Nanoscopic Materials

NANO

-particles, crystals, powders -films, patterned films -wires, rods, tubes -dots

Nanostructured materials = nonequilibrium character

> good sinterability
> high catalytic activity
> difficult handling
> adsorption of gases and impurities
> poor compressibility

Nanomaterials

1

Properties on Nanostructured Materials

Metallic behavior
 Single atom cannot behave as a metal
 nonmetal to metal transition: 100-1000 atoms

 Magnetic behavior Single domain particles, large coercive field

Depression of melting points in nanocrystals bulk Au mp 1064 °C 10 nm Au 550 °C

Smallness: physical size

Size compatibility with the basic biological structures (cells, liposomes, enzymes...) delivery vehicles for medical applications surface chemistry - functionalization

Smallness: surface versus bulk forces

A large to surface to volume ratio Bulk forces - gravity - unimportant for nanoparticles Surface forces - Brownian motion - colloidal particles never settle

Smallness: surface versus bulk atom properties

Increasing surface to bulk atom number ratio with decreasing size enhances the role of surface (boundary)

- surface phonon scattering
- surface electron scattering
- surface atom electric charge distribution
- surface atom spins in ferromagnetic, ferrimagnetic, and antiferromagnetic materials transition to superparamagnetic state

Chemical bonding in nanostructures

Single wall carbon nanotubes (SWCNT) hexagonal bonding of C in graphite and graphene - sp²

C bonding in SWCNT is contorted $sp^2 \rightarrow sp^3$ Chirality - variable amounts of twisting

5

Unique Features of the Nano-scale Self-assembly

combination of particles, atoms, or molecules, selfassemble into predetermined new materials and structures (micelles, SAM, MOF, DNA, proteins,)

Unique Features of the Nano-scale Quantum confinement and tunneling

Electron quantum confinement - the spatial restrictions of nanoscale structures confine electrons resulting in the presence of energy levels whose values and spacing depend on the degree of confinement = size

Quantum tunneling (the opposite of confinement) - an electron wave function leaks across classically forbidden energy barriers of nano-scale size

Unique Features of the Nano-scale Quantum confinement and tunneling

Electron in a box - an infinitely deep 3D box the difference between two energetically adjacent electron energy levels:

$$E_{n+1} - E_n = \frac{h^2}{8m_e L^2} [2n+1]$$

h is Planck's constant, m_e is the electron mass, Lx L x L is the confining volume

Decreasing L increases the inter-level spacing Nanoscale - quantization of energy due to confinement Micro- and larger scales - energy appears as a continuum

Unique Features of the Nano-scale Wave-particle duality

Quantum interference between particle waves that are scattered off the boundaries of a nanostructure thereby forming a standing

wave

Atoms arranged on a surface form a corral confining their valence electrons. The probability density image determined by the wave function distribution captured by STM - wave function leakage into a positively biased scanning probe

Relativistic phenomena at the nano-scale

In 2D materials, graphene - mass-less Dirac electrons

Mass-less behavior can produce

- ballistic (collision-free) charge transport
- unusual Hall effects
- enormously high carrier mobilities
- topologically dependent phases

Unique Features of the Nano-scale Electromagnetic interactions with nanostructures

Plasmonic mode of a metal nanoparticle excited by the electric field of an incoming light wave - a cooperative excitation of free

valence electrons

Relaxation

- reradiation of photons from the nanoparticle

(mn)

- collisions of oscillating valence electrons within the particle The electric field distribution of the metal nanoparticle
- radiating far-field component = the emitted photons
- near-field component around the nanoparticle

Unique Features of the Nano-scale Fluctuations

Thermodynamic fluctuations - a system gets smaller, fluctuations away from the thermodynamic equilibrium distribution become important, the statistics of huge numbers of particles

Quantum fluctuations - the small separation distances between objects at the nano-scale, the temporary change ΔE in the amount of energy (or mass of particles) that can occur in a region for a time Δt , the fluctuation time - conservation of energy is violated during the fluctuation time

$\Delta E \, \Delta t \geq \hbar$

Fluctuations

Casimir force (theor. 1948, exp. 1996) - quantum phenomenon, a pressure that pushes objects having a nano-scale separation together, vacuum energy, fluctuating electromagnetic waves, restricted wavelengths of standing waves between nanoobjects = lower energy of vacuum between nanoobjects, pressure form outside

The Casimir force affects friction and results in striction (the permanent adhesion of surfaces)

