INTRODUCTION TO ALGEBRAIC TOPOLOGY MARTIN ČADEK

5. Singular cohomology

Cohomology forms a dual notion to homology. To every topological space we assign a graded group $H^*(X)$ equipped with a ring structure given by a product $\cup : H^i(X) \times$ $H^j(X) \to H^{i+j}(X)$. In this section we give basic definitions and properties of singular cohomology groups which are very similar to those of homology groups.

5.1. Cochain complexes. A cochain complex (C, δ) is a sequence of Abelian groups (or modules over a ring) and their homomorphisms indexed by integers

$$\dots \xrightarrow{\delta^{n-2}} C^{n-1} \xrightarrow{\delta^{n-1}} C^n \xrightarrow{\delta^n} C^{n+1} \xrightarrow{\delta^{n+1}} \dots$$

such that

$$\delta^n \delta^{n-1} = 0.$$

 δ^n is called a coboundary operator. A *cochain homomorphism* of cochain complexes (C, δ_C) and (D, δ_D) is a sequence of homomorphisms of Abelian groups (or modules over a ring) $f^n : C^n \to D^n$ which commute with the coboundary operators

$$\delta_D^n f_n = f^{n+1} \delta_C^n.$$

5.2. Cohomology of cochain complexes. The *n*-th cohomology group of a cochain complex (C, δ) is the group

$$H^n(C) = \frac{\operatorname{Ker} \delta^n}{\operatorname{Im} \delta^{n-1}}.$$

The elements of Ker $\delta^n = Z^n$ are called *cocycles* of dimension n and the elements of Im $\delta^{n-1} = B^n$ are called *coboundaries* (of dimension n). If a cochain complex is exact, then its cohomology groups are trivial.

The component f^n of the cochain homomorphism $f : (C, \delta_C) \to (D, \delta_D)$ maps cocycles into cocycles and coboundaries into coboundaries. It enables us to define

$$H^n(f): H^n(C) \to H^n(D)$$

by the prescription $H^n(f)[c] = [f^n(c)]$ where $[c] \in H^n(C)$ and $[f^n(c)] \in H^n(D)$ are classes represented by the elements $c \in Z^n(C)$ and $f^n(c) \in Z^n(D)$, respectively.

5.3. Long exact sequence in cohomology. A sequence of cochain homomorphisms

$$\cdots \to A \xrightarrow{f} B \xrightarrow{g} C \to \dots$$

is exact if for every $n \in \mathbb{Z}$

$$\cdots \to A^n \xrightarrow{f^n} B_n \xrightarrow{g^n} C^n \to \ldots$$

is an exact sequence of Abelian groups. Similarly as for homology groups we can prove

Theorem. Let $0 \to A \xrightarrow{i} B \xrightarrow{j} C \to 0$ be a short exact sequence of cochain complexes. Then there is a so called connecting homomorphism $\delta^* : H^n(C) \to H^{n+1}(A)$ such that the sequence

$$\dots \xrightarrow{\delta^*} H^n(A) \xrightarrow{H^n(i)} H^n(B) \xrightarrow{H^n(j)} H^n(C) \xrightarrow{\delta^*} H^{n+1}(A) \xrightarrow{H^{n+1}(i)} \dots$$

is exact.

5.4. Cochain homotopy. Let $f, g : C \to D$ be two cochain homomorphisms. We say that they are *cochain homotopic* if there are homomorphisms $s^n : C^n \to D^{n-1}$ such that

$$\delta_D^{n-1}s^n + s^{n+1}\delta_C^n = f^n - g^n \quad \text{for all } n.$$

The relation to be cochain homotopic is an equivalence. The sequence of maps s^n is called a *cochain homotopy*. Similarly as for homology we have

Theorem. If two cochain homomorphism $f, g : C \to D$ are cochain homotopic, then $H^n(f) = H^n(g).$

