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9. Poincaré duality

Many interesting spaces used in geometry are closed oriented manifolds. Poincaré
duality expresses a remarkable symmetry between their homology and cohomology.

9.1. Manifolds. A manifold of dimension n is a Hausdorff space M in which each
point has an open neighbourhood U homeomorphic to Rn. The dimension of M is
characterized by the fact that for each x ∈ M , the local homology group Hi(M,M −
{x};Z) is nonzero only for i = n since by excision and homotopy equivalence

Hi(M,M − {x};Z) ∼= Hi(U,U − {x};Z) ∼= Hi(Rn,Rn − {0};Z) ∼= H̃i−1(Sn−1;Z).

A compact manifold is called closed .

Example. Examples of closed manifolds are spheres, real and complex projective
spaces, orthogonal groups O(n) and SO(n), unitary groups U(n) and SU(n), real and
complex Stiefel and Grassmann manifolds. The real Stiefel manifold Vn,k is the space
of k-tuples of orthonormal vectors in Rn. The real Grassmann manifolds Gn,k is the
space of k-dimensional vector subspaces of Rn.

9.2. Orientation of manifolds. Consider a manifold M of dimension n. A local
orientation of M in a point x ∈M is a choice of a generator µx ∈ Hn(M,M−{x};Z) ∼=
Z.

To shorten our notation we will use Hi(M |A) for Hi(M,M − A;Z) and H i(M |A)
for H i(M ;M − A;Z) if A ⊆M .

An orientation of M is a function assigning to each point x ∈M a local orientation
µx ∈ Hn(M |x) such that each point has an open neighbourhood B with the property
that all local orientations µy for y ∈ B are images of an element µB ∈ Hn(M |B) under
the map ρy∗ : Hn(M |B) → Hn(M |x) where ρy : (M,M − {x}) → (M,M − B) is the
natural inclusion.

If an orientation exists on M , the manifold is called orientable. A manifold with a
chosen orientation is called oriented.

Proposition. A connected manifold M is orientable if it is simply connected, i. e.
every map S1 →M is homotopic to a constant map.

For the proof one has to know more about covering spaces and fundamental group.
See [Hatcher], Proposition 3.25, pages 234 – 235.
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In the same way we can define an R-orientation of a manifold for any commutative
ring R. Every manifold is Z2-oriented.

9.3. Fundamental class. A fundamental class of a manifold M with coefficients in
R is an element µ ∈ Hn(M ;R) such that ρx∗(µ) is a generator of Hn(M |x;R) = R for
each x ∈M where ρx : (M, ∅)→ (M,M − {x}) is the obvious inclusion. It is usual to
denote the fundamental class of the manifold M by [M ]. We will keep this notation.

If a fundamental class of M exists, it determines uniquely the orientation µx =
ρx∗([M ]) of M .

Theorem. Let M be a closed manifold of dimension n. Then:

(a) If M is R-orientable, the natural map Hn(M ;R) → Hn(M |x;R) = R is an
isomorphism for all x ∈M .

(b) If M is not R-orientable, the natural map Hn(M ;R) → Hn(M |x;R) = R is
injective with the image {r ∈ R; 2r = 0} for all x ∈M .

(c) Hi(M ;R) = 0 for all i > n.

(a) implies immediately that very oriented closed manifold has just one fundamental
class. It is a suitable generator of Hn(M ;R).

The theorem will follow from a more technical statement:

Lemma. Let M be n-manifold and let A ⊆M be compact. Then:

(a) Hi(M |A;R) = 0 for i > n and α ∈ Hn(M |A;R) is zero iff its image ρx∗(α) ∈
Hn(M |x;R) is zero for all x ∈M .

(b) If x 7→ µx is an R-orientation of M , then there is µA ∈ Hn(M |A;R) whose
image in Hn(M |x;R) is µx for all x ∈ A.

To prove the theorem put A = M . We get immediately (c) of the theorem. Further,
the lemma implies that an oriented manifold M has a fundamental class [M ] = µM
and any other element in Hn(M ;R) has to be its multiple in R. So we obtain (a) of
the theorem. For the proof of (b) we refer to [Hatcher], pages 234 – 236.