- a critical problem for moving systems at the nano-scale
- the force increases with decreasing distance

Synthesis Methods

Bottom-up Synthesis: Atom Up

Sixteen components assemble into supramolecular macrocycle

***** Atom Aggregation Method

GEM – gas evaporation method

♦ Evaporation by heating – resistive, laser, plasma, electron beam, arc discharge

 \diamond The vapor nucleates homogeneously owing to collisions with the cold gas atoms

- \diamond Condensation
 - in an inert gas (He, Ar, 1kPa) on a cold finger, walls metals, intermetallics, alloys, SiC, C₆₀

- in a reactive gas O₂ TiO₂, MgO, Al₂O₃, Cu₂O N₂, NH₃ nitrides

- in an organic solvent matrix Nanomaterials

SMAD - the solvated metal atom dispersion

1-2 g of a metal, 100 g of solvent, cooled with liquid N₂ more polar solvent (more strongly ligating) gives smaller particles

Ni powder: THF < toluene < pentane = hexane

Carbide formation

***** Thermal or Sonocative Decomposition of Precursors $Fe(CO)_5 \longrightarrow nc-Fe + 5 CO$ sono $[Co(en)_3]WO_4 \longrightarrow nc-WC - 23\% Co$ Ar, 1500 °C PhSi(OEt)₃ + Si(OEt)₄ + H₂O \longrightarrow gel \longrightarrow β -SiC $(CH_3SiHNH)_n$ (l) \longrightarrow Si₃N₄ + SiC laser $M(BH_4)_4$ (g) ______ borides MB_{2+x} (M = Ti, Zr, Hf) $Si(OEt)_4 + Ag^+ \text{ or } Cu^{2+} + H_2O \longrightarrow SiO_2/Ag^+/Cu^{2+}$ H₂, 550 °C → SiO₂/Ag/Cu

Thermal decomposition of precursors

***** Reduction of Metal Ions

Borohydride Reduction - Manhattan Project

Aqueous, under Ar $2 \operatorname{Co}^{2^+} + 4 \operatorname{BH}_4^- + 9 \operatorname{H}_2 O \longrightarrow \operatorname{Co}_2 B + 12.5 \operatorname{H}_2 + 3 \operatorname{B}(OH)_3$

Under air 4 Co₂B + 3 O₂ → 8 Co + 2 B₂O₃

Nonaqueous $Co^{2+} + BH_4^- + diglyme \longrightarrow Co + H_2 + B_2H_6$

 $TiCl_4 + 2 NaBH_4 \longrightarrow TiB_2 + 2 NaCl + 2 HCl + H_2$

 $MX_n + n NR_4[BEt_3H] \longrightarrow M + NR_4X + n BEt_3 + n/2 H_2$ M = group 6 to 11; n = 2,3; X = Cl, Br mixed-metal particles

Sonocative decomposition of precursors

of bubbles in a liquid

Cavity interior Filled with gases and vapors 5 000 – 20 000 °C / 500 – 1500 bar

> Surrounding liquid layer 2000 °C

> > Bulk liquid shock waves shear forces

Sonocative decomposition of precursors

Au colloidal particles

 $HAuCl_4 + NaBH_4$ in toluene/ H_2O system, TOABr as a phase transfer agent, Au particles in the toluene layer, their surface covered with Br, addition of RSH gives stable Au colloid

TEM micrograph of hexagonal arrays of thiolized Pd nanocrystals:

- a) 2.5 nm, octane thiol
- b) 3.2 nm, octane thiol

The *d-l* phase diagram for Pd nanocrystals thiolized with different alkane thiols.

The mean diameter, d, obtained by TEM.

The length of the thiol, l, estimated by assuming an all-*trans* conformation of the alkane chain. The thiol is indicated by the number of carbon atoms, C_n .

