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Growth of Gene Expression Omnibus (GEO) Database
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0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05

time (year)

cu
m

ul
at

iv
e 

nu
m

be
r 

of
 s

am
pl

e 
fil

es

Technology # samples

in situ oligonucleotide 209391
spotted DNA/cDNA 76911
spotted oligonucleotide 54941
oligonucleotide beads 17013
SAGE 1660
other 1193
high-throughput sequencing 853
RT-PCR 497
spotted protein 390
antibody 337
MPSS 194
mixed spotted oligo/cDNA 109
MS 94
SARST 12

⇓
genomics (DNA)

transcriptomics (RNA)
proteomics (protein)

⇓
∗omics (everything else)

Other data sources: ArrayExpress, journal suppl. data, investigator’s websites
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Omics Biology and Medicine

Data “supertable”: studies (rows) × omics variables (columns)

DNA RNA Protein Phenotype Environment

SNP CNV, 
CGH

UHTS mRNA miRNA SAGE IHC proteomics clinical Imaging, metabolomics, physiology drug, 
therapy

pathogen, 
toxin

Study design 1

human breast 
cancer patients, 
retrospective, 
clinical outcome, 
drug

Study 1

Study 2

Study 3

Study 4

Study 5

Study 6

...

Study design 2

experimental, 
timeseries, tissue 
culture

Study a

Study b

Study design 3

cancer cell 
lines
...

Study x

Study y

Study z

...

“Horizontal integration”: same samples, various omis variables

“Vertical integration”: similar variables, multiple studies ⇒ our focus
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Why re-analyze existing datasets?

• Critical review of the original findings

• Confirmation/validation of results from other studies

• More solid discoveries based on larger sample size

• New discoveries in larger scopes/contexts
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Issues in Co-Analysis of Multiple Datasets
I. Dataset curation

• Survey of relevant datasets that are available

Search literature, public databases, and the web

• Independence of datasets

Reorganize datasets to ensure non-redundant samples

• Non-uniform variable names and representation

Rename and recode variables

• Re-mapping probe(set)s and matching across platforms

Align to a reference sequence database; reduce to single probe per gene

• Quality control of quantitative variables (e.g., gene expression)

Ensure same unit/transformation; renormalize and rescale if necessary
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Issues in Co-Analysis of Multiple Datasets
II. Downstream Analysis

How to do combined analysis of heterogeneous datasets?

• Differences in study designs, populations and sample selection criteria

• Incommensurable quantitative data; systematic measurement artefacts

How to produce the “total” results based on all datasets?

How to assess and incorporate heterogeneity?

How to visualize and present the analysis results?

How to adapt to omics data?

How to adapt to complex analysis, such as hierarchical clustering and
prediction?
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Outline

• A brief introduction to statistical meta-analysis

• Applications of meta-analysis to omics data

– An example: breast cancer clinical-expression datasets

– Differential expression

– Clustering of genes

– Clustering of samples

– Prediction

• Conclusion and future works
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Intro to meta-analysis: an example data

UC Berkeley graduate school admission 19731

Male Female

Admitted 1198 557
Rejected 1493 1278

Was there a sex bias in the graduate school admission process?

odds ratio:
1278/557

1493/1198
= 1.84, 95% CI: [1.62, 2.09 ]

p-value: < 2.2× 10−16

1Bickel, Hammel, O’Connell (1975) Science 187:398-403
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Stratified Analysis and Forest Plot
Dept. data odds ratio 95% C.I. p-value

A
512 89
313 19

0.35 [0.20, 0.59] 10−5

B
353 17
207 8

0.80 [0.30, 0.20] 0.68

C
129 202
205 391

1.13 [0.84, 1.52] 0.39

D
138 131
279 244

0.92 [0.68, 1.25] 0.60

E
53 94

138 299
1.22 [0.80, 1.83] 0.36

F
22 24

351 317
0.83 [0.43, 1.58] 0.55

pooled
1198 557
1439 1278

1.84 [1.62, 2.09] 10−16

●

●

●

●

●

●

0.2 0.5 1.0 2.0

odds ratio (favor male vs female)

pooled

F

E

D

C

B

A

Simpson’s Paradox: “the whole contradicts its parts”
the danger of pooling data ⇒ biases due to hidden factors
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Meta-Analytical Solution

