Č

Laboratory of Functional Genomics and Proteomics National Centre for Biomolecular Research Faculty of Science, Masaryk University

Methods in Genomics and Proteomics Mass Spectrometry in Proteomics CG980

Zbyněk Zdráhal

RG Proteomics, CEITEC-MU Proteomics CF, CEITEC-MU NCBR, FS MU zdrahal@sci.muni.cz

Introduction

Sample preparation is a base of good results

Main applications of mass spectrometry in proteomics

- Intact mass measurements
- **Protein identification** (incl. protein complexes, de novo sequencing)
- Analysis of protein modifications
- Protein quantification
- MS imaging
- Protein structure elucidation (complementary to NMR)

J.J. Thomson - father of mass spectrometry, Nobel prize for physics, 1906

Mass Spectrometry Basics

Mass Spectrometry (MS)

Method principle:

• measurement of m/z ion ratio of analyte

 $m-ion\ mass$ z-charge number **CG980**

Basic steps of MS analysis:

- ionization of analyte molecules (fragments)
- ion separation according to their m/z
- ion detection

Note: Apart from selected types of ionization, all steps of MS analysis take place in vacuum to prevent ions from unwanted collisions during their way from ion source to detector (mean free path of molecules)

Landmark in MS of biomolecules

New "soft" ionization techniques (in the middle of 80s in the 20th century)

basic prerequisite for wide use of MS in biomolecule analysis, mainly proteins (Nobel prize 2002)

Koichi Tanaka Shimadzu Corp., Kyoto, Japan

MALDI

Matrix Assisted Laser Desorption/Ionization

KARAS M., HILLENKAMP F.

Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10000 Daltons Anal. Chem., 60 (20): 2299-2301 (1988)

John B. Fenn Virginia Commonwealth University, Richmond, USA

ElectroSpray Ionization

ESI

Mass spectrometry of proteins

Most widely used technique in proteomics

MALDI

Most often in combination with Time-of- Flight analyzer **TOF** (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) MALDI - TOF MS MALDI - TOF/TOF MS

ESI In combination with several different analyzer types Ion trap – IT triple quadruple and its variants - QQQ, Q-TOF, Q-LIT, Ion Cyclotron Resonance - ICR Orbitrap and its combinations – e.g. IT-Orbitrap

MALDI-TOF MS analysis

matrix is low mass compound capable to absorb laser radiation *e.g. Dihydroxybenzoic acid (for UV laser)*

Příprava vzorku:

- sample is mixed with excess of matrix (in solution)
- mixture is deposited on a sample target and is allowed to dry
- sample co-crystallize with matrix during drying
- MS analysis

Result:

- Soft ionization without unwanted fragmentation
- Simple spectra
- Saving of sample on the sample target

(for additional analysis)

Laser pulse ("shot")

Target for sample deposition prior MALDI-MS

Detail of sample cocrystallized with matrix (DHB) prepared for analysis

Desorption-ionization process

Sample embedded in light-absorbing matrix

LASER-excitation of matrix molecules

Sample desorption and protonation

pictures by courtesy of Dr. Sauerland (Bruker)

Time-of-Flight Analyzer (TOF)

Separation of ions according to time of flight in the analyzer, time is recalculated to mass

$E = \frac{1}{2} mv^2$	$E-ion\ energy$
V = s/t	m – ion mass
	v – ion velocity
	s – flight path
	t – ion flight time

Prerequisite: Ions have to receive **the same kinetic energy** before entering analyzer drift zone which they enter simultaneously and their flight time is measured in a detector

MALDI - MS/MS instrument

MALDI-TOF/TOF mass spectrometer Ultraflex III (Bruker)

MALDI – TOF MS animation

Task: find out more about MALDI-TOF MS basics on web

use expression "time-of-flight mass spectrometry"

MALDI-MS profiling microorganism identification In clinical practice for clinical pathogens

CG980

The identification is based on comparison of the measured profile with profiles in database

MALDI-MS profiling MALDI-MS spectra (profiles) of selected bacteria species

MALDI-MS profiling Method limitation

In general, the method can not discriminate bacteria at strain level

ESI ionization

Sample preparation:

- sample has to be in solution
- sample solution is introduced into the ion source by spray needle

Sample ionization:

