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2. CW-complexes

2.1. Constructive definition of CW-complexes. CW-complexes are all the spaces
which can be obtained by the following construction:

(1) We start with a discrete space X0. Single points of X0 are called 0-dimensional
cells.

(2) Suppose that we have already constructed Xn−1. For every element α of an
index set Jn take a map fα : Sn−1 = ∂Dn

α → Xn−1 and put

Xn =
⋃
α

(
Xn−1 ∪fα Dn

α

)
.

Interiors of discs Dn
α are called n-dimensional cells and denoted by enα.

(3) We can stop our construction for some n and put X = Xn or we can proceed
with n to infinity and put

X =
∞⋃
n=0

Xn.

In the latter case X is equipped with inductive topology which means that
A ⊆ X is closed (open) iff A ∩Xn is closed (open) in Xn for every n.

Example A. The sphere Sn is a CW-complex with one cell e0 in dimension 0, one
cell en in dimension n and the constant attaching map f : Sn−1 → e0.

Example B. The real projective space RPn is the space of 1-dimensional linear sub-
spaces in Rn+1. It is homeomorhic to

Sn/(v ' −v) ∼= Dn/(w ' −w), for w ∈ ∂Dn = Sn−1.

However, Sn−1/(w ' −w) ∼= RPn−1. So RPn arises from RPn−1 by attaching one n-
dimensional cell using the projection f : Sn−1 → RPn−1. Hence RPn is a CW-complex
with one cell in every dimension from 0 to n.

We define RP∞ =
⋃∞
n=1RP

n. It is again a CW-complex.

Example C. The complex projective space CPn is the space of complex 1-dimensional
linear subspaces in Cn+1. It is homeomorhic to

S2n+1/(v ' λv) ∼= {(w,
√

1− |w|2) ∈ Cn+1; ‖w‖ ≤ 1}/((w, 0) ' λ(w, 0), ‖w‖ = 1)

∼= D2n/(w ' λw; w ∈ ∂D2n)

for all λ ∈ C, |λ| = 1. However, ∂D2n/(w ' λw) ∼= CPn−1. So CPn arises from CPn−1
by attaching one 2n-dimensional cell using the projection f : S2n−1 = ∂D2n → CPn−1.
Hence CPn is a CW-complex with one cell in every even dimension from 0 to 2n.
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Define CP∞ =
⋃∞
n=1 CP

n. It is again a CW-complex.

2.2. Another definition of CW-complexes. Sometimes it is advantageous to be
able to describe CW-complexes by their properties. We carry it out in this paragraph.
Then we show that the both definitions of CW-complexes are equivalent.

Definition. A cell complex is a Hausdorff topological space X such that

(1) X as a set is a disjoint union of cells eα

X =
⋃
α∈J

eα.

(2) For every cell eα there is a number, called dimension.

Xn =
⋃

dim eα≤n

eα

is the n-skeleton of X.
(3) Cells of dimension 0 are points. For every cell of dimension ≥ 1 there is a

characteristic map

ϕα : (Dn, Sn−1)→ (X,Xn−1)

which is a homeomorphism of intDn onto eα.

The cell subcomplex Y of a cell complex X is a union Y =
⋃
α∈K eα , K ⊆ J , which

is a cell complex with the same characterictic maps as the complex X.
A CW-complex is a cell complex satisfying the following conditions:

(C) Closure finite property. The closure of every cell belongs to a finite subcomplex,
i. e. subcomplex consisting only from a finite number of cells.

(W) Weak topology property. F is closed in X if and only if F ∩ ēα is closed for
every α.

Example. Examples of cell complexes which are not CW-complexes:

(1) S2 where every point is 0-cell. It does not satisfy property (W).
(2) D3 with cells e3 = intB3, e0x = {x} for all x ∈ S2. It does not satisfy (C).
(3) X = {1/n; n ≥ 1} ∪ {0} ⊂ R. It does not satisfy (W).
(4) X =

⋃∞
n=1{x ∈ R2; ‖x− (1/n, 0)‖ = 1/n} ⊂ R2. If it were a CW-complex, the

set {(1/n, 0) ∈ R2; n ≥ 1} would be closed in X, and consequently in R2.

2.3. Equivalence of definitions.

Proposition. The definitions 2.1 and 2.2 of CW-complexes are equivalent.

Proof. We will show that a space X constructed according to 2.1 satisfies definition
2.2. The proof in the opposite direction is left as an exercise to the reader.

The cells of dimension 0 are points of X0. The cells of dimension n are interiors of
discs Dn

α attached to Xn−1 with charakteristic maps

ϕα : (Dn
α, S

n−1
α )→ (Xn−1 ∪fα Dn

α, X
n−1)
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induced by identity on Dn
α. So X is a cell complex. From the construction 2.1 it

follows that X satisfies property (W). It remains to prove property (C). We will carry
it out by induction.

Let n = 0. Then e0α = e0α.
Let (C) holds for all cells of dimension ≤ n− 1. enα is a compact set (since it is an

image of Dn
α). Its boundary ∂enα is compact in Xn−1. Consider the set of indices

K = {β ∈ J ; ∂enα ∩ eβ 6= ∅}.

If we show that K is finite, from the inductive assumption we get that ēnα lies in a
finite subcomplex which is a union of finite subcomplexes for ēβ, β ∈ K.

Choosing one point from every intersection ∂enα ∩ eβ, β ∈ K we form a set A. A is
closed since any intersection with a cell is empty or a onepoint set. Simultaneously, it
is open, since every its element a forms an open subset (for A− {a} is closed). So A
is a discrete subset in the compact set ∂enα, consequently, it is finite. �

2.4. Compact sets in CW complexes.

Lemma. Let X be a CW-complex. Then any compact set A ⊆ X lies in a finite
subcomplex, particularly, there is n such that A ⊆ Xn.