• Analyze each stratum/study separately

• Average using the inverse variance as weight

β̂0 =

Pk
i=1 β̂i/(σ̂

2
i + τ̂2)Pk

i=1 1/(σ̂2
i + τ̂2)

βi, β0: effect size (per study and total)

σ2
i : within-study variance of βi, i.e. [SE(βi)]

2

τ̂2: between-study variance

• If τ2 is fixed to zero (may not be realistic!)
⇒ fixed effects meta analysis (FEMA)

• If τ2 is estimated from the data
⇒ random effects meta analysis (REMA)

• I2: proportion of variation due to between
study heterogeneity

I2 = (Q − (k − 1))/Q, see Higgins & Thompson (2002) Stat Med

●

●

●

●
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●

0.2 0.5 1.0 2.0

odds ratio (favor male vs female)

REMA

FEMA

pooled

F

E

D

C

B

A

p = 10−−16

p = 0.18

p = 0.16

I2 = 0.72

11



Hierarchical Sampling Models
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Single study:

• Inference about βi (β0 + study biases: technical, design, population, . . . )

Fixed-effect models

• Inference about β̄ =
P

i βi/k (the mean of the specific datasets in hand)

• Confidence interval is not affected by between study variability τ2

Random-effect/hierarchical models

• Inference about β0 (the “truth”; expectation of future studies)

• Confidence interval is small if I2 is small (and vice versa)
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Alternative Methods

• (Empirical) Bayes Hierarchical Models

This is the theoretically “proper” way to hierarchical models

More flexible than REMA (not limited to normal summaries)

Simultaneous fitting of model parameters at all levels of hierarchy (while
REMA is stage-wise).

Computationally more expensive (need to maximize marginal likelihood via
EM, or MCMC, or quadrature, etc. etc.)

REMA is an approximate approach to hierarchical models (may even be

equivalent in some cases), but easier to calculate. Compromise: maybe

less optimal for large number of very small studies.

• For categorical explanatory variables (e.g. ANOVA or
contingency tables), the study indicator can be treated as
another term, and the heterogeneity is modelled as interaction
terms.
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Which summary to combine?
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total

F
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p = 0.16

I2 = 0.72

●
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correlation

−0.2 −0.1 0 0.05

p =  0.4

I2 = 0.7

●
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−6 −4 −2 0 2

Z−test

p =  0.12

●

●

●

●

●

●

p−value

10−−7 10−−5 10−−3 10−−1

1/6

no

no

no

no

no

yes

reject

p =  0.0081

odds ratio: regression coefficient (average using REMA)
correlation: measure of dependence or mutual information (average using REMA)
Z-test: significance (signed) ⇒ accumulate using Stouffer’s method:

P
Z/sqrt(k)

p-value: significance (unsigned) ⇒ accumulate using Fisher’s method: −2
P

log p
vote counting method: count rejected null hypothesis
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Spectrum of possibilities in combining analysis

1. Combine raw data

(+)easy to apply (–) potential bias, no heterogeneity assessment

2. Combine coefficients (fold change, hazard and odd ratios, . . . )

(+)physical interpretability (–) affected by measurement unit

3. Combine correlation/dependence (R2, tanh−1(r),. . . )

(+)unit-free (–) affected by sampling/design

4. Combine significance measures (t-test, Z-test, p-value, etc.)

(–) strong effect + low power = weak effect + high power

5. Combine decisions (reject/accept hypothesis, gene lists)

(+) easy to apply (–) lacks power
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Outline

• A brief introduction to statistical meta-analysis

• Applications of meta-analysis to omics data

– An example: breast cancer clinical-expression datasets

– Differential expression

– Clustering of genes

– Clustering of samples

– Prediction

• Conclusion and future works
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Breast cancer data collection
Wirapati et. al. 2008 Breast Cancer Res

Susanne
Kunkel

Dataset No. of Institution Reference Platform Data source No. of
symbol arrays GeneIDs

