
Motivation
Basic concepts of writing software well

SOLID principles
STUPID principles

Design patterns
Homework

15. Software design

Ján Dugáček

February 11, 2019

Ján Dugáček 15. Software design



Motivation
Basic concepts of writing software well

SOLID principles
STUPID principles

Design patterns
Homework

Table of Contents
1 Motivation
2 Basic concepts of writing software well

Main ways to write software badly
Motivation #2

3 SOLID principles
Single Responsibility Principle
Open/Closed Principle
Liskov Substitution Principle
Interface Segregation Principle
Dependency Inversion Principle

4 STUPID principles
5 Design patterns

Factory
Publisher/Subscriber
RAII
Facade
Flyweight
Singleton
Exercise

6 Homework Ján Dugáček 15. Software design



Motivation
Basic concepts of writing software well

SOLID principles
STUPID principles

Design patterns
Homework

Motivation

A program whose needed functionality and way of
implementation is absolutely clear from the start exists only in
the land of fairies and unicorns
Real programs have to do tasks that are unclear in advance, it
always turns out something cannot work the way it was
planned and nobody knows what will they be used for 20 years
later
This lecture doesn’t teach any code, only practices how to
design a program, applicable also to other programming
languages

Ján Dugáček 15. Software design



Motivation
Basic concepts of writing software well

SOLID principles
STUPID principles

Design patterns
Homework

Main ways to write software badly
Motivation #2

Basic concepts of writing software well

Don’t repeat yourself (DRY) - do your best to avoid
repetition of anything in the code, even if everyone has
copy/paste and find/replace available
Code readability - the code must be readable, function and
variable names should explain everything to a reader who
understands the topic, only nontrivial algorithms should require
comments
Code maintainability - the code will have to be changed, at
unpredictable places, by you after forgetting what it did or by
others who won’t have time to study it in depth

Ján Dugáček 15. Software design



Motivation
Basic concepts of writing software well

SOLID principles
STUPID principles

Design patterns
Homework

Main ways to write software badly
Motivation #2

Main ways to write software badly

We enjoy typing (WET) - also known as copy/paste-driven development,
repetitions make changes unbeliebably more difficult and error-prone to
do and can cause a single error to appear on multiple locations
Spaghetti code - the code flows almost unpredictably and it’s not very
visible where does it go from where (the design of most modern
programming languages prevents this to some extent)
Inconsistency - some names are in snake_case, others are in camelCase,
some others are in PascalCase while they all name the same kind of
constructs, indenting chaotically with spaces and tabs mixed, leaving
random numbers of newlines between function, marking member variables
differently, it all makes it hard to change the code using automatic tools
(using different cases for functions and classes is good)
Cargo cult programming - adhering to rules and following some
techniques without understanding what they are good for, just because
better programmers use them, this results in usage of these techniques in
places where they don’t make sense, disobeying essential rules to follow
less essential rules or adhering to rules derived from some alternative facts

Ján Dugáček 15. Software design



Motivation
Basic concepts of writing software well

SOLID principles
STUPID principles

Design patterns
Homework

Main ways to write software badly
Motivation #2

Motivation #2

That was quite obvious, no?
Well, it indeed was, but we are going to build on it
When writing the contents of a function in any programming
language with blocks, this breaks down just to using fors
instead of code repetition and naming variables properly
When writing a larger program with many objects and no
perfectly detailed plan, adhering to these rules becomes more
difficult
Techniques were designed, books were written about ways to
adhere to these standards
Of course, it happens that there isn’t a way to adhere to all
these rules, so if no friend can help you, prefer to break the
ones that seem less important in that context or to break them
in a smaller scale

Ján Dugáček 15. Software design



Motivation
Basic concepts of writing software well

SOLID principles
STUPID principles

Design patterns
Homework

Single Responsibility Principle
Open/Closed Principle
Liskov Substitution Principle
Interface Segregation Principle
Dependency Inversion Principle

SOLID principles

SOLID principles are 5 guidelines that generally help keep the code
clean. They are not equally important or equally obvious. They are:

Single responsibility principle
Open/closed principle
Liskov substitution principle
Interface segregation principle
Dependency inversion principle

Ján Dugáček 15. Software design



Motivation
Basic concepts of writing software well

SOLID principles
STUPID principles

Design patterns
Homework

Single Responsibility Principle
Open/Closed Principle
Liskov Substitution Principle
Interface Segregation Principle
Dependency Inversion Principle

Single Responsibility Principle

Every class represents exactly one logical object, every function does
exactly one logical activity. Not more, not less.

