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7. Products in cohomology

An internal product in cohomology brings a further algebraic structure. The con-
travariant functor H∗ becomes a cofunctor into graded rings. It enables us to obtain
more information on topological spaces and homotopy classes of maps. In this sec-
tion we will define an internal product – called the cup product and a closely related
external product – called the cross product.

7.1. Cup product. Let R be a commutative ring with a unite and let X be a
space. For two cochains ϕ ∈ Ck(X;R) and ψ ∈ C l(X;R) we define their cup product
ϕ ∪ ψ ∈ Ck+l(X;R)

(ϕ ∪ ψ)(σ) = ϕ(σ/[v0, v1, . . . , vk]) · ψ(σ/[vk, vk+1, . . . , vk+l])

for any singular simplex σ : ∆k+l → X. The notation σ/[v0, v1, . . . , vk] and σ/[vk, vk+1,
. . . , vk+l] stands for σ composed with inclusions of the standard simplices ∆k and ∆l

into the indicated faces of the standard simplex ∆k+l, respectively. The coboundary
operator δ behaves on the cup products of cochains as graded derivation as shown in
the following

Lemma.

δ(ϕ ∪ ψ) = δϕ ∪ ψ + (−1)kϕ ∪ δψ.

Proof. For σ ∈ Ck+l+1(X) we get

(δϕ ∪ ψ)(σ) + (−1)k(ϕ ∪ δψ)(σ) = δϕ(σ/[v0, v1, . . . , vk+1])ψ(σ/[vk+1, . . . , vk+l+1])

+ (−1)kϕ(σ[v0, v1, . . . , vk])δψ(σ/[vk, . . . , vk+l+1])

=
k+1∑
i=0

(−1)iϕ(σ/[v0, . . . , v̂i, . . . , vk+1])(ψ(σ/[vk+1, . . . , vk+l+1]))

+ (−1)k

(
k+l+1∑
j=k

(−1)j−kϕ(σ/[v0, . . . , vk])ψ(σ/[vk, . . . , v̂j, . . . , vk+l+1])

)

=
k+l+1∑
i=0

(−1)i(ϕ ∪ ψ)(σ/[v0, . . . , v̂i, . . . , vk+l+1]) = δ(ϕ ∪ ψ)(σ).

�

Lemma implies that
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(1) If ϕ and ψ are cocycles, then ϕ ∪ ψ is a cocycle.
(2) If one of the cochains ϕ and ψ is a coboundary, then ϕ ∪ ψ is a coboundary.

It enables us to define the cup product

∪ : Hk(X;R)×H l(X;R)→ Hk+l(X;R)

by the prescription

[ϕ] ∪ [ψ] = [ϕ ∪ ψ]

for cocycles ϕ and ψ. Since ∪ is an R-bilinear map on Hk(X;R)×H l(X;R), it can be
considered as an R-linear map on the tensor product Hk(X;R) ⊗R H l(X;R). Given
a pair of spaces (X,A) we can define the cup product as a linear map

∪ :Hk(X,A;R)⊗R H l(X;R)→ Hk+l(X,A;R),

∪ :Hk(X;R)⊗R H l(X,A;R)→ Hk+l(X,A;R),

∪ :Hk(X,A;R)⊗R H l(X,A;R)→ Hk+l(X,A;R).

Moreover, if A and B are open in X or A and B are subcomplexes of CW-complex
X, one can define

∪ : Hk(X,A;R)⊗R H l(X,B;R)→ Hk+l(X,A ∪B;R).

Exercise. Prove that the previous definitions of cup product for pairs of spaces are
correct. For the last case you need Lemma 3.12.

Remark. In the same way as the singular cohomology groups and the cup product
have been defined using the singular chain complexes, we can introduce simplicial
cohomology groups for ∆-complexes and a cup product in these groups.

7.2. Properties of the cup product are following:

(1) The cup product is associative.
(2) If X 6= ∅, there is an element 1 ∈ H0(X;R) such that for all α ∈ Hk(X,A;R)

1 ∪ α = α ∪ 1 = α.

(3) For all α ∈ Hk(X,A;R) and β ∈ H l(X,A;R)

α ∪ β = (−1)klβ ∪ α,

i. e. the cup product is graded commutative.
(4) Naturality of the cup product. For every map f : (X,A) → (Y,B) and any

α ∈ Hk(Y,B;R), β ∈ H l(Y,B;R) we have

f ∗(α ∪ β) = f ∗(α) ∪ f ∗(β).

