}_{i} /\left(\hat{\sigma}_{i}^{2}+\hat{\tau}^{2}\right)}{\sum_{i=1}^{k} 1 /\left(\hat{\sigma}_{i}^{2}+\hat{\tau}^{2}\right)}
$$

β_{i}, β_{0} : effect size (per study and total)
σ_{i}^{2} : within-study variance of β_{i}, i.e. $\left[\operatorname{SE}\left(\beta_{i}\right)\right]^{2}$
$\hat{\tau}^{2}$: between-study variance

- If τ^{2} is fixed to zero (may not be realistic!) \Rightarrow fixed effects meta analysis (FEMA)
- If τ^{2} is estimated from the data \Rightarrow random effects meta analysis (REMA)
- I^{2} : proportion of variation due to between study heterogeneity

Hierarchical Sampling Models

Single study:

- Inference about $\beta_{i}\left(\beta_{0}+\right.$ study biases: technical, design, population, ...)

Fixed-effect models

- Inference about $\bar{\beta}=\sum_{i} \beta_{i} / k$ (the mean of the specific datasets in hand)
- Confidence interval is not affected by between study variability τ^{2}

Random-effect/hierarchical models

- Inference about β_{0} (the "truth"; expectation of future studies)
- Confidence interval is small if I^{2} is small (and vice versa)

Alternative Methods

- (Empirical) Bayes Hierarchical Models

This is the theoretically "proper" way to hierarchical models
More flexible than REMA (not limited to normal summaries)
Simultaneous fitting of model parameters at all levels of hierarchy (while REMA is stage-wise).
Computationally more expensive (need to maximize marginal likelihood via EM, or MCMC, or quadrature, etc. etc.)

REMA is an approximate approach to hierarchical models (may even be equivalent in some cases), but easier to calculate. Compromise: maybe less optimal for large number of very small studies.

- For categorical explanatory variables (e.g. ANOVA or contingency tables), the study indicator can be treated as another term, and the heterogeneity is modelled as interaction terms.

Which summary to combine?

odds ratio: regression coefficient (average using REMA)
correlation: measure of dependence or mutual information (average using REMA) Z-test: significance (signed) \Rightarrow accumulate using Stouffer's method: $\sum Z / \operatorname{sqrt}(k)$ p -value: significance (unsigned) \Rightarrow accumulate using Fisher's method: $-2 \sum \log p$ vote counting method: count rejected null hypothesis

Spectrum of possibilities in combining analysis

1. Combine raw data
$(+)$ easy to apply (-) potential bias, no heterogeneity assessment
2. Combine coefficients (fold change, hazard and odd ratios, ...) $(+)$ physical interpretability (-) affected by measurement unit
3. Combine correlation/dependence $\left(R^{2}, \tanh ^{-1}(r), \ldots\right)$
$(+)$ unit-free (-) affected by sampling/design
4. Combine significance measures (t-test, Z-test, p-value, etc.)
$(-)$ strong effect + low power $=$ weak effect + high power
5. Combine decisions (reject/accept hypothesis, gene lists) $(+)$ easy to apply $(-)$ lacks power

Outline

- A brief introduction to statistical meta-analysis
- Applications of meta-analysis to omics data
- An example: breast cancer clinical-expression datasets
- Differential expression
- Clustering of genes
- Clustering of samples
- Prediction
- Conclusion and future works