- sample solution is sprayed by spray needle in ion source chamber under atmospheric pressure
- ionization proceeds within the spray of liquid droplets by applying strong electric field
- charged liquid droplets are formed, which are transformed to multiplycharged ions during evaporation
- ions are transported into vacuum part of the instrument via transfer line and subjected to MS analysis

Result:

- Soft ionization without unwanted fragmentation
- Multiply charged ions
- Easy on-line connection with separation techniques (LC, CE)

LC - liquid chromatography; CE - capillary electrophoresis

Ion trap operation

MS scan

measurement of m/z ratio of analyzed compounds

- ion capture in an ion trap
- sequential ejecting of ions from the trap according to m/z
- ion detection

MS/MS scan targeted fragmentation of selected ions (precursors)

- ion capture in an ion trap
- ejecting of all ions except ions with selected m/z
- excitation and fragmentation of selected ions
- detection of formed fragment ions (product ions)

Orbitrap FusionTM Lumos Tribrid

example of hybrid mass spectrometer

Resolution Orbitrap 15,000–500,000 (FWHM) at *m/z* 200

ETD HD – high dynamic range ETD providing significantly increased fragment ion coverage

lon trap – low resolution

Orbitrap - high resolution

ESI–MS spectrum of protein

Serie of multiply-charged ions is formed differing in number of charges

MS/MS fragmentation of peptides

- peptides consist of individual aminoacids which are connected by peptide bond
- during fragmentation (CID), peptide is fragmented preferentially at peptide bond and thus:

all peptide bonds might be fragmented (in each precursor molecule different ones) forming set of fragments with various number of aminoacids differences in m/z (or mass) of "neighbouring fragments" determines type of terminal aminoacid in the longer fragment

★ serie of fragment ions are formed (b - y, a - x, c - z) which can be used for *de novo* primary structure elucidation; moreover they are predictable and they can be used for database search based protein identification even if they are not complete

Outline of tripeptide fragmentation

Roepstorff P. and Fohlman, J., Biomed. Mass Spectrom., 11 (11), 601 (1984)

MS vs MS/MS of peptides (CID)

CG980

fragmentation maps for individual peptides

ESI-MS a MS/MS spectra of a peptide (MW 1148.5)

LC-MS systems On-line

LC-MS system

CG980

ESI-IT mass spectrometer HCT Ultra (Bruker) connected on-line to capillary liquid chromatograph Ultimate (LC Packings)

Blood plasma (3500 – 9000 proteins ??) example of multidimensional separation

from H. Wang, Molecular & Cellular Proteomics, 2005, 4, 618–625.

Protein Identification using Mass Spectrometry

Protein identification using mass spectrometric data

Identification (DB search, *de novo*)

Protein identification using MS bottom up proteins with known primary sequence

Common approaches:

peptide mapping

Protein identification by peptide mapping (peptide mass fingerprinting)

Blue approach

Separation of protein mixture by two-dimensional gel electrophoresis

1. dimension Isoelectric point

protein separation

Digestion

enzymatic digestion of protein results in set of peptides specific protease is preferred

Trypsin

cleaves after lysine (K) and arginine (R), if proline does not follow

QNGVQMLSPSEIPQRDWFPSDFTFGAATSAYQIEGAWNEDGKGESNWDHFCHNHPERILD GSNSDIGANSYHMYKTDVRLLKEMGMDAYRFSISWPRILPKGTKEGGINPDGIKYYRNLI NLLLENGIEP

QNGVQMLSPSEIPQR	1-15	1683.848 Da
DWFPSDFTFGAATSAYQIEGAWNEDGK	16-42	3010.317 Da
GESNWDHFCHNHPER	43-57	1864.757 Da
ILDGSNSDIGANSYHMYK	58-75	1984.907 Da
TDVR Specific	76-79	490.262 Da
digestion	1.1.1	

Set of masses of these formed peptides (i.e. peptide map) is characteristic for given protein similarly as fingerprint for human individual.

MALDI - TOF MS spectrum of peptides after protein digestion

CG980

MS spectrum contains masses of peptides formed by digestion of selected protein

Protein identification- peptide mapping database searching

Measured peptide map (set of masses (or m/z) of peptides formed by digestion of analysed protein) is searched against database of protein sequences using database search engines.

Database search engine calculates theoretical peptide map for each protein sequence in database (applying cleavage rules for selected protease) and stepwise compares experimentally obtained peptide map of our analysed protein with *in-silico* calculated peptide maps.