Proof of Lemma. Since R does not play any substantial role in our considerations, we
will omit it from our notation. We will omit also stars in notation of maps induced in
homology. The proof will be divided into several steps.

(1) Suppose that the statements are true for compact subsets A, B and A ∩ B of M .
We will prove them for A ∪B using the Mayer-Vietoris exact sequence:

0→ Hn(M |A ∪B)
Φ−→ Hn(M |A)⊕Hn(M |B)

Ψ−→ Hn(M |A ∩B)

where Φ(α) = (ρAα, ρBα), Ψ(α, β) = ρA∩Bα− ρA∩Bβ.
Hi(M |A ∪ B) = 0 for i > n is immediate from the exact sequence. Suppose α ∈

Hn(M |A∪B) restricted to Hn(M |x) is zero for all x ∈ A∪B. Then ρAα and ρBα are
zeroes. Since Φ is a monomorphism, α has to be also zero.

Take µA and µB such that their restrictions to Hn(M |x) are orientations. Then the
restrictions to points x ∈ A ∩ B are the same. Hence also the restrictions to A ∩ B
coincide. It means Ψ(µA, µB) = 0 and the Mayer-Vietoris exact sequence yields the
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existence of α in Hn(M |A ∪ B) such that Φ(α) = (µA, µB). Therefore α reduces to a
generator of Hn(M |x) for all x ∈ A ∪B, and consequently, α = µA∪B.

(2) If M = Rn and A is a compact convex set in a disc D containing an origin 0, the
lemma is true since the composition given by inclusions

Hi(Rn|D) −→ Hi(Rn|A) −→ Hi(Rn|0)

is an isomorhism.

(3) If M = Rn and A is finite simplicial complex in Rn, then A =
⋃m
i=1Ai where Ai

are convex compact sets. Using (1) and induction by m we can prove that the lemma
holds in this case as well.

(4) Let M = Rn and A is an arbitrary compact subset. Let α ∈ Hi(Rn|A) be repre-
sented by a relative cycle z ∈ Zi(Rn,Rn−A). Let C ⊂ Rn−A be the union of images
of the singular simplices in ∂z. Since C is compact, dist(C,A) > 0, and consequenly,
there is a finite simplicial complex K ⊃ A such that C ⊂ Rn −K. (Draw a pisture.)
So the chain z defines also an element αK ∈ Hi(Rn|K) which reduces to α ∈ Hi(Rn|A).
If i > n, then by (3) αK = 0 and consequently also α = 0.

Suppose that i = n and that α reduces to zero in each point x ∈ A. K can be
chosen in such a way that every its point lies in a simplex of K together with a point
of A. Consequently, αK reduces to zero not only for all x ∈ A but for all x ∈ K. (Use
the case (2) to prove it.) By (3) αK = 0, and therefore also α = 0.

The proof of existence of µA ∈ Hn(Rn|A) in the statement (b) is easy. Take µB ∈
Hn(Rn|B) for a ball B ⊃ A and its reduction is µA.

(5) Let M be a general manifold and A a compact subset in an open set U homeo-
morphic to Rn. Now by excision

Hi(M |A) ∼= Hi(U |A) ∼= Hi(Rn|A)

and we can use (4).

(6) Let M be a manifold and A an arbitrary compact set. Then A can be covered by
open sets V1, V2, . . . , Vm such that the closure of Vi lies in an open set Ui homeomorphic
to Rn. Then by (5) the lemma holds for Ai = A ∩ V̄i. By (1) and induction it holds
also for

⋃m
i=1Ai = A. �

9.4. Cap product. Let X be a space. On the level of chains and cochains the cap
product

∩ : Cn(X;R)⊗ Ck(X;R)→ Cn−k(X;R)

is given for 0 ≤ k ≤ n by

σ ∩ ϕ = ϕ(σ/[v0, v1, . . . , vk])σ/[vk, vk+1, . . . , vn]

where σ is a singular n-simplex, ϕ : Ck(X;R) → R is a cochain and σ/[v0, v1, . . . , vk]
is the composition of the inclusion of ∆k into the indicated face of ∆n with σ, and is
given by zero in the remaining cases.