Breast cancer data collection

Susanne
Kunkel
Wirapati et. al. 2008 Breast Cancer Res

Dataset symbol	No. of arrays	Institution	Reference	Platform	Data source	No. of GeneIDs
Genomic platforms						
NKI	337	Nederlands Kanker Instituut	van't Veer 2002, van de Vijver 2002	Agilent	author's website	13120
EMC	286	Erasmus Medical Center	Wang 2005	Aff. U133A	GEO:GSE2034	11837
UPP	249	Karolinksa Institute (Uppsala)	Miller 2005, Calza 2006	Aff. U133A,B	GEO:GSE4922	15684
STOCK	159	Karolinska Institute (Stockholm)	Pawitan 2005, Calza 2006	Aff. U133A,B	GEO:GSE1456	15684
DUKE	171	Duke University	Huang 2005, Bild 2006	Aff. U95Av2	author's website	8149
UCSF	$161+8$	UC San Francisco	Korkola 2003	cDNA	author's website	6178
UNC	143+10	University of Carolina	Hu 2006	Agilent HuA1	author's website	13784
NCH	135	Nottingham City Hospital	Naderi 2006	Agilent HuA1	AE:E-UCON-1	13784
STNO	115+7	Stanford Univ./Norwegian Radium Hosp.	Sorlie 2003	cDNA	author's website	5614
JRH1	99	John Radcliffe Hospital	Sotiriou 2003	cDNA	journal's website	4112
JRH2	61	John Radcliffe Hospital	Sotiriou 2006	Aff. U133A	GEO:GSE2990	11837
MGH	60	Massachusetts General Hospital	Ma 2004	Agilent	GEO:GSE1379	11421
expO	239	International Genomic Consortium	http://www.intgen.org	Aff. U133v2	GEO:GSE2109	16634
TGIF1	49	EORTC trial 10994	Farmer 2005	Aff. U133A	GEO:GSE1561	11837
BWH	$40+7$	Brigham and Women's Hospital	Richardson 2006	Aff. U133v2	GEO:GSE3744	16634
Small diagnostic platforms						
TRANSBIG	253	TRANSBIG Consortium	Buyse 2006	Agilent	AE:E-TABM-77	1052
EMC2	180	Erasmus Medical Center	Foekens 2006	Aff. (custom)	GSE3453	86
HPAZ	96	Hospital La Paz, Madrid	Espinosa 2005	RT-PCR	paper's appendix	61
Total	2865	$\begin{aligned} & =2833 \text { carcinomas } \\ & +32 \text { non-malignant breast tissues } \end{aligned}$	No. of GenelD	No. of the unio s common to g	on of all GenelDs: enomic platforms:	$\begin{array}{r} 17198 \\ 1963 \\ \hline \end{array}$

- Abbreviations: No. = number, GEO: $=$ Gene Expression Omnibus accession, AE: = ArrayExpress accession, Aff. = Affymetrix
- Reorganize datasets into independent, non-redundant cohorts
- Remap probe(set)s to the same version of RefSeq subset (NM_* only) using BLAT
- Use the most variable probe(set) as the unique representative of a gene

Clinical variable availability and distributions

NKI	337	-1-	\square					R M O
TRANSBIG	253	T-						R M O
HPAZ	96	$\square \longrightarrow$		-				M O
EMC	286							M
EMC2	180	$\square \longrightarrow$						R 0
UPP	249	\square	,				\square	R O
STOCK	159							R O
DUKE	171				,	\square		0
UCSF	161	\checkmark		\square			$\square 1$	R 0
NCH	135	\square						R 0
UNC	143	$\longmapsto \square$						R 0
STNO	115	-1						R O
JRH1	99	\square						R O
JRH2	61	-1-		T				R M
MGH	60	■-						R
TGIF1	49							
BWH	40							
expO	239							
total	2833	$\longmapsto \square \square$	\square	$\begin{array}{\|l\|l\|} \hline 123 \\ \hline 123 \end{array}$		-1		$\begin{array}{ll} \text { R } 1890 \\ \text { M } 1015 \\ \mathrm{O} & 2019 \end{array}$
		$25 \quad 50 \quad 75 \quad 10$ (ge at diagnosis (year)	$\begin{gathered} \text { ER } \\ \text { status } \end{gathered}$	histologic grade	$\begin{gathered} \text { size } \\ >2 \mathrm{~cm} \end{gathered}$	lymph node	adjuvant treatment	available outcome

treatment: u untreated, h hormone, c chemo, b both, x unspecified patient outcome: R relapse-free, M metastasis-free, O overall survival

Heterogeneity in survival data

Variability between studies greater than that due to natural risk factors or treatments \Rightarrow potential bias in pooled (unstratified) analysis

Quality control of original author's normalization

Plot SD-vs-mean of each probe in a dataset
\Rightarrow A characteristic trend for each (platform, normalization) combination

Raw instrument data (e.g. CEL files) for renormalization from scratch are not always available \Rightarrow possible "post-hoc" corrections:

- Non-parametric variance stabilizing transform
- Global scaling between studies
- Lowess calibration against the mean profile
(In subsequent results in this talk, we used the original without correction)

Differential Expression Analysis

The transcriptome is "scanned" to search for genes whose change in expression is related to changes in other variables (e.g. clinical outcome or experimental conditions)

Adaptation for multiple datasets:

1. Choose the appropriate models that produce an estimate \pm standard error (with normal sampling variation, independent of the location estimate) transformation may be used when appropriate
2. If a gene is missing from a platform, the summary is considered missing value (and simply ignored)
3. Calculate REMA (estimate, SE, heterogeneity)
4. The usual analysis: ranking, multiple testing, etc. on the combined estimates from REMA

Generalized Linear Models

normal

estrogen receptor status

logistic

histologic grade				
		low	med	high
	0	4	11	66
1	75	98	83	

survival

An example: prognostic genes in breast cancer

Gene: RACGAP1; Model: Cox proportional hazard
Response variable: metastasis-free survival; explanatory variable: $\log _{2}$ expression

coeff: $\log _{e}$ (hazard change) $/ \log _{2}$ (fold change) \Rightarrow effect size with physical interpretation std. coeff: measure of correlation (mutual information), equivalent to (pseudo) R^{2} Z-test: significance, equivalent to p-value, but with direction of effect ($-/+$) Only significant (after multiple testing) in two studies

