C8953 NMR structural analysis - seminar 1D ¹³C-NMR

Kateřina Peterková, Aleš Novotný

423977@mail.muni.cz

March 13, 2019

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Control of 1D¹H NMR spectrum of cartilagineal

Control of 1D¹H NMR spectrum - cartilagineal

Notes:

- highest shift H-2 proton of aldehydic group, splitted to doublet with J = 2 Hz (small value, interacting partner is relatively far away)
- the same J = 2 Hz belongs to doublet of doublets of doublets around 6.5 ppm, other Js: J = 1 Hz and J = 15.5 Hz three J-constants - three partners - H-3
- large J-value 15.5 Hz suggests near neighbor - other signal with the same constant is doublet of doublets around 7 ppm - H-4
- last constant of multiplet at 6.5 ppm J = 1 Hz - partner distant from H-3: either H-1 or H-5, the same J- constant belongs to doublet of doublets at 4,5 ppm - two constants, two partners which is not the case for H-1 - therefore signal at 4,5 ppm belongs to H-5

just for check: both multiplets H-4 and H-5 are coupled with H-3 and with each other as well (J = 8.5 Hz)

- the only singlet in the spectrum is isolated H-1
- Iast unasigned doublet of doublets (6,1 ppm) must be H-6 because it is the only proton from the trio H-6, H-7, H-8 with two unequivalent neighbors - larger coupling comes from interaction with H-8 in *trans* position, smaller coupling comes from interaction with *cis* oriented H-7
- signal of the methyl group is not present in this spectrum

¹H vs ¹³C NMR

	¹ H	¹³ C		
Spin number	1 H: s= ¹ / ₂ × ² H: s=1	¹³ C: $s=\frac{1}{2} \times {}^{12}C$: $s=0$		
Abundance [%]	99.98	1.1		
Gyromagnetic ratio [10 ⁷ rad.T ⁻¹ .s ⁻¹]	26.8	6.7		
Chemical shift range [ppm]	0 - 15	0 - 200		
Nuclear shielding	$\sigma_{\sf dia}$	$\sigma_{\rm dia}$ + $\sigma_{\rm para}$		
Integration of signals	\checkmark	×		
T_1 relaxation [s]	1-20	1-40		
Homonuclear J-interaction	\checkmark	×		
H \leftrightarrow C J-interaction (\sim 100-250 Hz)	carbon satellites	$(n+1)$ splitting \times decoupling		
B ₀ σ_{DIA} ¹ H S	A Bo PARA Bo Bo PARA p-p*			