If class X represents functionalities A and B, it should be composed
of classes for A and B, so that if you want to add class Y that has
functionalities B and C, you won’t have to write B again
It’s often not very visible that a class implements more than one
functionality, so it’s useful to occasionally check if a new class isn’t
going to share some of its functionality or inner workings or if more
classes don’t happen to share something in common
Same as above applies to functions
Big objects or long functions are signs that this rule is violated, but
sometimes it’s a false positive
Functions also shouldn’t do less than one thing, because then have
to be called in groups, it is prone to human errors and repeating
groups of functions cause problems related to We Enjoy Typing

Ján Dugáček 15. Software design



Motivation
Basic concepts of writing software well

SOLID principles
STUPID principles

Design patterns
Homework

Single Responsibility Principle
Open/Closed Principle
Liskov Substitution Principle
Interface Segregation Principle
Dependency Inversion Principle

Single Responsibility Principle #2

X

A B

Y

B C

A B C

X Y

BAD
GOOD

Ján Dugáček 15. Software design



Motivation
Basic concepts of writing software well

SOLID principles
STUPID principles

Design patterns
Homework

Single Responsibility Principle
Open/Closed Principle
Liskov Substitution Principle
Interface Segregation Principle
Dependency Inversion Principle

Open/Closed Principle

Classes should be open for extension, but closed to modification.
There should be no way to drive an object into an inconsistent
state by uninformed usage, but it should be possible to alter the
class’ functionallity by inheriting from it.

This is very efficient at preventing human errors
Using an object differently than intended by its creator means
the person using it has made a mistake
If the programmer using it actually wants to use it differently,
a new class inheriting from it has to be created
Classes’ public methods and attributes should allow doing
only what is intended to be done, protected methods and
attributes are to be touched by new classes that are derived
from it

Ján Dugáček 15. Software design



Motivation
Basic concepts of writing software well

SOLID principles
STUPID principles

Design patterns
Homework

Single Responsibility Principle
Open/Closed Principle
Liskov Substitution Principle
Interface Segregation Principle
Dependency Inversion Principle

Liskov Substitution Principle

Any derived class can replace its parent and the program will
continue working correctly. It can do its work differently, it can do
also other work, but it must behave in that context exactly like the
parent would.

This allows new classes to be used in the same code as old
classes could be used
It’s essential when extending classes based on the Open/closed
principle, because class B that can’t be used as its parent A is
even less useful than class C containing A
Violations of this rule are quite obvious (or accidental)

Ján Dugáček 15. Software design



Motivation
Basic concepts of writing software well

SOLID principles
STUPID principles

Design patterns
Homework

Single Responsibility Principle
Open/Closed Principle
Liskov Substitution Principle
Interface Segregation Principle
Dependency Inversion Principle

Interface Segregation Principle

Each purpose should have its own interface, rather than one
interface for many purposes.

Various interfaces (or parent classes) should do unrelated
things, one interface (or parent class) should do only closely
related stuff
If two interfaces serve two closely related purposes, it becomes
difficult to use them separately and they don’t really follow the
Single responsibility principle with all the problems that
descend from it
Finding ways to properly split them can be a difficult task,
often requiring to create lower level interfaces that are used by
both

Ján Dugáček 15. Software design



Motivation
Basic concepts of writing software well

SOLID principles
STUPID principles

Design patterns
Homework

Single Responsibility Principle
Open/Closed Principle
Liskov Substitution Principle
Interface Segregation Principle
Dependency Inversion Principle

Interface Segregation Principle #2

X

A CB

P R TQ S

A CB

P R TQ S

Ján Dugáček 15. Software design



Motivation
Basic concepts of writing software well

SOLID principles
STUPID principles

Design patterns
Homework

Single Responsibility Principle
Open/Closed Principle
Liskov Substitution Principle
Interface Segregation Principle
Dependency Inversion Principle

Dependency Inversion Principle
Lower level details should not depend on high level abstractions, higher
level abstractions should not depend on details. There should be levels of
abstraction, where lower levels don’t call higher levels and higher levels
don’t call functionality from deep below.