Genomic platforms
NKI 337 Nederlands Kanker Instituut van’t Veer 2002, van de Vijver 2002 Agilent author’s website 13120
EMC 286 Erasmus Medical Center Wang 2005 Aff. U133A GEO:GSE2034 11837
UPP 249 Karolinksa Institute (Uppsala) Miller 2005, Calza 2006 Aff. U133A,B GEO:GSE4922 15684
STOCK 159 Karolinska Institute (Stockholm) Pawitan 2005, Calza 2006 Aff. U133A,B GEO:GSE1456 15684
DUKE 171 Duke University Huang 2005, Bild 2006 Aff. U95Av2 author’s website 8149
UCSF 161+8 UC San Francisco Korkola 2003 cDNA author’s website 6178
UNC 143+10 University of Carolina Hu 2006 Agilent HuA1 author’s website 13784
NCH 135 Nottingham City Hospital Naderi 2006 Agilent HuA1 AE:E-UCON-1 13784
STNO 115+7 Stanford Univ./Norwegian Radium Hosp. Sorlie 2003 cDNA author’s website 5614
JRH1 99 John Radcliffe Hospital Sotiriou 2003 cDNA journal’s website 4112
JRH2 61 John Radcliffe Hospital Sotiriou 2006 Aff. U133A GEO:GSE2990 11837
MGH 60 Massachusetts General Hospital Ma 2004 Agilent GEO:GSE1379 11421

expO 239 International Genomic Consortium http://www.intgen.org Aff. U133v2 GEO:GSE2109 16634
TGIF1 49 EORTC trial 10994 Farmer 2005 Aff. U133A GEO:GSE1561 11837
BWH 40+7 Brigham and Women’s Hospital Richardson 2006 Aff. U133v2 GEO:GSE3744 16634

Small diagnostic platforms
TRANSBIG 253 TRANSBIG Consortium Buyse 2006 Agilent AE:E-TABM-77 1052
EMC2 180 Erasmus Medical Center Foekens 2006 Aff. (custom) GSE3453 86
HPAZ 96 Hospital La Paz, Madrid Espinosa 2005 RT-PCR paper’s appendix 61

Total 2865 = 2833 carcinomas No. of the union of all GeneIDs: 17198
+ 32 non-malignant breast tissues No. of GeneIDs common to genomic platforms: 1963

• Abbreviations: No. = number, GEO: = Gene Expression Omnibus accession, AE: = ArrayExpress accession, Aff. = Affymetrix

• Reorganize datasets into independent, non-redundant cohorts
• Remap probe(set)s to the same version of RefSeq subset (NM * only) using BLAT
• Use the most variable probe(set) as the unique representative of a gene
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Clinical variable availability and distributions

NKI 337
TRANSBIG 253
HPAZ 96
EMC 286
EMC2 180
UPP 249
STOCK 159
DUKE 171
UCSF 161
NCH 135
UNC 143
STNO 115
JRH1 99
JRH2 61
MGH 60
TGIF1 49
BWH 40
expO 239
total 2833

25 50 75 100
age at diagnosis (year)

– +

ER
status

1 2 3

histologic
grade

– +

size
>2cm

– +

lymph
node

u  hcbx

adjuvant
treatment

R M O
R M O

M O
M

R O
R O
R O

O
R O
R O
R O
R O
R O
R M
R

R 1890
M 1015
O 2019

available
outcome

treatment: u untreated, h hormone, c chemo, b both, x unspecified
patient outcome: R relapse-free, M metastasis-free, O overall survival
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Heterogeneity in survival data

total 6311890 1415 1147 799 469

STNO 60115 39 10 1
UNC 32128 33 10 4
JRH1 4599 75 59 30 1
MGH 2560 50 42 28 18
NCH 47135 110 97 81 66
NKI 121319 260 216 131 75
TRANSBIG 101253 207 170 147 118
UPP 88249 185 158 140 107
JRH2 1561 55 44 38 33
STOCK 40159 140 124 68
EMC2 37180 164 149 94 40
UCSF 20132 97 68 37 11