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

¹H vs ¹³C NMR

Spin number ¹ H: s= $\frac{1}{2} \times {}^{2}$ H: s=1 ¹³ C: s= $\frac{1}{2} \times {}^{12}$ C: s=0Abundance [%]99.981.1Gyromagnetic ratio [10 ⁷ rad.T ⁻¹ .s ⁻¹]26.86.7Chemical shift range [ppm]0 - 150 - 200Nuclear shielding σ_{dia} $\sigma_{dia} + \sigma_{para}$ Integration of signals✓×T ₁ relaxation [s]1-201-40Homonuclear J-interaction✓×H↔C J-interaction (~ 100-250 Hz)carbon satellites(n+1) splitting × decoupling101010-250 Hz)tarbon satellites(n+1) splitting × decoupling		¹ H	¹³ C
Abundance [%]99.981.1Gyromagnetic ratio [10 ⁷ rad.T ⁻¹ .s ⁻¹]26.86.7Chemical shift range [ppm]0 - 150 - 200Nuclear shielding σ_{dia} $\sigma_{dia} + \sigma_{para}$ Integration of signals✓× T_1 relaxation [s]1-201-40Homonuclear J-interaction✓×H↔C J-interaction (~ 100-250 Hz)carbon satellites(n+1) splitting × decoupling $U_{C+0.5^1 J_{HC}}$ $U_{L+1^3 C A}$	Spin number	$^{1}\text{H: s=}\frac{1}{2} \times {}^{2}\text{H: s=}1$	¹³ C: $s=\frac{1}{2} \times {}^{12}C$: $s=0$
Gyromagnetic ratio [10 ⁷ rad.T ⁻¹ .s ⁻¹] 26.8 6.7 Chemical shift range [ppm] 0 - 15 0 - 200 Nuclear shielding σ_{dia} $\sigma_{dia} + \sigma_{para}$ Integration of signals \checkmark × T ₁ relaxation [s] 1-20 1-40 Homonuclear J-interaction \checkmark × H ↔ C J-interaction (~ 100-250 Hz) carbon satellites (n + 1) splitting × decoupling $U_{C}^{+0.5^{1}J_{HC}}$ $U_{C}^{-0.5^{1}J_{HC}}$ $U_{C}^{+0.5^{1}J_{HC}}$ $U_{C}^{+0.5^{1}J_{C}}$	Abundance [%]	99.98	1.1
$\begin{array}{c c} \mbox{Chemical shift range [ppm]} & 0 - 15 & 0 - 200 \\ \mbox{Nuclear shielding} & \sigma_{dia} & \sigma_{dia} + \sigma_{para} \\ \mbox{Integration of signals} & \checkmark & \times \\ \mbox{T_1 relaxation [s]$} & 1 - 20 & 1 - 40 \\ \mbox{Homonuclear J-interaction} & \checkmark & \times \\ \mbox{H} \leftrightarrow \mbox{C J-interaction} & (\sim 100 - 250 \mbox{ Hz}) & \mbox{carbon satellites} & (n + 1) \mbox{ splitting \times decoupling} \\ \mbox{H} \leftrightarrow \mbox{C J-interaction} & (\sim 100 - 250 \mbox{ Hz}) & \mbox{carbon satellites} & (n + 1) \mbox{ splitting \times decoupling} \\ \mbox{H} \leftrightarrow \mbox{C J-interaction} & (\sim 100 - 250 \mbox{ Hz}) & \mbox{carbon satellites} & (n + 1) \mbox{ splitting \times decoupling} \\ \mbox{H} \leftrightarrow \mbox{C J-interaction} & (\sim 100 - 250 \mbox{ Hz}) & \mbox{carbon satellites} & \mbox{ID 13C \ NMR} & \mbox{ID 14C \ NMR}$	Gyromagnetic ratio [10 ⁷ rad.T ⁻¹ .s ⁻¹]	26.8	6.7
Nuclear shielding σ_{dia} $\sigma_{dia} + \sigma_{para}$ Integration of signals ✓ × T_1 relaxation [s] 1-20 1-40 Homonuclear J-interaction ✓ × H↔C J-interaction (~ 100-250 Hz) carbon satellites (n + 1) splitting × decoupling Image: the state of the state	Chemical shift range [ppm]	0 - 15	0 - 200
$\begin{array}{cccc} Integration of signals & \checkmark & \times \\ T_1 \ relaxation \ [s] & 1-20 & 1-40 \\ Homonuclear \ J-interaction & \checkmark & \times \\ \hline H\leftrightarrow C \ J-interaction \ (\sim 100-250 \ Hz) & carbon \ satellites & (n+1) \ splitting \times decoupling \\ \hline \\ \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Nuclear shielding	σ_{dia}	$\sigma_{ m dia}$ + $\sigma_{ m para}$
T ₁ relaxation [s] 1-20 1-40 Homonuclear J-interaction \checkmark × H↔C J-interaction (~ 100-250 Hz) carbon satellites (n+1) splitting × decoupling 10 ⁻¹ H NMR 10 ⁻¹³ C NMR ω_{c} +0.5 ⁻¹ J _{HC} ω_{c} -0.5 ⁻¹ J _{HC} 10 ⁻¹³ C MR μ_{H} -1 ³ Cα 1Hα-1 ³ C 1Hα-1 ³ C	Integration of signals	\checkmark	×
Homonuclear J-interaction \checkmark × H \leftrightarrow C J-interaction (~ 100-250 Hz) carbon satellites (n + 1) splitting × decoupling 10 ⁻¹ H NMR 10 ⁻¹³ C NMR ω_{C} +0.5 ⁻¹ J _{HC} ω_{C} -0.5 ⁻¹ J _{HC} 10 ⁻¹³ C 1HG ⁻¹³ C	T ₁ relaxation [s]	1-20	1-40
H↔C J-interaction (~ 100-250 Hz) carbon satellites $(n + 1)$ splitting × decoupling 1D ¹ H NMR 1D ¹³ C NMR $ω_{C}+0.5^{1}J_{HC}$ $ω_{C}-0.5^{1}J_{HC}$ $1Hα-1^{3}C$ $1Hβ-1^{3}C$	Homonuclear J-interaction	\checkmark	×
$ω_{C}+0.5^{1}J_{HC}$ $W_{C}+0.5^{1}J_{HC}$ $U_{C}-0.5^{1}J_{C}$ $U_{C}-0.5^{1}J_{C$	H \leftrightarrow C J-interaction (\sim 100-250 Hz)	carbon satellites	$(n+1)$ splitting \times decoupling
	1D ¹ H NMR ω _c +0.5 ¹ J _{Hc} ω _c -0.5 1H ₋ 13Cα HH ₋ 13C	⁵¹ J _{HC} Σβ ¹ Ηα- ¹³ C	
		п	