Searching results in a list of proteins with most similar peptide maps. Similarity extent is given by score, all protein candidates with score value higher than the limit significant value (calculated by software) are considered as identified by search engine.

> comparison of obtained peptide map with sequence database

Mascot Search Results

Result of database searching peptide mapping

Database : MSDB 20021127 (1019653 sequences) Timestamp : 26 Jan 2003 at 10:36:50 GMT Top Score : 165 for **S18600**, glutamate-ammonia ligase

Score

Sequence Coverage: 44%					comparison of	
1	MAQILAASPT	COMRVPKHSS	VIASSSKLWS	SVVLKQKKQS	NNKVRGFI	obtained peptide map
51	ALQSDNSTVN	RVETLLNLDT	KPYSDRIIAE	YIWIGGSGID	LRSKSRT1	with sequence database
101	PVEDPSELPK	WNYDGSSTGQ	APGEDSEVIL	YPQAIFRDPF	RGGNNILV	IC
151	DTWTPAGEPI	PTNKRAKAAE	IFSNKKVSGE	VPWFGIEQEY	TLLQQNVK	NP
201	LGWPVGAFPG	PQGPYYCGVG	ADKIWGRDIS	DAHYKACLYA	GINISGTN	GE
251	VMPGQWEFQV	GPSVGIDAGD	HVWCARYLLE	RITEQAGVVL	TLDPKPIE	GD
301	WNGAGCHTNY	STKSMREEGG	FEVIKKAILN	LSLRHKEHIS	AYGEGNER	RL
351	TGKHETASID	QFSWGVANRG	CSIRVGRDTE	AKGKGYLEDR	RPASNMDP	YI
401	VTSLLAETTL	LWEPTLEAEA	LAAQKLSLNV			www.matrixscience.com

Sequence regions in red corresponds to assigned peptides from measured peptide map

Protein identification based on MS data vs MS/MS data

Protein identification by LC-MS/MS

Green approach

Protein digestion

specific digestion

In difference of "blue approach" this time whole complex protein mixture is digested altogether, again using specific protease (usually trypsin).

This peptide mixture is separated (frequently multidimensionally depending on sample complexity) and subjected to MS/MS analysis.

Separation of tryptic peptides formed by digestion of protein mixture

CG980

Digest of human blood plasma sample separated by liquid chromatography (1D separation) connected to mass spectrometer (LC-MS/MS)

MS/MS spectrum contains the peptide fragments formed by collision induced dissociation in ion trap. These fragments carry specific information about peptide sequence and allow identification.

Protein identification based on – MS/MS data database searching

Measured fragmentation maps (i.e. sets of masses (or m/z) of fragments formed during MS/MS of individual peptides) are searched against database of protein sequences by search engine.

At first, database search engine prepares theoretical peptide map for a protein sequence in database, subsequently, it calculates theoretical fragmentation map for each peptide of corresponding peptide map (according to given fragmentation rules) and then these *in-silico* prepared fragmentation maps are compared with our experimentally obtained fragmentation maps of analyzed peptides. The engine performs this operation for each protein sequence in database.

Software calculates individual score for each peptide, score value higher than limit score determines signifikant similarity between theoretical and measured fragmentation map – significant peptide identification. In final, search engine assort peptides to corresponding protein sequences (the more peptides with significant score per protein – the more reliable protein identification). The software also calculate protein score which is derived from individual peptide score as a tool for setting up results.

comparison of fragmentation maps of individual peptides with sequence database

Result of database searching MS/MS data

Database :SwissProt 51.2 (243975 sequences; 89639744 residues)Taxonomy :Homo sapiens (human) (15175 sequences)Timestamp :16 Dec 2006 at 16:05:59 GMTSignificant hits:AACT_HUMAN Alpha-1-antichymotrypsin precursor (ACT) –
Homo sapiens

comparison of fragmentation maps of individual peptides with sequence database

Protein score

Peptide Summary Report

Mascot Search Results

1. AACT_HUMAN Mass: 47621 Score: 99 Queries matched: 1 Alpha-1-antichymotrypsin precursor (ACT) Homo sapiens (Human)

Query	Observed	Mr(expt)	Mr(calc)	Delta Miss	Score	Expect Rank	Peptide
1	608.3000	1214.5854	1214.7234	-0.1380 0	99	2.2e-08 1	K.ITLLSALVETR.T

Individual peptide score

Thanks to variability of primary protein structure it is possible to determine identity of protein based on fragments (MS/MS spectrum) of a single peptide.