STNO
UNC
JRH1
MGH

NCH

NKI
TRANSBIG
UPP

JRH2
STOCK

EMC2
UCSF
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%
)

group: number at risk: events
follow-up: 0 2.5 5 7.5 10 (year)

total 4842019 1628 1313 867 512

STNO 46115 54 14 3 1
DUKE 43170 86 46 12 3
UNC 22129 39 14 5
JRH1 4599 85 70 32 1
UCSF 37132 104 74 43 14
NKI 74319 290 248 147 89
STOCK 40159 148 130 64
NCH 34135 122 111 96 81
TRANSBIG 57253 240 212 190 154
UPP 51232 198 173 152 122
EMC2 23180 175 166 103 44
HPAZ 1296 87 55 20 3

STNO
DUKE

UNC

JRH1

UCSF
NKI

STOCK
NCH

TRANSBIG
UPP
EMC2
HPAZ

40 

60 

80 

100 

ov
er

al
l s
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al
 (%

)

group: number at risk: events
follow-up: 0 2.5 5 7.5 10 (year)

Variability between studies greater than that due to natural risk factors or
treatments ⇒ potential bias in pooled (unstratified) analysis
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Quality control of original author’s normalization

Plot SD-vs-mean of each probe in a dataset
⇒ A characteristic trend for each (platform,normalization) combination

NKI: Agilent (Rosetta) + ? EMC: Affy U133 + MAS 5.0 TGIF1: Affy U133A + RMA

Raw instrument data (e.g. CEL files) for renormalization from scratch are not
always available ⇒ possible “post-hoc” corrections:

• Non-parametric variance stabilizing transform

• Global scaling between studies

• Lowess calibration against the mean profile

(In subsequent results in this talk, we used the original without correction)
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Differential Expression Analysis

The transcriptome is “scanned” to search for genes whose change in
expression is related to changes in other variables (e.g. clinical
outcome or experimental conditions)

Adaptation for multiple datasets:

1. Choose the appropriate models that produce an estimate ±
standard error (with normal sampling variation, independent of
the location estimate) transformation may be used when
appropriate

2. If a gene is missing from a platform, the summary is considered
missing value (and simply ignored)

3. Calculate REMA (estimate, SE, heterogeneity)

4. The usual analysis: ranking, multiple testing, etc. on the
combined estimates from REMA
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Generalized Linear Models
normal logistic survival
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An example: prognostic genes in breast cancer
Gene: RACGAP1; Model: Cox proportional hazard
Response variable: metastasis-free survival; explanatory variable: log2 expression
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coeff: loge(hazard change)/log2(fold change) ⇒ effect size with physical interpretation
std. coeff: measure of correlation (mutual information), equivalent to (pseudo) R2

Z-test: significance, equivalent to p-value, but with direction of effect (−/+)
Only significant (after multiple testing) in two studies
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Another example

gene: AURKA
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Coefficients are less heterogeneous than in RACGAP1

Present in all genome-wide platforms
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Another example

gene: MELK
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Coefficients are heterogeneous; correlation (std. coeff) is homogeneous
⇒ normalization issue? or the log2 scale is less consistent in general?

Not significant in individual studies
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Another example

gene: BTG2
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Negative effects (over-expression is protective)
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Yet Another Example

gene: RPL11
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A gene that doesn’t work. (It’s a housekeeping gene)
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The Usual Analysis and Visualization
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Many significant
genes even after
the stringent
Bonferroni multiple
testing correction
for >17,000 genes
(red lines, p.bonff
= 0.05)

Standardized
coefficients yield
more significant
genes (≈ 400 vs
≈ 300)
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Hierarchical Clustering of Genes

1. Calculate Pearson correlation rijk for each pair of gene (i, j) in
each study k

2. r isn’t normal (bounded by [−1, 1], asymmetric variance)
⇒ transform using (yet another) Fisher’s method:

zijk = tanh−1(rijk), Var(zijk) = 1/(n− 3)

3. Combine z using REMA

4. Treat the combined correlations as similarity measures in
hierarchical agglomerative clustering. No need to back
transform zij0 to rij0 (irrelevant for single- and complete link,
maybe even better for average link)

5. Display the heatmaps in stratified manner
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Hierarchical Clustering of Samples

This doesn’t fit the framework of REMA.

(Dis)similarity measures are not summary statistic from a regression
model, rather it is a kind of a distance.

We need to have separate clustering tree for each study, but we need
to know the correspondence across studies.