The proof of the following statement is similar as in the case of cup product and is
left to the reader as an exercise.
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Lemma A. For σ ∈ Cn(X;R) and ϕ ∈ Ck(X;R)

∂(σ ∩ ϕ) = (−1)k(∂σ ∩ ϕ− σ ∩ δϕ)

This enables us to define

∩ : Hn(X;R)⊗Hk(X;R)→ Hn−k(X;R)

by
[σ] ∩ [ϕ] = [σ ∩ ϕ]

for all cycles σ and cocycles ϕ. In the same way one can define

∩ : Hn(X,A;R)⊗Hk(X;R)→ Hn−k(X,A;R)

∩ : Hn(X,A;R)⊗Hk(X,A;R)→ Hn−k(X;R)

for any pair (X,A) and

∩ : Hn(X,A ∪B;R)⊗Hk(X,A;R)→ Hn−k(X,B;R)

for A,B open in X or subcomplexes of CW-complex X.

Exercise. Show the correctness of all the definitions above and prove the following
lemma.

Lemma B (Naturality of cup product). Let f : (X,A)→ (Y,B). Then

f∗(α ∩ f ∗(β)) = f∗(α) ∩ β
for all α ∈ Hn(X,A;R) and β ∈ Hk(Y ;R).

9.5. Poincaré duality. Now we have all the tools needed to state the Poincaré
duality for closed manifolds.

Theorem (Poincaré duality). If M is a closed R-orientable manifold of dimension n
with fundamental class [M ] ∈ Hn(M ;R), then the map D : Hk(M ;R)→ Hn−k(M ;R)
defined by

D(ϕ) = [M ] ∩ ϕ
is an isomorphism.

Exercise. Use Poincaré duality to show that the real projective spaces of even dimen-
sion are not orientable.

This theorem is a consequence of a more general version of Poincaré duality. To
state it we introduce the notion of direct limit and cohomology with compact support.

9.6. Direct limits. A direct set is a partially ordered set I such that for each pair
ι, κ ∈ I there is λ ∈ I such that ι ≤ λ and κ ≤ λ.

Let Gι be a system od Abelian groups (or R-modules) indexed by elements of a
directed set I. Suppose that for each pair ι ≤ κ of indices there is a homomorphism
fικ : Gι → Gκ such that fιι = id and fκλfικ = fιλ. Then such a system is called
directed.
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Having a directed system of Abelian groups (or R-modules) we will say that a ∈ Gι

and b ∈ Gκ are equivalent (a ' b) if fιλ(a) = fκλ(b) for some λ ∈ I. The direct limit
of the system {Gι}ι∈I is the Abelian group (R-module) of classes of this equivalence

lim−→Gι =
⊕
ι∈I

Gι/ ' .

Moreover, we have natural homomorphism jι : Gι → lim−→Gι.

The direct limit is characterized by the following universal property: Having a
system of homomorphism hι : Gι → A such that hι = hκfικ whenever ι ≤ κ, there is
just one homomorphism

H : lim−→Gι → A

such that hι = Hjι.
It is not difficult to prove that direct limits preserve exact sequences.
In a system of sets the ordering is usually given by inclusions.

Lemma. If a space X is the union of a directed set of subspaces Xι with the property
that each compact set in X is contained in some Xι, the natural map

lim−→ Hn(Xι;R)→ Hn(X;R)

is an isomorphism.

The proof is not difficult, we refer to [Hatcher], Proposition 3.33, page 244.

9.7. Cohomology groups with compact support. Consider a space X with a
directed system of compact subsets. For each pair (L,K), K ⊆ L, the inclusion
(X,X − L) ↪→ (X,X −K) induces homomorphism Hk(X|K;R)→ Hk(X|L;R). We
define the cohomology groups with compact support as

Hk
c (X;R) = lim−→ Hk(X|K;R).