The program should have layers, it starts on the highest layer
(main), general utilities and libraries are on the lowest, nothing of
the higher layers should ever be mentioned in the code of lower
layers (otherwise, these layers are joined, violating the Single
responsibility principle)
Also, no layer should touch layers too low below, because it makes it
difficult to change anything on these layers (if a class is used by 100
classes above it, changing its interface is difficult)
Overattachement to the second part can lead to lasagna code,
where one change needs changing many layers, needless extra code
lines with function calls; standard libraries are unlikely to ever
change anyway

Ján Dugáček 15. Software design



Motivation
Basic concepts of writing software well

SOLID principles
STUPID principles

Design patterns
Homework

Single Responsibility Principle
Open/Closed Principle
Liskov Substitution Principle
Interface Segregation Principle
Dependency Inversion Principle

Dependency Inversion Principle #2

A

B

C

D

E

F

G

A

A C

D E

B

F

IHG

B C

A

F

ED

G

H I

BAD

Possibly bad

GOOD

Ján Dugáček 15. Software design



Motivation
Basic concepts of writing software well

SOLID principles
STUPID principles

Design patterns
Homework

STUPID principles
STUPID principles are typical mistakes that are typically made when failing to write
the code correctly. As before, those are rules of thumb, not immutable physical laws.

Singleton - a class that has only one instance possible, allowing to obtain it
from any part of the code, allowing easy violation of Depedency inversion
principle and can be lead to Untestability, but can help keep the DRY rule and
improve efficiency, so it’s controversial if it’s really bad
Tight coupling - classes are too closely related to each other, have to be used in
groups and lead to We Enjoy Typing
Untestability - if a class is too connected to others, its testing becomes difficult
without actually using the program and checking if it works
Premature optimisation - making the code look like shit just to make it 2%
faster or not using readability improvements that the compiler can easily change
to the faster form anyway (4 statements instead of a for to avoid having to
increment a variable), unless absolutely certain that it helps

Overattachement to avoiding premature optimisation may lead to
premature pessimisation, when code is made slower without improving
readability

Indescriptive naming - unobvious shortcuts used in an era where screens are
wide enough
Duplication = We Enjoy Typing

Ján Dugáček 15. Software design



Motivation
Basic concepts of writing software well

SOLID principles
STUPID principles

Design patterns
Homework

Factory
Publisher/Subscriber
RAII
Facade
Flyweight
Singleton
Exercise

Design patterns

Design patterns are techniques of making the code better
They may or may not be useful depending on the situation
Many of them are used to solve specific difficulties at adhering
to SOLID principles
Some of them are rather obvious and they are good to know
only to know how to name them when describing code
There’s many of them, not all are mentioned
Patterns can be used incorrectly
Commonly used bad techniques are called antipatterns

Ján Dugáček 15. Software design



Motivation
Basic concepts of writing software well

SOLID principles
STUPID principles

Design patterns
Homework

Factory
Publisher/Subscriber
RAII
Facade
Flyweight
Singleton
Exercise

Factory

A factory is a class that makes classes of lower layer, whose
constructors alone cannot appropriately construct them
It may be used if the class’ construction would require some
data from a higher layer
It may be used to create a load of classes from some cached
data
It may be used to create objects of various classes with
common parent class from a file it reads and return them all as
instances of the parent class

Ján Dugáček 15. Software design



Motivation
Basic concepts of writing software well

SOLID principles
STUPID principles

Design patterns
Homework

Factory
Publisher/Subscriber
RAII
Facade
Flyweight
Singleton
Exercise

Publisher/Subscriber

A class allows other classes to register something in it so that
if it reacts to some action, it will perform some action they
have set
This allows classes of higher layers to have classes of lower
layers call their methods while keeping the code clean
It may be used to have a button alert some object that it was
pressed by calling a method it has registered in it
It may be used to have some communication class wait for
external signals and call some functions of a class on a higher
level
A similar pattern is Observer, where one object allows other
objects to register to be notified of its changes