5.5. Singular cohomology groups of a pair. Consider a pair of topological spaces (X, A), an inclusion $i : A \hookrightarrow X$ and an Abelian group G. Let

$$C(X, A) = (C_n(X)/C_n(A), \partial_n)$$

be the singular chain complex of the pair (X, A). The singular cochain complex $(C(X, A; G), \delta)$ for the pair (X, A) is defined as

$$C^{n}(X,A;G) = \operatorname{Hom}\left(C_{n}(X,A),G\right) \cong \{h \in \operatorname{Hom}(C_{n}(X),G); \ h|C_{n}(A) = 0\}$$
$$= \operatorname{Ker} i^{*} : \operatorname{Hom}(C_{n}(X),G) \longrightarrow \operatorname{Hom}(C_{n}(A),G).$$

and

$$\delta^n(h) = h \circ \partial_{n+1} \text{ for } h \in \operatorname{Hom}(C_n(X, A), G).$$

The *n*-th cohomology group of the pair (X, A) with coefficients in the group G is the *n*-th cohomology group of this cochain complex

$$H^n(X, A; G) = H^n(C(X, A; G), \delta).$$

We write $H^n(X; G)$ for $H^n(X, \emptyset; G)$. A map $f : (X, A) \to (Y, B)$ induces the cochain homomorphism $C^n(f) : C^n(Y; G) \to C^n(X; G)$ by

$$C^n(f)(h) = h \circ C_n(f)$$

which restricts to a cochain homomorphism $C^n(Y, B; G) \to C^n(X, A; G)$ since $f(A) \subseteq B$. In cohomology it induces the homomorphism

$$f^* = H^n(f) : H^n(Y, B) \to H^n(X, A).$$

Moreover, $H^n(\mathrm{id}_{(X,A)}) = \mathrm{id}_{H^n(X,A;G)}$ and $H^n(fg) = H^n(g)H^n(f)$. We can conclude that H^n is a contravariant functor (cofunctor) from the category Top^2 into the category \mathcal{AG} of Abelian groups.

5.6. Long exact sequence for singular cohomology. Consider inclusions of spaces $i : A \hookrightarrow X, i' : B \hookrightarrow Y$ and maps $j : (X, \emptyset) \to (X, A), j' : (Y, \emptyset) \to (Y, B)$ induced by id_X and id_Y , respectively. Let $f : (X, A) \to (Y, B)$ be a map. Then there are connecting homomorphisms δ_X^* and δ_Y^* such that the following diagram

$$\dots \xrightarrow{\delta_X^*} H^n(X, A; G) \xrightarrow{j^*} H^n(X; G) \xrightarrow{i^*} H^n(A; G) \xrightarrow{\delta_X^*} H^{n+1}(X, A; G) \xrightarrow{j^*} \dots$$

$$\uparrow f^* \qquad \uparrow f^* \qquad \uparrow (f/B)^* \qquad \uparrow f^* \qquad \downarrow f^* \qquad \uparrow f^* \qquad \downarrow f^* \qquad \uparrow f^* \qquad \downarrow f^* \qquad f^$$

commutes and its horizontal sequences are exact.

The proof follows from Theorem 5.3 using the fact that

 $0 \to C^n(X,A;G) \xrightarrow{C^n(j)} C^n(X;G) \xrightarrow{C^n(i)} C^n(A;G) \to 0$

is a short exact sequence of cochain complexes as it follows directly from the definition of $C^n(X, A; G)$.

Remark A. Consider the functor $I : \mathsf{Top}^2 \to \mathsf{Top}^2$ which assigns to every pair (X, A) the pair (A, \emptyset) . The commutativity of the last square in the diagram above means that δ^* is a natural transformation of contravariant functors $H^n \circ I$ and H^{n+1} defined on Top^2 .

Remark B. It is useful to realize how $\delta^* : H^n(A; G) \to H^{n+1}(X, A; G)$ looks like. Every element of $H^n(A; G)$ is represented by a cochain $q \in \text{Hom}(C_n(A); G)$ with a zero coboundary $\delta q \in \text{Hom}(C_{n+1}(A); G)$. Extend q to $Q \in \text{Hom}(C_n(X); G)$ in arbitrary way. Then $\delta Q \in \text{Hom}(C_{n+1}(X), G)$ restricted to $C_{n+1}(A)$ is equal to $\delta q = 0$. Hence it lies in $\text{Hom}(C_{n+1}(X, A); G)$ and from the definition in 5.3 we have