The bright area in the middle - systems which form close-paced organizations of nanocrystals The surrounding darker area includes disordered or low-order arrangements of nanocrystals The area enclosed by the dashed line is derived from calculations from the soft sphere model

Alkali Metal Reduction

in dry anaerobic diglyme, THF, ethers, xylene

 $NiCl_2 + 2 K \rightarrow Ni + 2 KCl$

 $AlCl_3 + 3 K \rightarrow Al + 3 KCl$

Reduction by Glycols or Hydrazine

"Organically solvated metals"

Alkalide Reduction

13 K⁺(15-crown-5)₂Na⁻ + 6 FeCl₃ + 2CBr₄

THF -30 °C

2 Fe₃C (nano) + 13 K(15-crown-5)₂Cl_{0.43}Br_{0.57} + 13 NaCl

Anealed at 950 °C / 4 h

Fe₃C: 2 – 15 nm

***** Reactions in Porous Solids – Zeolites, Mesoporous materials

Ion exchange in solution, reaction with a gaseous reagent inside the cavities $M^{2+} + H_2E \longrightarrow ME \qquad M = Cd, Pb; E = S, Se$

Ship-in-the-Bottle Synthesis

 $Ru^{3+} + Na-Y \longrightarrow Ru(III)-Y$ Ru(III)-Y + 3 bpy \longrightarrow Ru(bpy)_3^{2+} reduction of Ru(III)

Conducting carbon wires Acrylonitrile introduced into MCM-41 (3 nm diam. channels) Radical polymerization Pyrolysis gives carbon filaments

***** Gel or Polymer Matrices

***** Sol-Gel Method Aerogels, supercritical drying

***** Aerosol Spray Pyrolysis Aqueous solution, nebulization, droplet flow, solvent evaporation, chemical reaction, particle consolidation, up to 800 °C

 $3Gd(NO_3)_3 + 5 Fe(NO_3)_3 \longrightarrow Ga_3Fe_5O_{12} + 6 O_2 + 24 NO_2$

MnCl₂ + 2 FeCl₃ + 4 H₂O → MnFe₂O₄ + 8 HCl

 $Mn(NO_3)_2 + Fe(NO_3)_3$ no go, why?

 $2 \operatorname{MCl}_{n}(g) + n \operatorname{H}_{2} \xrightarrow{850-900 \circ C} \operatorname{M}^{0} + 2n \operatorname{HCl}_{3-11 \operatorname{nm}}$

***** Inverse Micelles

Polymeric Nanoparticles from Rapid Expansion of Supercritical Fluid Solution

Polymeric Nanoparticles from Rapid Expansion of Supercritical Fluid Solution

37

Spinning Disc Processing (SDP) A rapidly rotating disc (300-3000 rpm) Ethanolic solutions of Zn(NO₃)₂ and NaOH, polyvinylpyrrolidone (PVP) as a capping agent Very thin films of fluid (1 to 200 μm) on a surface Synthetic parameters = temperature, flow rate, disc speed, surface texture influence on the reaction kinetics and particle size

Intense mixing, accelerates nucleation and growth, affords monodispersed ZnO nanoparticles with controlled particle size down to a size of 1.3 nm and polydispersities of 10%

Crystallization free energy

LaMer mechanism

Accumulation of the monomers Supersaturated solution

Burst of nucleation

Slow growth of particles without additional nucleation the size focusing

Separation of nucleation and growth

Hot-injection

43

Watzky-Finke mechanism

Slow continuous nucleation

Fast autocatalytic surface growth

Other mechanisms

Digestive rippening

Surfactant exchange

Surface Modification

A nanoparticle of 5 nm core diameter with different hydrophobic ligands

NP and molecules drawn to scale

The particle is idealized as a smooth sphere

trioctylphosphine oxide (TOPO) triphenylphosphine (TPP) dodecanethiol (DDT) tetraoctylammonium bromide (TOAB) oleic acid (OA)

Continuous Synthesis of Inorganic Nanoparticles

rapid mixing of two precursor solutions and the fast removal of the nuclei from the reaction environment

transport from the reactor to a tubing for the particle growth, the length of tubing up to the collection vessel influences the particle growth

Top-down Synthesis: Bulk Down

***** Introduction of Crystal Defects (Dislocations, Grain Boundaries) **♦High-Energy Ball Milling** final size only down to 100 nm, contamination ♦ Extrusion, Shear, Wear **♦**High-Energy Irradiation ♦ Detonative Treatment ***** Crystallization from Unstable States of Condensed Matter ♦ Crystallization from Glasses **♦**Precipitation from Supersaturated Solid or Liquid Solutions

*****Lithographic Techniques

✦electron beam and focused ion beam (FIB) lithography

*****Lithographic Techniques

✦electron beam and focused ion beam (FIB) lithography

Laser ablation synthesis in solution

Laser ablation synthesis in solution

Nucleation

Nuclei growth and coalescence

Final nanoparticles

HRTEM images of AgNP (left) and AuNP (right) obtained by LASiS in DMF and water, respectively

4