If X is compact, then Hk
c (X;R) = Hk(X;R).

For cohomology with compact support we get the following lemma which does not
hold for ordinary cohomology groups.

Lemma. If a space X is the union of a directed set of open subspaces Xι with the
property that each compact set in X is contained in some Xι, the natural map

lim−→ Hk
c (Xι;R)→ Hk

c (X;R)

is an isomorphism.

Proof. The definition of natural homomorphism in the lemma is based on the following
fact: Let U be an open subset in V . For any compact set K ⊂ U the inclusion
(U,U −K) ↪→ (V, V −K) induces by excision an isomorphism

Hk(V |K;R)→ Hk(U |K;R).

Its inverse can be composed with natural homomorphism Hk(V |K;R) → Hk
c (V ;R).

By the universal property of direct sum there is just one homomorphism

Hk
c (U ;R)→ Hk

c (V ;R).
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So on inclusions of open sets Hk
c behaves as covariant functor and this makes the

definition of the natural homomorphism in the lemma possible. The proof that it is
an isomorphism (based on excision) is left to the reader. �

9.8. Generalized Poincaré duality. Let M be an R-orientable manifold of dimen-
sion n. Let K ⊆ M be compact. Let µK ∈ Hn(M |K;R) be such a class that its
reduction to Hn(M |x;R) gives a generator for each x ∈ K. The existence of such a
class is ensured by Lemma in 9.3. Define

DK : Hk(M |K)→ Hn−k(M ;R) : DK(ϕ) = µK ∩ ϕ.
If K ⊂ L are two compact subsets of M , we can easily prove using naturality of cap
product that

DL(ρ∗ϕ) = DK(ϕ)

for ϕ ∈ Hk(M |K;R) and ρ : (M,M − L) ↪→ (M,M −K). It enables us to define the
generalized duality map

DM : Hk
c (M ;R)→ Hn−k(M ;R) : DM(ϕ) = µK ∩ ϕ

since each element ϕ ∈ Hk
c (M ;R) is contained in Hk(M |K;R) for some compact set

K ⊆M .

Theorem (Duality for all orientable manifolds). If M is an R-orientable manifold of
dimension n, then the duality map

DM : Hk
c (M ;R)→ Hn−k(M ;R)

is an isomorphism.

The proof is based on the following

Lemma. If a manifolds M be a union of two open subsets U and V , the following
diagram of Mayer-Vietoris sequences

Hk
c (U ∩ V ) //

DU∩V
��

Hk
c (U)⊕Hk

c (V ) //

DU⊕DV

��

Hk
c (M) //

DM

��

Hk+1
c (U ∩ V )

DU∩V
��

Hn−k(U ∩ V ) // Hn−k(U)⊕Hn−k(V ) // Hn−k(M) // Hn−k−1(U ∩ V )

commutes up to signs.

The proof of this lemma is analogous as the proof of commutativity of the diagram
in the proof of Theorem 8.4 on Thom isomorphism. So we omit it referring the reader
to [Hatcher], Lemma 3.36, pages 246 – 247 or to [Bredon], Chapter VI, Lemma 8.2,
pages 350 – 351.

Proof of Poincaré Duality Theorem. We will use the following two statements

(A) If M = U ∪ V where U and V are open subsets such that DU , DV and DU∩V
are isomorphisms, then DM is also an isomorphism.

(B) If M =
⋃∞
i=1 Ui where Ui are open subsets such that U1 ⊂ U2 ⊂ U3 ⊂ . . . and

all DUi
are isomorphisms, then DM is also an isomorphism.
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The former is an immediate consequence of the previous lemma and Five Lemma. To
obtain the latter apply the direct limit to the short exact sequences

0→ Hk
c (Ui)

DUi−−→ Hn−k(Ui)→ 0

and use the lemmas in 9.6 and 9.7. The proof of Duality Theorem will be carried out
in four steps.

(1) For M = Rn we have

Hk
c (Rn) ∼= Hk(∆n, ∂∆n), Hn(Rn|∆n) ∼= Hn(∆n, ∂∆n).