$$\delta^*[q] = [\delta Q].$$

5.7. Homotopy invariance. If two maps $f, g : (X, A) \to (Y, B)$ are homotopic, then they induce the same homomorphisms

$$f^* = g^* : H^n(Y, B; G) \to H_n(X, A; G).$$

Proof. We already know that the homotopy between f and g induces a chain homotopy s_* between $C_*(f)$ and $C_*(g)$. Then we can define a cochain homotopy between $C^*(f)$ and $C^*(g)$ as

$$s^{n}(h) = h \circ s_{n-1}$$
 for $h \in \operatorname{Hom}(C_{n}(Y); G)$

and use Theorem 5.4.

Corollary. If X and Y are homotopy equivalent spaces, then

$$H^n(X) \cong H^n(Y).$$

5.8. Excision Theorem. Similarly as for singular homology groups there are two equivalent versions of this theorem.

Theorem A (Excision Theorem, 1st version). Consider spaces $C \subseteq A \subseteq X$ and suppose that $\overline{C} \subseteq \text{int } A$. Then the inclusion

$$i: (X - C, A - C) \hookrightarrow (X, A)$$

induces the isomorphism

$$i^*: H^n(X, A; G) \xrightarrow{\cong} H^n(X - C, A - C; G).$$

Theorem B (Excision Theorem, 2nd version). Consider two subspaces A and B of a space X. Suppose that $X = \text{int } A \cup \text{int } B$. Then the inclusion

$$i: (B, A \cap B) \hookrightarrow (X, A)$$

induces the isomorphism

$$i^*: H^n(X, A; G) \xrightarrow{\cong} H^n(B, A \cap B; G).$$

The proof of Excision Theorem for singular cohomology follows from the proof of the homology version.

5.9. Cohomology of finite disjoint union. Let $X = \coprod_{\alpha=1}^{k} X_{\alpha}$ be a disjoint union. Then

$$H^{n}(X;G) = \bigoplus_{\alpha=1}^{k} H^{n}(X_{\alpha}).$$

The statement is not generally true for infinite unions.

5.10. Reduced cohomology groups. For every space $X \neq \emptyset$ we define the *augmented cochain complex* $(\tilde{C}^*(X;G), \tilde{\delta})$ as follows

$$\tilde{C}^n(X;G) = \operatorname{Hom}(\tilde{C}_n(X);G)$$

with $\tilde{\delta}^n h = h \circ \tilde{\partial}_{n+1}$ for $h \in \text{Hom}(\tilde{C}_n(X); G)$. See 3.14. The reduced cohomology groups $\tilde{H}_n(X; G)$ with coefficients in G are the cohomology groups of the augmented cochain complex. From the definition it is clear that

$$\tilde{H}^n(X;G) = H^n(X;G) \text{ for } n \neq 0$$

and

$$H^n(*;G) = 0 \quad \text{for all } n.$$

For pairs of spaces we define $\tilde{H}^n(X, A; G) = H^n(X, A; G)$ for all *n*. Then theorems on long exact sequence, homotopy invariance and excision hold for reduced cohomology groups as well.

Considering a space X with base point * and applying the long exact sequence for the pair (X, *), we get that for all n

$$H^{n}(X;G) = H^{n}(X,*;G) = H^{n}(X,*;G).$$

Using this equality and the long exact sequence for unreduced cohomology we get that

$$H^0(X;G) \cong H^0(X,*;G) \oplus H^0(*;G) \cong \tilde{H}^0(X) \oplus \mathbb{G}.$$

Analogously as for homology groups we have

Lemma. Let (X, A) be a pair of CW-complexes. Then

$$H^n(X/A;G) = H^n(X,A;G)$$

and we have the long exact sequence

$$\cdots \to \tilde{H}^n(X/A;G) \to \tilde{H}^n(X;G) \to \tilde{H}^n(A;G) \to \tilde{H}^{n+1}(X/A;G) \to \dots$$

