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10. Homotopy groups

In this section we will define homotopy groups and derive their basic properties.
While the definition of homotopy groups is relatively simple, their computation is
complicated in general.

10.1. Homotopy groups. Let In be the n-dimensional unit cube and ∂In its bound-
ary. For n = 0 we take I0 to be one point and ∂I0 to be empty. Consider a space
X with a basepoint x0. Maps (In, ∂In) → (X, x0) are the same as the maps of the
quotient (Sn = In/∂In, s0 = ∂In/∂In)→ (X, x0). We define the n-th homotopy group
of the space X with the basepoint x0 as

πn(X, x0) = [(Sn, s0), (X, x0)] = [(In, ∂In), (X, x0)].

π0(X, x0) is the set of path connected components of X with the component containing
x0 as a distinguished element. For n ≥ 1 we can introduce a sum operation on πn(X, x0)

(f + g)(t1, t2, . . . , tn) =

{
f(2t1, t2, . . . , tn) t1 ∈ [0, 1

2
],

g(2t1 − 1, t2, . . . , tn) t1 ∈ [1
2
, 1].

This operation is well defined on homotopy classes. It is easy to show that πn(X, x0)
is a group with identity element represented by the constant map to x0 and with the
inverse represented by

−f(t1, t2, . . . , tn) = f(1− t1, t2, . . . , tn).

For n ≥ 2 the groups πn(X, x0) are commutative. The proof is indicated by the
following pictures.

f g
f f

f g
g g

Figure 10.1. f + g ∼ g + f

In the interpretation of πn(X, x0) as [(Sn, s0), (X, x0)], the sum f + g is the compo-
sition

Sn
c−→ Sn ∨ Sn f∨g−−→ X

where c collapses the equator Sn−1 of Sn to a point s0 ∈ Sn−1 ⊂ Sn.
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Any map F : (X, x0) → (Y, y0) induces the homomorphism F∗ : πn(X, x0) →
πn(Y, y0) by composition

F∗([f ]) = [Ff ].

Hence πn is a functor from Top∗ to the category of Abelian groups Ab for n ≥ 2, to the
category of groups G for n = 1 and to the category of sets with distiguished element
Set∗ for n = 0.

10.2. Relative homotopy groups. Consider In−1 as a face of In with the last
coordinate tn = 0. Denote Jn−1 the closure of ∂In − In−1. Let (X,A) be a pair with
basepoint x0 ∈ A. For n ≥ 1 we define the n-th relative homotopy group of the pair
(X,A) as

πn(X,A, x0) = [(Dn, Sn−1, s0), (X,A, x0)] = [(In, ∂In, Jn−1), (X,A, x0)].

A sum operation on πn(X,A, x0) is defined by the same formula as for πn(X, x0) only
for n ≥ 2. (Explain why this definition does not work for n = 1.) Similarly as in the
case of absolute homotopy groups one can show that πn(X,A, x0) is a group for n ≥ 2
which is commutative if n ≥ 3.

Sometimes it is useful to know how the representatives of zero (neutral element)
in πn(X,A, x0) look like. We say that two maps f, g : (Dn, Sn−1, s0) → (X,A, x0)
are homotopic rel Sn−1 if there is a homotopy h between f and g such that h(x, t) =
f(x) = g(x) for all x ∈ Sn−1 and all t ∈ I.

Proposition. A map f : (Dn, Sn−1, s0) → (X,A, x0) represents zero in πn(X,A, x0)
iff it is homotopic rel Sn−1 to a map with image in A.

Proof. Suppose that f ∼ g rel Sn−1 and g(Dn) ⊆ A. Then g = g ◦ idDn is homotopic
to the constant map g ◦ const into x0 ∈ A. Hence [f ] = [g] = 0.

Let f be homotopic to the constant map via homotopy h : Dn × I → X. Have a
look at the picture and consider the subset

C = {(x, t) ∈ Dn × I; 2‖x‖ ≤ 2− t}
of Dn × I simultaneously with a vertical retraction r : Dn × I → C and a horisontal
homeomorphism q : C → Dn × I.

The maps can be defined in the following way:

r(x, t) =

{
(x, t) for 2‖x‖ ≤ 2− t,
(x, 2(1− ‖x‖) for 2‖x‖ ≥ 2− t

and

q(x, t) =

(
2

2− t
x, t

)
.

Now H = h ◦ q ◦ r : Dn× I → X is a homotopy between H(x, 0) = h(x, 0) = f(x) and
H(x, 1) = g(x) where

g(Dn) = H(Dn × I) = h(Dn × {1} ∪ Sn−1 × I) ⊆ A

and H is a homotopy rel Sn−1. �
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r q

Dn × I C Dn × I

Figure 10.2. Retraction r and homeomorphism q

A map F : (X,A, x0)→ (Y,B, y0) induces again the homomorphism F∗ : πn(X,A, x0)
→ πn(Y,B, y0). Since πn(X, x0, x0) = πn(X, x0) the functor πn on Top∗ can be ex-
tended to a functor from Top2∗ to Abelian groups Ab for n ≥ 3, to the category of
groups G for n = 2 and to the category Set∗ of sets with distinguished element for
n = 1.