Another example

gene: AURKA

Coefficients are less heterogeneous than in RACGAP1
Present in all genome-wide platforms

Another example

gene: MELK

Coefficients are heterogeneous; correlation (std. coeff) is homogeneous \Rightarrow normalization issue? or the $\log _{2}$ scale is less consistent in general?
Not significant in individual studies

Another example

gene: BTG2

Negative effects (over-expression is protective)

Yet Another Example

gene: RPL11

A gene that doesn't work. (It's a housekeeping gene)

The Usual Analysis and Visualization

Gene rank table

e z
pval
p.bonf

SEC61G $0.52528960 .068521387 .6660691 .773481 \mathrm{e}-142.963486 \mathrm{e}-10$
CEP55 $0.42418520 .055543827 .636946 \quad 2.22434 \theta \mathrm{e}-14.3 .716872 \mathrm{e}-1 \theta$ $\begin{array}{llllll}\text { BIRC5 } & 0.2513234 & 0.03322773 & 7.563666 & 3.918662 \mathrm{e}-14 & 6.548084 \mathrm{e}-1 \theta\end{array}$ PSMA7 $\quad 0.58969860 .079011687 .4634368 .429511 \mathrm{e}-141.408571 \mathrm{e}-09$ $N P \quad 0.53572130 .072913767 .3473272 .022091 \mathrm{e}-13 \quad 3.378915 \mathrm{e}-09$ AURKA $\quad 0.39077690 .053408497 .316757 \quad 2.540361 \mathrm{e}-134.244944 \mathrm{e}-09$ NEK2 $\quad 0.4112018 \quad 0.056660957 .257236 \quad 3.950808 \mathrm{e}-136.601800 \mathrm{e}-\theta 9$ UBE2S $\quad 0.3768391 \quad 0.05161736 \quad 7.1843876 .750934 \mathrm{e}-131.128081 \mathrm{e}-08$ PSMD2 $0.59757640 .083389277 .1661077 .716040 \mathrm{e}-131.289350 \mathrm{e}-08$ TCEB1 $0.54249970 .075959757 .1419379 .202507 \mathrm{e}-131.537739 \mathrm{e}-08$ SPAG5 $\quad 0.41611390 .058466677 .1171141 .102106 \mathrm{e}-12 \quad 1.841618 \mathrm{e}-08$ P4HA2 $\quad 0.58226130 .082922197 .0217792 .190609 \mathrm{e}-12 \quad 3.660507 \mathrm{e}-\theta 8$ GARS $\quad 0.4871429 \quad 0.070929376 .8679996 .510866 \mathrm{e}-121.087966 \mathrm{e}-\theta 7$ TXNRD1 $0.52840030 .077869356 .7857291 .155019 \mathrm{e}-111.930036 \mathrm{e}-\theta 7$ MYBL2 $0.45792170 .067507506 .7832711 .174851 \mathrm{e}-111.963175 \mathrm{e}-\theta 7$ GINS2 $\quad 0.4053210 \quad 0.059918146 .7645791 .336972 \mathrm{e}-11 \quad 2.234081 \mathrm{e}-\theta 7$ ADFP $\quad 0.34876630 .05298368 \quad 6.582524 \quad 4.62527 \theta \mathrm{e}-117.728826 \mathrm{e}-\theta 7$ NDRG1 $0.22081460 .033694606 .5534125 .623725 \mathrm{e}-119.397245 \mathrm{e}-07$ RAD51 $0.51550520 .0788144 \theta 6.5407496 .121145 \mathrm{e}-111.022843 \mathrm{e}-06$ SHCBP1 $0.39310510 .060535506 .493795 \quad 8.37 \theta 07 \theta \mathrm{e}-11 \quad 1.398639 \mathrm{e}-06$ $\begin{array}{lllllll}\text { CDK2AP1 } & 0.4698637 & 0.07412179 & 6.339076 & 2.311474 \mathrm{e}-1 \theta & 3.862472 \mathrm{e}-\theta 6\end{array}$ C20orf24 0.4956172 0.07873671 $6.2946143 .081649 \mathrm{e}-10 \quad 5.149436 \mathrm{e}-06$ DDX39 0.65197410 .103846546 .278245 3.424157e-10 $5.721766 \mathrm{e}-06$ TGFBI $\quad 0.30726910 .049451286 .213572 \quad 5.179349 \mathrm{e}-108.654693 \mathrm{e}-06$ ZWINT $\quad 0.4816099 \quad 0.077643776 .202815 \quad 5.546219 \mathrm{e}-109.267732 \mathrm{e}-06$

p-value histogram

Volcano plots

Many significant genes even after the stringent Bonferroni multiple testing correction for $>17,000$ genes (red lines, p.bonff $=0.05$)