Remark. Properties (1) – (3) mean that H∗(X,A;R) =
⊕∞

i=0H
i(X,A;R) with the

cup product is not only a graded group but also a graded ring and that H∗(X;R) is
even a graded ring with a unit if X 6= ∅. Property (4) says that f : (X,A) → (Y,B)
induces a ring homomorphism f ∗ : H∗(Y,B;R)→ H∗(X,A;R).
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Proof. To prove properties (1), (2) and (4) is easy and left to the reader as an exercise.
To prove property (3) is more difficult. We refer to [Hatcher], Theorem 3.14, pages
215 – 217 for geometrically motivated proof. Another approach is outlined later in
7.8. �

7.3. Cross product. Consider spaces X and Y and projections p1 : X×Y → X and
p2 : X × Y → Y . We will define the cross product or external product. The absolute
and relative forms are the linear maps

µ : Hk(X,R)⊗H l(Y ;R)→ Hk+l(X × Y ;R),

µ : Hk(X,A;R)⊗H l(Y,B;R)→ Hk+l(X × Y,A× Y ∪X ×B;R)

given by

µ(α⊗ β) = p∗1(α) ∪ p∗2(β).

For the relative form of the cross product we suppose that A and B are open in X and
Y , or that A and B are subcomplexes of X and Y , respectively. (See the definition of
the cup product.) The name cross product comes from the notation since µ(α⊗ β) is
often written as α× β.

Exercise. Let ∆ : X → X × X be the diagonal ∆(x) = (x, x). Show that for
α, β ∈ H∗(X;R)

α ∪ β = ∆∗
(
µ(α⊗ β)

)
.

7.4. Tensor product of graded rings. Let A∗ =
⊕∞

n=0A
n and B∗ =

⊕∞
n=0B

n

be graded rings. Then the tensor product of graded rings A∗ ⊗ B∗ is the graded ring
C∗ =

⊕∞
n=0C

n where

Cn =
⊕
i+j=n

Ai ⊗Bj

with the multiplication given by

(a1 ⊗ b1) · (a2 ⊗ b2) = (−1)|b1|·|a2|(a1 · a2)⊗ (b1 · b2).
Here |b1| is the degree of b1 ∈ B∗, i.e. b1 ∈ B|b1|. If A∗ and B∗ are graded commutative,
so is A∗ ⊗B∗.

Lemma. The cross product

µ : Hk(X,A;R)⊗H l(Y,B;R)→ Hk+l(X × Y,A× Y ∪X ×B;R)

is a homomorphism of graded rings.

Proof. Using the definitions of the cup and cross products and their properties we have

µ
(
(a× b) · (c× d

)
) = (−1)|b|·|c|µ

(
(a ∪ c)⊗ (b ∪ d)

)
= (−1)|b|·|c|p∗1(a ∪ c) ∪ p∗2(b ∪ d)

= (−1)|b|·|c|p∗1(a) ∪ p∗1(c) ∪ p∗2(b) ∪ p∗2(d)

= p∗1(a) ∪ p∗2(b) ∪ p∗1(c) ∪ p∗2(d) = µ(a⊗ b) ∪ µ(c⊗ d).

�
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7.5. Künneth formulas tell us how to compute the graded R-modules H∗(X×Y ;R)
or H∗(X ×Y ;R) out of the graded modules H∗(X;R) and H∗(Y ;R) or H∗(X;R) and
H∗(Y ;R), respectively. Under certain conditions it even determines the ring structure
of H∗(X × Y ;R).

Theorem (Künneth formula). Let (X,A) and (Y,B) be pairs of CW-complexes. Sup-
pose that Hk(Y,B;R) are free finitely generated R-modules for all k. Then

µ : H∗(X,A;R)⊗H∗(Y,B;R)→ H∗(X × Y,A× Y ∪X ×B;R)

is an isomorphism of graded rings.

Example. H∗(Sk × Sl) ∼= Z[α, β]/I where I is the ideal generated by elements α2,
β2, αβ = (−1)klβα and degα = k, deg β = l.