Pooling the data is inevitable. Expression profiles will be compared
between and within studies.

The problem: how to ensure the similarity measures are biological
(rather than technical, e.g. due to batch effect), which will results
clustering by the data of origin.

Simplest solution: mean center each gene for each dataset before
clustering
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without mean centering

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

with mean centering stratify by splitting the tree
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Extension to Multilevel Gene Clustering

Multi-stage random-effects meta-analysis can be use to both combine the
correlations and assess differential co-expression using the between-strata
variance.

Example: cluster genes in multiple types of cancer, each having multiple studies

Examples of consistently correlated pairs (left) and breast-cancer-only pairs (right)

-2 -1.5 -1 -0.5 0 0.5 1 1.5
z-transformed correlations

AURKA vs TPX2 Hproliferation genesL

breast-EMC

breast-NKI

breast-UPP

colon-AARHUS

colon-CINCI

colon-TOKYO

lung-DUKE

lung-MERLION

prostate-SKCC

prostate-TMHS

breast

colon

lung

prostate

total

heterogeneity

-2 -1.5 -1 -0.5 0 0.5 1 1.5
z-transformed correlations

ESR1 vs AR Hestrogen and androgen receptorL

breast-EMC

breast-NKI

breast-UPP

colon-AARHUS

colon-CINCI

colon-TOKYO

lung-DUKE

lung-MERLION

prostate-SKCC

prostate-TMHS

breast

colon

lung

prostate

total

heterogeneity
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breast cancer

Dendogram of 16742 genes NKI EMC UPP
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branch depth: log(level) n = 337 n = 286 n = 249
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prostate cancer colon cancer lung cancer

SKCC TMHS AARHUS CINCI TOKYO DUKE MERLION

n = 148 n = 65 n = 155 n = 105 n = 84 n = 198 n = 72
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Prediction

Components of classifiers:

• Gene list (“signature”): identified by feature selection step

• Model parameters (e.g. coefficients, neural network weights,
etc.): identified by model fitting.

• Cutoff

Very difficult to calibrate. Sensitive to changes in the
distribution of both predictor variables and outcome.

e.g. disease prevalence (or baseline hazard in survival data) in
the target populations may be different from those in
retrospective study datasets
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Näıve/Idiot Bayes predictors

Assume conditional independence amongst predictor variables
(conditioned on the response).

DLDA, Tukey’s compound covariate, etc. are based on this principle.
Penalized regression is similar, if the penalty is large.

• Fit gene-by-gene models

• Select top genes

• Use the gene-by-gene coefficients or significance (t-stat or
Z-score, or simply the ± signs) as weights in linear predictor:∑
wixi; the cutoff is to be calibrated from the training set

Still one of the best for microarray data.

⇒ Most amenable to cross-platform applications, because it’s
insensitive to the exact weights or missing genes.
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Cross validation schemes

1. Within dataset

• Split each dataset into learning and test parts

• Select top genes (ranking based on REMA summaries)

• In each dataset, apply the model with dataset-specific
parameters to the test part

• Combine performance

2. Cross-dataset

• Split datasets into learning and test datasets

• Fit model in the test datasets

• Apply to test datasets: global weights, local cutoff (need
its own CV)

⇒ “Leave-one-dataset out CV” is particularly simple
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Example of LODOCV: Breast cancer datasets

Cutoff is 30% low-risk

total 6752426 1913 1533 1029 592

hi-risk 5561633 1216 941 617 363
lo-risk 119793 697 592 412 229

hi-risk

lo-risk
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Summary

Multiple omics datasets can be co-analyzed under the framework of
“standard” statistical methods (e.g. generalized linear models,
meta-analysis, hierarchical sampling models).

Extension to complex analysis (e.g., prediction, cluster analysis) is
possible, by incorporating REMA for combining summaries, at the
appropriate stage of analysis.
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Future Work

Release (hopefully soon) R packages for:

• Fast, meta-analytical scanning of GLM (normal, logit, survival).

• Fast multilevel meta-analytical hierarchical clustering

A system for data clean-up and curation (this is the most time
consuming part):

• text mining of clinical data and mapping to ontologies

• QC and renormalization/retransformation of expression data
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