From definitions it is clear that homotopic maps induce the same homomorphisms
between homotopy groups. Hence homotopy equivalent spaces have the same homo-
topy groups. Particularly, contractible spaces have trivial homotopy groups.

10.3. Long exact sequence of a pair. Relative homotopy groups fit into the
following long exact sequence of a pair.

Theorem. Let (X,A) be a pair of spaces with a distinguished point x0 ∈ A. Then the
sequence

· · · → πn(A, x0)
i∗−→ πn(X, x0)

j∗−→ πn(X,A, x0)
δ−→ πn−1(A, x0)→ . . .

where i : A ↪→ X, j : (X, x0) ↪→ (X,A) are inclusions and δ comes from restriction,
is exact.

More generally, any triple B ⊆ A ⊆ X induces the long exact sequence

· · · → πn(A,B, x0)
i∗−→ πn(X,B, x0)

j∗−→ πn(X,A, x0)
δ−→ πn−1(A,B, x0)→ . . .

Proof. We will prove only the version for the pair (X,A). δ is defined on [f ] ∈
πn(X,A, x0) by

δ[f ] = [f/In−1].

Exactness in πn(X, x0). According to the previous proposition j∗i∗ = 0, hence
Im i∗ ⊆ Ker j∗. Let [f ] ∈ Ker j∗ for f : (In, ∂In) → (X, x0). Using again the previous
proposition f ∼ g rel ∂In where g : In → A. Hence [f ] = i∗[g].

Exactness in πn(X,A, x0). δj∗ = 0, hence Im j∗ ⊆ Ker δ. Let [f ] ∈ Ker δ, i. e.
f(In, ∂In, Jn−1) → (X,A, x0) and f/In−1 ∼ const. Then according to HEP there
is f1 : (In, ∂In, Jn) → (X, x0, x0) homotopic to f . Therefore [f1] ∈ πn(X, x0) and
[f ] = j∗[f1].
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Exactness in πn(A, x0). Let [F ] ∈ πn+1(X,A, x0). Then i ◦F/In : In → X is a map
homotopic to the constant map to x0 through the homotopy F . (Draw a picture.)

Let f : (In, ∂In)→ (A, x0) and f ∼ 0 through the homotopy F : In × I → X such
that F (x, 0) = f(x) ∈ A, F/Jn = x0. Hence [F ] ∈ πn+1(X,A, x0) and δ[F ] = [f ]. �

Remark. The boundary operator for a triple (X,A,B) is the composition

πn(X,A)
δ−→ πn(A)

j∗−→ πn−1(A,B).

10.4. Changing basepoints. Let X be a space and γ : I → X a path connecting
points x0 and x1. This path associates to f : (In, ∂In) → (X, x1) a map γ · f :
(In, ∂In) → (X, x0) by shrinking the domain of f to a smaller concentric cube in In

and inserting the path γ on each radial segment in the shell between ∂In and the
smaller cube.

f

γ

γ

γ
γ

x0 x0

x0

x0

x1

Figure 10.3. The action of γ on f

It is not difficult to prove that this assigment has the following properties:

(1) γ · (f + g) ∼ γ · f + γ · g for f, g : (In, ∂In)→ (X, x1),
(2) (γ+κ) · f ∼ γ · (κ · f) for f : (In, ∂In)→ (X, x2), γ(0) = x0, γ(1) = x1 = κ(0),

κ(1) = x2.
(3) If γ1, γ2 : I → X are homotopic rel ∂I = {0, 1}, then γ1 · f ∼ γ2 · f .

Hence, every path γ defines an isomorphism

γ : πn(X, γ(1))→ πn(X, γ(0)).

Particulary, we have a left action of the group π1(X, x0) on πn(X, x0).

10.5. Fibrations. Fibration is a dual notion to cofibration. (See 1.7.) It plays an
important role in homotopy theory.

A map p : E → B has the homotopy lifting property, shortly HLP, with respect
to a pair (X,A) if the following commutative diagram can be completed by a map
X × I → E

X × {0} ∪ A× I //

i
��

E

p

��
X × I //

77ppppppp
B



5

A map p : E → B is called a fibration (sometimes also Serre fibration or weak
fibration), if it has the homotopy lifting property with respect to all disks (Dk, ∅).
Theorem. If p : E → B is a fibration, then it has homotopy lifting property with
respect to all pairs of CW-complexes (X,A).