5.11. The long exact sequence of a triple. Consider a triple (X, B, A), $A \subseteq B \subseteq X$. Denote $i : (B, A) \hookrightarrow (X, A)$ and $j : (X, A) \to (X, B)$ maps induced by the inclusion $B \hookrightarrow X$ and id_X , respectively. Analogously as for homology one can derive the long exact sequence of the triple (X, B, A)

$$\dots \xrightarrow{\delta^*} H^n(X,B;G) \xrightarrow{j^*} H^n(X,A;G) \xrightarrow{i^*} H^n(B,A;G) \xrightarrow{\delta^*} H^{n+1}(X,B;G) \xrightarrow{j^*} \dots$$

5.12. Singular cohomology groups of spheres. Considering the long exact sequence of the triple $(\Delta^n, \delta \Delta^n, V = \delta \Delta^n - \Delta^{n-1})$: we get that

$$H^{i}(\Delta^{n}, \partial \Delta^{n}; G) = \begin{cases} G & \text{for } i = n, \\ 0 & \text{for } i \neq n. \end{cases}$$

The pair (D^n, S^{n-1}) is homeomorphic to $(\Delta^n, \partial \Delta^n)$. Hence it has the same cohomology groups. Using the long exact sequence for this pair we obtain

$$\tilde{H}^{i}(S^{n};G) = H^{i+1}(D^{n+1},S^{n}) = \begin{cases} 0 & \text{for } i \neq n, \\ G & \text{for } i = n. \end{cases}$$

5.13. Mayer-Vietoris exact sequence. Denote inclusions $A \cap B \hookrightarrow A$, $A \cap B \hookrightarrow B$, $A \hookrightarrow X$, $B \hookrightarrow X$ by i_A , i_B , j_A , j_B , respectively. Let $C \hookrightarrow A$, $D \hookrightarrow B$ and suppose that $X = \operatorname{int} A \cup \operatorname{int} B$, $Y = \operatorname{int} C \cup \operatorname{int} D$. Then there is the long exact sequence

$$\dots \xrightarrow{\delta^*} H^n(X,Y;G) \xrightarrow{(j_A^*,j_B^*)} H^n(A,C;G) \oplus H^n(B,D;G)$$
$$\xrightarrow{i_A^* - i_B^*} H_n(A \cap B, C \cap D;G) \xrightarrow{\delta^*} H^{n+1}(X,Y;G) \longrightarrow \dots$$

Proof. The coverings $\mathcal{U} = \{A, B\}$ and $\mathcal{V} = \{C, D\}$ satisfy conditions of Lemma 3.12. The sequence of chain complexes

$$0 \longrightarrow C_n(A \cap B, C \cap D) \xrightarrow{i} C_n(A, C) \oplus C_n(B; D) \xrightarrow{j} C_n^{\mathcal{U}, \mathcal{V}}(X, Y) \longrightarrow 0$$

where i(x) = (x, x) and j(x, y) = x - y is exact. Applying Hom(-, G) we get a new short exact sequence of cochain complexes

$$0 \longrightarrow C^n_{\mathcal{U},\mathcal{V}}(X,Y;G) \xrightarrow{j^*} C^n(A,C;G) \oplus C^n(B,D;G) \xrightarrow{i^*} C^n(A \cap B, C \cap D;G) \longrightarrow 0$$

and it induces a long exact sequence. Using Lemma 3.12 we get that $H^n(C_{\mathcal{U},\mathcal{V}}(X,Y;G)) =$ $H^n(X, Y; G)$, which completes the proof.

5.14. Computations of cohomology of CW-complexes. If we know a CWstructure of a space X, we can compute its cohomology in the same way as homology. Consider the chain complex from Section 4

$$(H_n(X^n, X^{n-1}), d_n).$$

Theorem. Let X be a CW-complex. The n-th cohomology group of the cochain complex

 $(\operatorname{Hom}(H_n(X^n, X^{n-1}; G), d^n) \quad d^n(h) = h \circ d_n$

is isomorphic to the n-th singular cohomology group $H^n(X;G)$.

Exercise A. After reading the next section try to prove the theorem above using the results and proofs from Section 4.

Exercise B. Compute singular cohomology of real and complex projective spaces with coefficients \mathbb{Z} and \mathbb{Z}_2 .

> CZ.1.07/2.2.00/28.0041 Centrum interaktivních a multimediálních studijních opor pro inovaci výuky a efektivní učení

 $\mathbf{6}$