Proof. Consider the diagram

H∗(X,A)⊗R H∗(Y ) //

µ

��

H∗(X)⊗R H∗(Y )

uujjjj
jjjj

jjjj
jjj

µ

��

H∗(A)⊗R H∗(Y )

δ∗⊗id
kkVVVVVVVVVVVVVVVVVV

µ

��

H∗(X × Y,A× Y )H∗(X × Y ) // H∗(X × Y )

uujjjj
jjjj

jjjj
jjj

H∗(A× Y )

δ∗
kkVVVVVVVVVVVVVVVVVVV

where the upper and the lower triangles come from the long exact sequences for pairs
(X,A) and (X×Y,A×Y ), respectively. The right rhomb commutes as a consequence
of the naturality of the cross product. We prove that the left rhomb also commutes.

Let ϕ and ψ be cocycles in C∗(A) and C∗(Y ), respectively. Let Φ be a cocycle in
C∗(X) extending ϕ. Then p∗1Φ ∪ p∗2ψ ∈ C∗(X × Y ) extends p∗1ϕ ∪ p∗2ψ ∈ C∗(A × Y ).
Using the definition of the connecting homomorphism in cohomology (see Remark 5.6
B) we get

µ
(
(δ∗ ⊗ id)([ϕ]⊗ [ψ])

)
= µ[δΦ⊗ ψ] = p∗1[δΦ] ∪ p∗2[ψ],

δ∗
(
µ([ϕ]⊗ [ψ])

)
= δ∗[p∗1ϕ ∪ p∗2ψ] = [δ(p∗1Φ ∪ p∗2ψ)] = p∗1[δΦ] ∪ p∗2[ψ].

First, we prove the statement of Theorem for a finetedimensional CW-complex X
and A = B = ∅ using the induction by the dimension of X and Five Lemma. If
dimX = 0, X is a finite discrete set and the statement of Theorem is true. Suppose
that Theorem holds for spaces of dimension n− 1 or less. Let dimX = n. It suffices
to show that

µ : H∗(Xn, Xn−1)⊗H∗(Y )→ H∗(Xn × Y,Xn−1 × Y )

is an isomorphism and than to use Five Lemma in the diagram above with A = Xn−1

to prove the statement for X = Xn. Xn/Xn−1 is homeomorphic to
⊔
iD

n
i /
⊔
i ∂D

n
i .
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To prove that

µ : H∗
(∨
i

Sni
)
⊗H∗(Y )→ H∗

(∨
i

Sni × Y
)

is an isomorphism, we use again the diagram above for X =
⊔
iD

n
i and A =

⊔
i ∂D

n
i

and the induction with respect to n.
So we have proved the theorem for X a finite dimensional CW-complex and A =

B = ∅. Using once more our diagram and Five Lemma, we can easily prove Theorem
for any pairs (X,A), (Y, ∅) with X of finite dimension. For X of infinite dimension,
we have to prove H i(X) = H i(Xn) for i < n which is equivalent to H i(X/Xn) = 0.
We omit the details and refer the reader to [Hatcher], pages 220 – 221. �

7.6. Application of the cup product. In this paragraph we show how to use the
cup product to prove that S2k is not an H-space. A space X is called an H-space if
there is a map m : X ×X → X called a multiplication and an element e ∈ X called
a unit such that m(e, x) = m(x, e) = x for all x ∈ X.

Suppose that there is a multiplication m : S2k×S2k → S2k with a unit e. According
to Example after Theorem 7.5

H∗(S2k × S2k;Z) = Z[α, β]/I

where I is the ideal generated by relations α2 = 0, β2 = 0 and αβ = βα. The
last relation is due to the fact that the dimension of the sphere is even. Moreover,
α = γ ⊗ 1 and β = 1 ⊗ γ where γ ∈ H2k(S2k;Z) is a generator. Let us compute
m∗ : H∗(S2k;Z)→ H∗(S2k × S2k;Z). We have

m∗(γ) = aα + bβ, a, b ∈ Z.

Since the composition

S2k id×e−−−→ S2k × S2k m−−→ S2k

is the identity, we get that a = 1. Similarly, b = 1. Now compute m∗(γ2):

0 = m∗(0) = m∗(γ2) =
(
m∗(γ)

)2
= (α + β)2 = 2αβ 6= 0,

a contradiction. Does this proof go through for odd dimensional spheres?

7.7. Künneth formula in homological algebra. Consider two chain complexes
(C∗, ∂C), (D∗, ∂D) of R-modules. Suppose there is an integer N such that Cn = Dn = 0
for all n < N . Then their tensor product is the chain complex (C∗ ⊗D∗, ∂) with

(C∗ ⊗D∗)n =
⊕
i+j=n

Ci ⊗Di

and the boundary operator on Ci ⊗Dj

∂(c⊗ d) = ∂Cc⊗ d+ (−1)ic⊗ ∂Dd.