Processed MS/MS spectrum

Differences in m/z (resp. masses) of neighbouring fragment ions of corresponding serie (b, y) enables to determine individual aminoacids and their place in sequence.

Protein identification – database searching

comparison of fragmentation maps of individual peptides with sequence database

protein is identified (protein with its sequence in database)

MS

database searching

unknown protein

(sequence is not available, *de novo sequencing*)

other reasons of unsuccessful identification: low protein concentration, unspecific digestion, unknown modification, low quality of MS data, ...

Characterization of Posttranslational Modifications

Characterization of protein modifications

- **mutations** (protein isoforms)
- **chemical** (oxidation, deamidation, etc.)
- **posttranslational** (e.g. phosphorylations, glycosylations)

MS in analysis of protein modifications

- modification type
- localozation
- site occupancy

List of modifications and tools: DeltaMass - <u>https://abrf.org/delta-mass</u> ExPASy - <u>http://www.expasy.org/proteomics/post-translational_modification</u>

Difficulties in PTMs analysis

- Iow abundance of modified proteins
- protein occurs frequently in several modification forms
- protein modification status can change during sample preparation
- signal suppression of modified peptides in MS (preferential ionization of unmodified peptides)

To improve success of PTMs analysis

- specific sample preparation (enrichment te
- specific MS/MS operation modes

treatment etc.)

Phosphorylations sample treatment

phosphatase inhibitors, denaturation (as soon as possible)

enrichment of phosphopeptides (proteins)

- TiO₂ (MOAC "metal oxide affinity chromatography")
- IMAC ("immobilized metal affinity chromatography")
- SCX resp. SAX or HILIC (,, ion exchange or hydrophilic interaction chromatography")
- immunoprecipitation pomocí specifické protilátky

I.L. Batalha, Trends in Biotechnology 30 (2), 100-110 (2012)

Phosphorylations *MS analysis*

dedicated MS/MS fragmentation techniques preserving phosphogroup at aminoacid residue

CID (limited)

ETD (ECD) electron transfer (capture) dissociation

HCD *higher-energy collision dissociation*

EThcD electron-transfer/higher-energy collision dissociation Frese at al., J. Proteome Res., 12, 1520–1525 (2013)

Phosphorylations *how MS see modifications*

shift in peptide mass in **MS spectrum** corresponding to modification mass **indicates presence** of given type of PTM

Phosphorylations *how MS see modifications*

shift in fragment mass in **MS/MS spectrum** corresponding to modification mass **indentifies and localizes** given type of PTM

Histone acetylations

2-D gel electrophoresis (AUT-AU) histone extracts

w/o deacetyase inhibitors

with deacetylase inhibitor

Histone acetylations

LC-MS/MS analysis results

w/o deacetyase inhibitors

with deacetylase inhibitor

CG980

1 MSGR<mark>GKGGKG LGKGGAKR</mark>HR KVLR**DNIQGI TKPAIRR**LAR RGGVKRISGL 51 IYEETRGVLK VFLENVIRDA VØYTEHAKRK TVTAMDVVYA LKRQGRTLYG 101 FGG

Histone acetylations

CG980

distinguishing modification site in peptide GKGGKG LGKGGAKR (3x Ac)

Protein quantification

Protein quantification by MS general approaches

methods based on application of isotopic labels

absolute quantification

(determination of amount/concentration of given protein using additon of internal standard with known concentration)

• relative quantification

(comparison of changes in protein levels between two or more samples)

Isotopic labels are introduced to proteins at different stages of experiment: during cell cultivation or by chemical reaction after protein isolation or after digestion (peptides).

label free methods based on advanced processing of MS (MS/MS) data

Protein quantification by MS *absolute quantification*

Protein quantification by MS

CG980

relative quantification

Protein quantification by MS

relative quantification

The same peptides are not distinguished in MS mode

Protein quantification by MS

relative quantification – TMT labeling

Thermo Fischer Scientific

Protein quantification by MS *relative quantification – TMT labeling*

Reagents contain different numbers and combinations of 13C and 15N isotopes in the mass reporter. The different isotopes result in a 10-plex set of tags that have mass differences in the reporter that can be detected using **high resolution** Orbitrap MS instruments.

Thermo Fischer Scientific

... and this is the end