Standardized coefficients yield more significant genes (≈ 400 vs ≈ 300)

Hierarchical Clustering of Genes

1. Calculate Pearson correlation $r_{i j k}$ for each pair of gene (i, j) in each study k
2. r isn't normal (bounded by $[-1,1]$, asymmetric variance) \Rightarrow transform using (yet another) Fisher's method:

$$
z_{i j k}=\tanh ^{-1}\left(r_{i j k}\right), \quad \operatorname{Var}\left(z_{i j k}\right)=1 /(n-3)
$$

3. Combine z using REMA
4. Treat the combined correlations as similarity measures in hierarchical agglomerative clustering. No need to back transform $z_{i j 0}$ to $r_{i j 0}$ (irrelevant for single- and complete link, maybe even better for average link)
5. Display the heatmaps in stratified manner

-2

wind wiwn who

UPP

Hierarchical Clustering of Samples

This doesn't fit the framework of REMA.
(Dis)similarity measures are not summary statistic from a regression model, rather it is a kind of a distance.

We need to have separate clustering tree for each study, but we need to know the correspondence across studies.

Pooling the data is inevitable. Expression profiles will be compared between and within studies.

The problem: how to ensure the similarity measures are biological (rather than technical, e.g. due to batch effect), which will results clustering by the data of origin.

Simplest solution: mean center each gene for each dataset before clustering
without mean centering

with mean centering

stratify by splitting the tree

Extension to Multilevel Gene Clustering

Multi-stage random-effects meta-analysis can be use to both combine the correlations and assess differential co-expression using the between-strata variance.

Example: cluster genes in multiple types of cancer, each having multiple studies Examples of consistently correlated pairs (left) and breast-cancer-only pairs (right)

| AURKA vs TPX2 (proliferation genes) | |
| :--- | :--- | :--- |
| breast-EMC | |
| breast-NKI | |
| breast-UPP | |
| colon-AARHUS | |
| colon-CINCI | |
| colon-TOKYO | |
| lung-DUKE | |
| prostate-SKCC | |
| prostate-TMHS | |
| breast | |
| colon | |
| lung | |
| metal | |

breast cancer

prostate cancer

SKCC

TMHS

$n=65$
colon cancer

lung cancer

$$
\mathrm{n}=155
$$

DUKE

$$
\mathrm{n}=105
$$

Prediction

Components of classifiers:

- Gene list ("signature"): identified by feature selection step
- Model parameters (e.g. coefficients, neural network weights, etc.): identified by model fitting.
- Cutoff

Very difficult to calibrate. Sensitive to changes in the distribution of both predictor variables and outcome. e.g. disease prevalence (or baseline hazard in survival data) in the target populations may be different from those in retrospective study datasets

Naïve/Idiot Bayes predictors

Assume conditional independence amongst predictor variables (conditioned on the response).
DLDA, Tukey's compound covariate, etc. are based on this principle. Penalized regression is similar, if the penalty is large.

- Fit gene-by-gene models
- Select top genes
- Use the gene-by-gene coefficients or significance (t-stat or Z-score, or simply the \pm signs) as weights in linear predictor: $\sum w_{i} x_{i}$; the cutoff is to be calibrated from the training set

Still one of the best for microarray data.
\Rightarrow Most amenable to cross-platform applications, because it's insensitive to the exact weights or missing genes.

Cross validation schemes

1. Within dataset

- Split each dataset into learning and test parts
- Select top genes (ranking based on REMA summaries)
- In each dataset, apply the model with dataset-specific parameters to the test part
- Combine performance

2. Cross-dataset

- Split datasets into learning and test datasets
- Fit model in the test datasets
- Apply to test datasets: global weights, local cutoff (need its own CV)
\Rightarrow "Leave-one-dataset out CV" is particularly simple

Example of LODOCV: Breast cancer datasets

Cutoff is 30% low-risk

Summary

Multiple omics datasets can be co-analyzed under the framework of "standard" statistical methods (e.g. generalized linear models, meta-analysis, hierarchical sampling models).

Extension to complex analysis (e.g., prediction, cluster analysis) is possible, by incorporating REMA for combining summaries, at the appropriate stage of analysis.

Future Work

Release (hopefully soon) R packages for:

- Fast, meta-analytical scanning of GLM (normal, logit, survival).
- Fast multilevel meta-analytical hierarchical clustering

A system for data clean-up and curation (this is the most time consuming part):

- text mining of clinical data and mapping to ontologies
- QC and renormalization/retransformation of expression data