Proof. Consider the set of indices

K = {β ∈ J ; A ∩ eβ 6= ∅}.

Similarly as in 2.3 we will show that K is a finite set. Then A ⊆
⋃
β∈K ēβ and every

ēβ lies in a finite subcomplexes. Hence A itself is a subset of a finite subcomplex. �

2.5. Cellular maps. Let X and Y be CW-complexes. A map f : X → Y is called
a cellular map if f(Xn) ⊆ Y n for all n. In Section 5 we will prove that every map
g : X → Y is homotopic to a cellular map f : X → Y . If moreover, g restricted to a
subcomplex A ⊂ X is already cellular, f can be chosen in such a way that f = g on
A.

2.6. Spaces homotopy equivalent to CW-complexes. One can show that every
open subset of Rn is a CW-complex. In [Hatcher], Theorem A.11, it is proved that
every retract of a CW-complex is homotopy equivalent to a CW-complex. These
two facts imply that every compact manifold with or without boundary is homotopy
equivalent to a CW-complex. (See [Hatcher], Corollary A.12.)

2.7. CW complexes and HEP. The most important result of this section is the
following theorem:

Theorem. Let A be a subcomplex of a CW-complex X. Then the pair (X,A) has the
homotopy extension property.
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Proof. According to the last theorem in Section 1 it is sufficient to prove that X ×
{0} ∪A× I is a retract of X × I. We will prove that it is even a deformation retract.
There is a retraction rn : Dn × I → Dn × {0} ∪ Sn−1 × I. (See Section 1.) Then
hn : Dn × I × I → Dn × I defined by

hn(x, s, t) = (1− t)(x, s) + trn(x, s)

is a deformation retraction, i.e. a homotopy between id and rn.
Put Y −1 = A, Y n = Xn ∪ A. Using hn we can define a deformation retraction

Hn : Y n × I × I → Y n × I for the retract Y n × {0} ∪ Y n−1 × I of Y n × I. Now define
the deformation retraction H : X × I × I → X × I for the retract X × {0} ∪ A × I
succesively on the subspaces X×{0}× I ∪Y n× I× I with values in X×{0}∪Y n× I.
For n = 0 put

H(x, s, t) = (x, s) for (x, s) ∈ X × {0} or t ∈ [0, 1/2],

H(x, s, t) = H0(x, s, 2(t− 1/2)) for x ∈ Y 0 and t ∈ [1/2, 1].

Suppose that we have already defined H on X×{0}∪Y n−1× I. On X×{0}∪Y n× I
we put

H(x, s, t) = (x, s) for (x, s) ∈ X × {0} or t ∈ [0, 1/2n+1],

H(x, s, t) = Hn(x, s, 2n+1(t− 1/2n+1)) for x ∈ Y n and t ∈ [1/2n+1, 1/2n],

H(x, s, t) = H(H(x, s, 1/2n), t) for x ∈ Y n and t ∈ [1/2n, 1].

H : X×I×I → X×I is continuous since so are its restrictions onX×{0}×I∪Y n×I×I
and the space X × I × I is a direct limit of the subspaces X × {0} × I ∪ Y n × I × I.

X × I

t = 1
8
t = 1

4
t = 1

2
t = 1t = 0

X × {0} ∪ A× I

X × {0} ∪ Y 2 × I

X × {0} ∪ Y 1 × I

X × {0} ∪ Y 0 × I

Figure 2.1. Image of H depending on t

�

2.8. First criterion for homotopy equivalence.

Proposition. Suppose that a pair (X,A) has the homotopy extension property and
that A is contractible (in A). Then the canonical projection q : X → X/A is a
homotopy equivalence.
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Proof. Since A is contractible, there is a homotopy h : A × I → A between idA and
constant map. This homotopy together with idX : X → X can be extended to a
homotopy f : X × I → X. Since f(A, t) ⊆ A for all t ∈ I, there is a homotopy

f̃ : X/A× I → X/A such that the diagram

X × I f //

q

��

X

q

��
X/A× I

f̃

// X/A

commutes. Define g : X/A → X by g([x]) = f(x, 1). Then idX ∼ g ◦ q via the

homotopy f and idX/A ∼ q ◦ g via the homotopy f̃ . Hence X is homotopy equivalent
to X/A. �

Exercise A. Using the previous criterion show that S2/S0 ∼ S2 ∨ S1.

Exercise B. Using the previous criterion show that the suspension and the reduced
suspension of a CW-complex are homotopy equivalent.

2.9. Second criterion for homotopy equivalence.

Proposition. Let (X,A) be a pair of CW-complexes and let Y be a space. Suppose
that f, g : A → Y are homotopic maps. Then X ∪f Y and X ∪g Y are homotopy
equivalent.

Proof. Let F : A× I → Y be a homotopy between f and g. We will show that X ∪f Y
and X ∪g Y are both deformation retracts of (X × I) ∪F Y . Consequently, they have
to be homotopy equivalent.

We construct a deformation retraction in two steps.

(1) (X × {0}) ∪f Y is a deformation retract of (X × {0} ∪ A× I) ∪F Y .
(2) (X × {0} ∪ A× I) ∪F Y is a deformation retract of (X × I) ∪F Y .

�

Exercise. Let (X,A) be a pair of CW-complexes. Suppose that A is a contractible
in X, i. e. there is a homotopy F : A → X between idX and const. Using the first
criterion show that X/A ∼= X ∪CA/CA ∼ X ∪CA. Using the second criterion prove
that X ∪ CA ∼ X ∨ SA. Then

X/A ∼ X ∨ SA.
Apply it to compute Sn/Si, i < n.
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