It is easy to make sure that ∂∂ = 0.
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Next we can define the graded R-module C∗ ∗D∗ as

(C∗ ∗D∗)n =
⊕
i+j=n

TorR1 (Ci, Dj).

A ring R is called hereditary if any submodule of a free R-module is free. Examples
of hereditary rings are Z and all fields.

Theorem (Algebraic Künneth formula). Let R be a hereditary ring and let C∗ and D∗
be chain complexes of R-modules. If C∗ is free, then the homology groups of C∗ ⊗D∗
are determined by the splitting short exact sequence

0→ (H∗(C)⊗H∗(D))n
l−→ Hn(C∗ ⊗D∗)→ (H∗(C) ∗H∗(D))n−1 → 0

where l([c]⊗ [d]) = [c⊗ d]. This sequence is natural but the splitting is not.

Notice that for the chain complex

Dn =

{
0 for n 6= 0,

G for n = 0

the Küneth formula gives the universal coefficient theorem for homology groups, see
Theorem 6.11 B.

The proof of the Künneth formula is similar to the proof of the universal coefficient
theorem and we omit it.

7.8. Eilenberg-Zilbert Theorem. To be able to apply the previous Künneth for-
mula in topology we have to show that the singular chain complex C∗(X × Y ) of a
product X × Y is chain homotopy equivalent to the tensor product of the singular
chain complexes C∗(X)⊗ C∗(Y ).

Theorem (Eilenberg-Zilbert). Up to chain homotopy there are unique natural chain
homomorphisms

Φ :C∗(X)⊗ C∗(Y )→ C∗(X × Y ),

Ψ :C∗(X × Y )→ C∗(X)⊗ C∗(Y )

such that for 0-simplices σ and τ

Φ(σ ⊗ τ) = (σ, τ), Ψ(σ, τ) = σ ⊗ τ.

Moreover, such chain homomorphisms are chain homotopy equivances: there are
natural chain homotopies such that

ΨΦ ∼ idC∗X⊗C∗(Y ), ΦΨ ∼ idC∗(X×Y ) .

For the proof of this theorem see [Dold], IV.12.1. The chain homomorphism Ψ is
called the Eilenberg-Zilbert homomorphism and denoted EZ. It enables a different
and more abstract approach to the definitions of the cross and cup products. The
cross product is

µ([α]⊗ [β]) = [(α⊗ β) ◦ EZ]
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for cocycles α ∈ C∗(X;R) and β ∈ C∗(Y ;R) and the cup product is

([ϕ]⊗ [ψ]) = [(ϕ⊗ ψ) ◦ EZ ◦∆∗]

for cocycles ϕ, ψ ∈ C∗(X;R) and the diagonal ∆ : X → X ×X. In our definition in
7.1 we have used for EZ ◦∆∗ the homomorphism

σ → σ/[v0, v1, . . . , vk]⊗ σ/[vk, . . . , vn].

The properties of EZ can be used for a different proof of the graded commutativity
of the cup product.

7.9. Künneth formulas in topology. The following statement is an immediate
consequence of the previous paragraph.

Theorem A (Künneth formula for homology). Let R be a hereditary ring. The ho-
mology groups of the product of two spaces X and Y are determined by the following
splitting short exact sequence

0→ (H∗(X;R)⊗H∗(Y ;R))n
l−→ Hn(X × Y ;R)→ (H∗(X;R) ∗H∗(Y ;R))n−1 → 0

where l([c]⊗ [d]) = [c⊗ d]. This sequence is natural but the splitting is not.

For cohomology groups one can prove

Theorem B (Künneth formula for cohomology groups). Let R be a hereditary ring.
The cohomology groups of the product of two spaces X and Y are determined by the
following splitting short exact sequence

0→ (H∗(X;R)⊗H∗(Y ;R))n
µ−→ Hn(X × Y ;R)→ (H∗(X;R) ∗H∗(Y ;R))n+1 → 0.

This sequence is natural but the splitting is not.

For the proof and other forms of Künneth formulas see [Dold], Chapter VI, Theorem
12.16 or [Spanier], Chapter 5, Theorems 5.11. and 5.12.
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