Important regions of ¹³C chemical shifts

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

 $^{1}J_{\rm CH}$ depends on the bond order (hybridization \Leftrightarrow *s*-character)

- ► -C-H ¹J_{CH} ≈ 125 Hz
- =C-H $^{1}J_{\text{CH}} \approx 160 \text{ Hz}$
- ► \equiv C-H ¹ $J_{CH} \approx$ 250 Hz
- ► X-C-H
 - ► X = N, O, S, F, CI, ... $^{1}J_{CH}$ \uparrow
 - ► X = Li, Mg, \dots ¹ $J_{CH} \Downarrow$
- $^2J_{\text{CH}} < 0$ or close to zero (<3 Hz)
 - often not observable

in 1D ^{13}C H-C interaction suppressed by DECOUPLING \Rightarrow simplification of spectra (splitting removed, sensitivity)

► saturation of ¹H energy levels during decoupling enhances relatively intensity of ¹³C signals because of heteronuclear nOe ⇒ quaternary carbons usually less intensive.

Values of chemical shift of important solvents

Abbr.	Formula	¹ H	¹³ C
ACN	CH₃CN	1.9	118
Benzene	C_6H_6	7.2	128
	CHCI ₃	7.2	77
DCM	CH_2CI_2	5.3	54
DMF	(CH ₃) ₂ NCHO	2.9, 8.0	32, 163
DMSO	$(CH_3)_2SO$	2.5	40
MeOH	CH₃OH	3.3, 4.8	49
Water	H ₂ O	4.8	-

EXPLAIN effect of solvent on the position of residual ¹H water signal:

CHCl₃ - 1.6, ACN - 2.1, DMSO - 3.3, MeOH - 4.9

How many ¹³C signal would you expect in the NMR spectrum?

How many ¹³C signal would you expect in the NMR spectrum? **7**

1D ¹³C-NMR 1, bottom without CPD

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣・のへで

1D ¹³C-NMR 1, bottom without CPD

Notes:

- numbers at top of peaks refers to values J_{HC} constants
- C1+C7 connected to electronegative groups (C1 quaternary)
- C2 ipso aromatic, C4+C6 shielded by M+ of OH
- C5+C4 NOE-enhanced in bit larger extend by close H
- C9→C12: decaying effect of N8

・ロト・西ト・ヨト ・ヨー うらぐ

1D ¹³C-NMR 2

æ

1D ¹³C-NMR 2

- C7 carbonyl, C1 attached to N
- C3/5 deshielded by M-CO, C2/6 shielded by M+ of NH₂
- C4 last quaternary aromatic signal (most isolated from H nuclei)
- C9 effect of esteric group, ? C10 affected by NH exchange

C12/C14 + C13/C15 decaying effect of N+

1D ¹³C-NMR 3, *b* - zoom of right region, *a* - full decoupled spectrum

1D ¹³C-NMR 3, *b* - zoom of right region, *a* - full decoupled spectrum

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

1D ¹³C-NMR 4, consider equilibrium minor-major form

Which form dominates and why?

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三理 - 釣A@

1D ¹³C-NMR 4, consider equilibrium minor-major form

Which form dominates and why?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Next topic

Vector Model + 13C APT experiment