Take the generator µ ∈ Hn(∆n, ∂∆n) represented by the singular simplex given by
identity. The only nontriavial case is k = n. In this case for a generator

ϕ ∈ Hn((∆n∂∆n)) = Hom(Hn((∆n∂∆n), R)

we get µ ∩ ϕ = ϕ(µ) = ±1. So the duality map is an isomorphism.

(2) Let M ⊂ Rn be open. Then M is a countable union of open convex sets Vi which
are homeomorphic to Rn. Using the previous step and induction in statement (A)
we show that the duality map is an isomorphism for every finite union of Vi. The
application of statement (B) yields that the duality map DM is an isomorphism as
well.

(3) Let M be a manifold which is a countable union of open sets Ui which are homeo-
morphic to Rn. Now we can proceed in the same way as in (2) using its result instead
of the result in (1).
(4) For general M we have to use Zorn lemma. See [Hatcher], page 248. �

Corollary. The Euler characteristic of a closed manifold of odd dimension is zero.

Proof. For M orientable we get from Poincaré duality and the universal coefficient
theorem that

rankHn−k(M ;Z) = rankHk(M ;Z) = rank HomHk(M ;Z)

= rankHk(M ;Z)

Hence χ(M) =
∑n

i=0(−1)i rankHi(M ;Z) = 0 for n odd.
If M is not orientable, we get from the Poincaré duality with Z2 coefficients that

n∑
i=0

(−1)i dimHi(M ;Z2) = 0.

Here the dimension is considered over Z2. Applying the universal coefficient theorem
one can show that the expression on the left hand side equals to χ(M). See [Hatcher],
page 249. �

Remark. Consider an oriented closed smooth manifold M . The orientation of the
manifold induces an orientation of the tangent bundle τM and we get the following
relation between the Euler class of τM , the fundamental class of M and the Euler
characteristic of M :

χ(M) = e(τM) ∩ [M ].
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Particulary, for spheres of even dimension we get that the Euler class of their tangent
bundle is twice a generator of Hn(Sn;Z). For the proof see [MS], Corollary 11.12.

9.9. Duality and cup product. One can easily show that for α ∈ Cn(X;R),
ϕ ∈ Ck(X;R) and ψ ∈ Cn−k(X;R) we have

ψ(α ∩ ϕ) = (ϕ ∪ ψ)(α).

For a closed R-orientable manifold M we define bilinear form

(∗) Hk(M ;R)×Hn−k(M ;R)→ R : (ϕ, ψ) 7→ (ϕ ∪ ψ)[M ].

A bilinear form A× B → R is called regular if induced linear maps A→ Hom(B,R)
and B → Hom(A,R) are isomorphisms.

Theorem. Let M be a closed R-orientable manifold. If R is a field, then the bilinear
form (∗) is regular.
If R = Z, then the bilinar form

Hk(M ;Z)/TorsionHk(M ;Z)×Hn−k(M ;Z)/TorsionHn−k(M ;Z)→ Z

induced by (∗) is regular.

Proof. Consider the homomorphism

Hn−k(M ;R)
h−−→ Hom(Hn−k(M ;R);R)

D∗−−→ Hom(Hk(M ;R), R).

Here h(ψ)(β) = ψ(β) for β ∈ Hn−k(M ;R) and ψ ∈ Hn−k(M ;R) and D∗ is the dual
map to duality. The homomorphism h is an isomorphism by the universal coefficient
theorem and D∗ is an isomorphism since so is D. Now it suffices to prove that the
composition D∗h is the homomorphism induced from the bilinear form (∗). For ψ ∈
Hn−k(M ;R) and ϕ ∈ Hk(M ;R) we get

(D∗h(ψ)) (ϕ) = (h(ψ))D(ϕ) = (h(ψ)) ([M ] ∩ ϕ) = ψ([M ] ∩ ϕ) = (ϕ ∪ ψ)[M ].

�

This theorem gives us a further tool for computing the cup product structure in
cohomology of closed manifolds.

