
Motivation
Inheritance
Homework

14. Inheritance

Ján Dugáček

March 24, 2019

Ján Dugáček 14. Inheritance

Motivation
Inheritance
Homework

Table of Contents

1 Motivation

2 Inheritance
Composition
Exercise
Modification
Exercise

3 Homework

Ján Dugáček 14. Inheritance

Motivation
Inheritance
Homework

Motivation

If there are more classes that solve the same problem in
different ways, it’s useful to have a class both can be
converted to

S t r i n gS a v e r a s S t r ;
F i l e S a v e r a s F i l e ("backup . dat ") ;
s a v e S t u f f (a s S t r) ;
s a v e S t u f f (a s F i l e) ;

Ján Dugáček 14. Inheritance

Motivation
Inheritance
Homework

Composition
Exercise
Modification
Exercise

Composition

c l a s s Report : p u b l i c s t d : : s t r i n g {
p u b l i c :

un s i gned i n t timestamp_ = 0 ;
} ;

Class Report has all the behaviour of std::string, but it
also has a public integer attribute timestamp_

It can be implicity converted into a std::string when taken
as a reference, but only the std::string part is taken when
it’s copied into a std::string

public keyword means that the parent class’ properties don’t
change, if there was private instead, they would all be
private and accessible only to the one child class

Ján Dugáček 14. Inheritance

Motivation
Inheritance
Homework

Composition
Exercise
Modification
Exercise

Composition #2

c l a s s Report : p u b l i c s t d : : s t r i n g {
p u b l i c :

un s i gned i n t timestamp_ = 0 ;
Report (con s t s t d : : s t r i n g& msg) :
s t d : : s t r i n g (msg)
{

timestamp_ = time (n u l l p t r) ;
}
s t d : : s t r i n g t o S t r i n g () {

r e t u r n s td : : t o_s t r i n g (timestamp_)
+ " : " + ∗ t h i s ;

}
} ;

Child class’ constructor calls parent class’ constructor
Child class can use parent’s methods as its own

Ján Dugáček 14. Inheritance

Motivation
Inheritance
Homework

Composition
Exercise
Modification
Exercise

Composition #3

c l a s s b i gC l a s s : p u b l i c s t d : : s t r i n g , p u b l i c complex ,
p u b l i c s t d : : a r r ay <in t , 12> {

} ;

It’s possible to inherit from any number of parent classes
The object can be converted to any of the parent classes and
has methods of all the parent classes
It all works with struct as well, but not with union

If some methods have the same names, it uses the current
type’s method, if there isn’t one and more parents have such
methods, it has to be specified like std::string::size()

Ján Dugáček 14. Inheritance

Motivation
Inheritance
Homework

Composition
Exercise
Modification
Exercise

Exercise

1 Create a class just like std::vector that checks its
boundaries when accessed via the square brace operator

2 Create a class just like std::vector, that has a method to
sort the elements

3 Create a class that is just like std::string, but also has a
method to replace a character by a number

4 Create a complex number class by inheriting from
std::pair<float,float>

Ján Dugáček 14. Inheritance

Motivation
Inheritance
Homework

Composition
Exercise
Modification
Exercise

Modification

A class must be written to be modifiable this way
This kind of modification makes function calls take longer
Standard’s classes aren’t designed to be modified this way,
other classes are meant to be composed of them and thus they
should be as fast as possible
Many libraries, however, are designed to have their classes
extended this way, some can’t even be made to work without
being finished this way

Ján Dugáček 14. Inheritance

Motivation
Inheritance
Homework

Composition
Exercise
Modification
Exercise

Modification #2

c l a s s pa r en t {
v i r t u a l i n t a () {

s td : : cout << "Not implemented " << std : : e nd l ;
r e t u r n 0 ;

{
} ;
c l a s s c h i l d : p u b l i c pa r en t {

v i r t u a l i n t a () {
r e t u r n 9 ;

}
} ;

The way to allow a method to be modified by children is to
declare the method virtual
An object’s virtual method will be called instead of the parent
class’ virtual method even if it’s used as a reference to a
parent’s class

Ján Dugáček 14. Inheritance

Motivation
Inheritance
Homework

Composition
Exercise
Modification
Exercise

Modification #3

c l a s s pa r en t {
v i r t u a l i n t a () {

s td : : cout << "Not implemented " << std : : e nd l ;
r e t u r n 0 ;

{
i n t v a l u e () {

r e t u r n t h i s −>a () ;
}

} ;
c l a s s c h i l d : p u b l i c pa r en t {

v i r t u a l i n t a () {
r e t u r n 9 ;

}
} ;

A parent’s method can call the child’s virtual method only by
using this->method()
Careful, some people who used Java before will write
this->something only to mark something is a member

Ján Dugáček 14. Inheritance

Motivation
Inheritance
Homework

Composition
Exercise
Modification
Exercise

Modification #4

c l a s s pa r en t {
v i r t u a l i n t a () = 0 ;
i n t v a l u e () {

r e t u r n a () ;
}

} ;
c l a s s c h i l d : p u b l i c pa r en t {

v i r t u a l i n t a () {
r e t u r n 9 ;

}
} ;

The parent doesn’t even have to define the virtual method, only to
declare it
In that case, its methods will call the child’s virtual methods
Such undefined methods are called abstract methods, classes that
contain them are called purely abstract classes and they cannot be
created, only their children that add these methods can
A class whose all methods are abstract and has no attributes is
called interface, but that word is often used to refer to any shared
parent class

Ján Dugáček 14. Inheritance

Motivation
Inheritance
Homework

Composition
Exercise
Modification
Exercise

Modification #5: Remarks

Calling virtual methods requires the program to check the
object’s type in runtime
Checking a variable’s type in runtime generally isn’t a good
approach in statically typed languages, but it’s the only way to
solve some issues efficiently, so virtual methods were created
to do it in a controlled and error-resilient way
This is a very powerful way to have classes share any amount
of functionality without duplicating code
If a class inherits from more parents that inherit from the same
parent class, they normally each contain a copy of the parent
class; this isn’t always intended and can be avoided by making
the attributes virtual as well, using the so called virtual
inheritance, which will not be further described here
Destructors must be virtual, calling a parent class’ destructor
only would not destroy the child’s contents

Ján Dugáček 14. Inheritance

Motivation
Inheritance
Homework

Composition
Exercise
Modification
Exercise

Exercise

1 Create a group of classes that contain a number, either integer
or floating point, but have a common write method that
outputs the number as a string

2 Create a named vector class that works both as a string and as
a vector, but push_back() uses the push_back() method of
std::vector

3 Create a group of classes with one method that either appends
at the back of a string, back of a file or writes into std::cout
depending on the actual type, but all can be used by the same
function

4 Create a class that appends string messages at the end of a
block that can be retrieved and allows other methods to inherit
from it to change its separator from newline to whatever else

Ján Dugáček 14. Inheritance

Motivation
Inheritance
Homework

Homework

Write a class and its descendants that represent parts of a
formula and have a common method to be computed, so that
you could compose functions consisting of some numeric
constants, variables and some basic operations of your choice
std::shared_ptr will be very useful here
You have two weeks to do it

Ján Dugáček 14. Inheritance

	Motivation
	Inheritance
	Composition
	Exercise
	Modification
	Exercise

	Homework