Ján Dugáček 15. Software design



Motivation
Basic concepts of writing software well

SOLID principles
STUPID principles

Design patterns
Homework

Factory
Publisher/Subscriber
RAII
Facade
Flyweight
Singleton
Exercise

RAII

RAII means Resource acquisition is initialisation
An object that is completely set up when created and
completely frees everything when its existence ends
It allows to keep something active (like an open file or access
to some resource) until the end of block without having to
deactivate it anywhere, making sure no one will accidentally
leave it open
This is very usual and well supported in C++

Ján Dugáček 15. Software design



Motivation
Basic concepts of writing software well

SOLID principles
STUPID principles

Design patterns
Homework

Factory
Publisher/Subscriber
RAII
Facade
Flyweight
Singleton
Exercise

Facade

A class that only calls methods of some other class
It allows using multiple classes with incompatible interfaces by
the same code
It allows using a code with an ugly interface (whose authors
have cared to write the code well) without using ugly code -
there are libraries where using basic functionality requires 20
lines of code
A similar pattern is Adaptor that serves to translate the
output of one part of code so that it could be used by some
other code, some sort of last resort solution when parts of
code are incompatible

Ján Dugáček 15. Software design



Motivation
Basic concepts of writing software well

SOLID principles
STUPID principles

Design patterns
Homework

Factory
Publisher/Subscriber
RAII
Facade
Flyweight
Singleton
Exercise

Flyweight

An object that provides read-only data to other objects
It improves performance by storing the parsed, computed or
otherwise non-trivially obtained data for later use
A typical use is to use it to store parsed configuration data
there so that it would not ever be parsed again

Ján Dugáček 15. Software design



Motivation
Basic concepts of writing software well

SOLID principles
STUPID principles

Design patterns
Homework

Factory
Publisher/Subscriber
RAII
Facade
Flyweight
Singleton
Exercise

Singleton
A class that is instanced into only one object (usually using a private
constructor accessible only to a function that returns it and checks it
is created only once), allowing to obtain it from any part of program
It saves other classes and methods from having to pass references to
an object all around the program it’s always clear what object is
needed
Unlike a global variable, it can control what is done with it and keep
itself consistent
A backslash is that altering the program to use more of these
objects is difficult (but sometimes, there’s no way more of them
could be needed, if it is for example a Publisher for keybord input)
Classes using it become hard to test because replacing it by a fake
class for testing is an issue
It is often used to hide other problems (like a class used by too
many other classes) and can cause new problems (can be easily used
by classes of layers below it, tangling the dependencies)
Legitimate uses of singleton are rare, making its use quite
controversial

Ján Dugáček 15. Software design



Motivation
Basic concepts of writing software well

SOLID principles
STUPID principles

Design patterns
Homework

Factory
Publisher/Subscriber
RAII
Facade
Flyweight
Singleton
Exercise

Exercise

Don’t write any code, actually coding this would take quite some
time!

1 Design a simple brick breaker game
2 Draw a possible division to objects of a program that parses

and numerically solves equations for x; a user uses a command
line to write equations and receive solutions

3 Design a program that reads a file containing data, fits them
using polynomials and draws graphs

4 Design a library that draws 3D graphs of 2D arrays
5 Design a program that watches a folder with subfolders for

changes and synchronises the changes with a folder on a
mobile that is running another part of the program

Ján Dugáček 15. Software design



Motivation
Basic concepts of writing software well

SOLID principles
STUPID principles

Design patterns
Homework

Homework

Design a program that coordinates the work of devices of an
astronomical telescope, composed of lenses, cameras, filters,
engines and other parts typical for telescopes, offering a user
interface for its operators
Don’t try to write it
You have two weeks to do it

Ján Dugáček 15. Software design


	Motivation
	Basic concepts of writing software well
	Main ways to write software badly
	Motivation #2

	SOLID principles
	Single Responsibility Principle
	Open/Closed Principle
	Liskov Substitution Principle
	Interface Segregation Principle
	Dependency Inversion Principle

	STUPID principles
	Design patterns
	Factory
	Publisher/Subscriber
	RAII
	Facade
	Flyweight
	Singleton
	Exercise

	Homework