Corollary. Let M be a closed orientable manifold of dimension n. Then for every
ϕ ∈ Hk(M ;Z) of infinite order which is not of the form ϕ = mϕ1 for m > 1, there is
ψ ∈ Hn−k(M ;Z) such that ϕ ∪ ψ is a generator of Hn(M ;Z) ∼= Z.

Example. We will prove by induction that H∗(CPn;Z) = Z[ω]/〈ωn+1〉 where ω ∈
H2(CPn;Z) is a generator. For n = 1 the statement is clear. Suppose that it holds for
n− 1. From the long exact sequence for the pair (CPn,CPn−1) we get that

H i(CPn;Z) ∼= H i(CPn−1;Z)

for i ≤ 2n − 1. Now, using the consequence above for ϕ = ω we obtain that ωn is a
generator of H2n(CPn;Z).



9

9.10. Manifolds with boundary. A manifold with boundary of dimension n is a
Hausdorff space M in which each point has an open neighbourhood homeomorphic
either to Rn or to the half-space

Rn
+ = {(x1, x2, . . . , xn) ∈ Rn; xn ≥ 0}.

The boundary ∂M of the manifold M is formed by points which have all neighbour-
hoods of the second type. The boundary of a manifold of dimension n is a manifold
of dimension n− 1. In a similar way as for a manifold we can define orientation of a
manifold with boundary and its fundamental class [M ] ∈ Hn(M ; ∂M ;R).

Theorem. Suppose that M is a compact R-orientable n-dimensional manifold whose
boundary ∂M is decomposed as a union of two compact (n− 1)-dimensional manifolds
A and B with common boundary ∂A = ∂B = A ∩ B. Then the cap product with the
fundamental class [M ] ∈ Hn(M,∂M ;R) gives the isomorphism

DM : Hk(M,A;R)→ Hn−k(M,B;R).

For the proof and many other applications of Poincaré duality we refer to [Hatcher],
Theorem 3.43 and pages 250 – 254, and [Bredon], Chapter VI, Sections 9 and 10, pages
355 – 366.

9.11. Alexander duality. In this paragraph we introduce another version of duality.

Theorem (Alexander duality). If K is a proper compact subset of Sn which is a
deformation retract of an open neighbourhood, then

H̃i(S
n −K;Z) ∼= H̃n−i−1(K;Z).

Proof. For i 6= 0 and U a neighbourhood of K we have

Hi(S
n −K) ∼= Hn−i

c (Sn −K) by Poincaré duality

∼= lim−→ UH
n−i(Sn −K,U −K) by definition

∼= lim−→ UH
n−i(Sn, U) by excision

∼= lim−→ UH̃
n−i−1(U) connecting homomorphism

∼= H̃n−i−1(K) K is a def. retract of some U

First three isomorphisms are natural and exist also for i = 0. So using these facts
we have

H̃0(Sn −K) ∼= Ker (H0(Sn −K)→ H0(pt))
∼= Ker (H0(Sn −K)→ H0(Sn))

∼= Ker
(

lim−→ Hn(Sn, U)→ Hn(Sn)
)

∼= lim−→ Ker (Hn(Sn, U)→ Hn(Sn))

∼= lim−→ Hn−1(U) = Hn−1(K).

�
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Corollary. A closed nonorientable manifold of dimension n cannot be embedded as a
subspace into Rn+1.

Proof. Suppose that M can be embedded into Rn+1. Then it can be embedded also
in Sn+1. By Alexander duality

Hn−1(M ;Z) ∼= H1(Sn+1 −M ;Z).

According to the universal coefficient theorem

H1(Sn+1 −M ;Z) ∼= Hom(H1(Sn+1 −M ;Z),Z)⊕ Ext(H0(Sn+1 −M ;Z))

is a free Abelian group. On the other hand

Z2 = Hn(M ;Z2) ∼= Hn(M ;Z)⊗ Z2 ⊕ Tor(Hn−1(M,Z),Z2).

According to (b) of Theorem 9.3 the tensor product has to be zero, and sinceHn−1(M ;Z)
is free, the second summand has to be also zero, which is a contradiction. �
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