Proof. The proof can be carried out by induction from (k − 1)-skeleton to k-skeleton
similarly as in the proof of Theorem 2.7 if we show that p : E → B has the homotopy
lifting property with respect to the pair (Dk, ∂Dk = Sk−1). The HLP for this pair
follows from the fact that the pair (Dk × I,Dk × {0} ∪ Sk−1 × I) is homeomorphic to
the pair (Dk × I,Dk × {0}), see the picture below, and the fact that p has homotopy
lifting property with respect to the pair (Dk, ∅).

Figure 10.4. Homeomorphism (Dn × I,Dn × {0} ∪ Sn × I)→ (Dn ×
I,Dn × {0})

�

Proposition. Every fibre bundle (E,B, p) is a fibration.

Proof. For the definition of a fibre bundle see 8.1. Let Uα be an open covering of
B with trivializations hα : p−1(Uα) → Uα × F . We would like to define a lift of a
homotopy G : Ik × I → B. (We have replaced Dk by Ik.) The compactness of Ik × I
implies the existence of a division

0 = t0 < t1 < · · · < tm = 1, Ij = [tj−1, tj],

such that G(Ij1×· · ·×Ijk+1
) lies in some Uα. Now we make a lift H : Ik×I → E of G,

first on (I1)
k+1 and then we add successively the other small cubes. We need retractions

r of cubes C × Ijk+1
=
∏k+1

i=1 Iji to a suitable part of the boundary C ×{0} ∪A× Ijk+1

where H is already defined. A is a CW-subcomplex of the cube C and we are in the
following situation

C × {0} ∪ A× I g //

i
��

Uα × F
p1

��
C × I

G
//

H

66nnnnnnn
Uα

Now, we can define
H(x, t) = (G(x, t), p2 ◦ g ◦ r)(x, t)

where p2 : Uα × F → F is a projection. �



6

Example. Here you are several examples of fibre bundles.
(1) The projection p : Sn → RPn determines a fibre bundle with the fibre S0.
(2) The projection p : S2n+1 → RCn determines a fibre bundle with the fibre S1.
(3) The special case is so called Hopf fibration

S1 → S3 → CP1 = S2.

(4) Similarly, as complex projective space we can define quaternionic projective space
HPn. The definition determines the fibre bundle

S3 → S4n+3 → HPn.

(5) The special case of the previous fibre bundle is the second Hopf fibration

S3 → S7 → HP1 = S4.

(6) Similarly, the Cayley numbers enable to define another Hopf fibration

S7 → S15 → S8.

(7) Let H be a Lie subgroup of G. Then we get a fibre bundle given by the projection
p : G→ G/H with the fibre H.
(8) Let n ≥ k > l ≥ 1. Then the projection

p : Vn,k → Vn,l, p(v1, v2, . . . , vk) = (v1, v2, . . . , vl)

determines a fibre bundle with the fibre Vn−l,k−l.
(9) Natural projection p : Vn,k → Gn,k is a fibre bundle with the fibre O(k).

10.6. Long exact sequence of a fibration. Consider a fibration p : E → B. Take
a basepoint b0 ∈ B, put F = p−1(b0) and choose x0 ∈ F .

Lemma. For all n ≥ 1

p∗ : πn(E,F, x0)→ πn(B, b0)

is an isomorphism.

Proof. First, we show that p∗ is an epimorphism. Consider f : (In, ∂In) → (B, b0).
Let k : Jn−1 → E be the constant map into x0. Since p is a fibration the commutative
diagram

Jn−1 = In−1 × {1} ∪ ∂In−1 × I k //

��

E

p

��
In−1 × I

f
//

g

55kkkkkkkkk
B

can be completed by g : (In, ∂In, Jn−1)→ (E,F, x0). Hence p∗[g] = [f ].
Now we prove that p∗ is a monomorphism. Consider f : (In, ∂In, Jn−1)→ (E,F, x0)

such that p∗[f ] = 0. Then there is a homotopy G : (In× I, ∂In× I)→ (B, b0) between
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pf and the constant map into b0. Denote the constant map into x0 by k. Since p is a
fibration, we complete the following commutative diagram:

Jn−1 × I ∪ In × {0} ∪ In × {1} k∪f∪k//

��

E

p

��
In × I

G
//

H

55kkkkkkkkkk
B

by H : (In × I, ∂In × I, Jn−1 × I) → (E,B, x0) which is a homotopy between f and
the constant map k. �

The notion of exact sequence can be enlarged to groups and also to the category
Set∗ of sets with distinquished elements. Here we have to define Ker f = f−1(b0) for
f : (A, a0)→ (B, b0).

Theorem. If p : E → B be a fibration with a fibre F = p−1(b0), x0 ∈ F and B is path
connected, then the sequence

· · · → πn(F, x0)
i∗−→ πn(E, x0)

p∗−→ πn(B, b0)
δ−→ πn−1(F, x0)→ . . .

· · · → π0(F )
i∗−→ π0(E)

p∗−→ π0(B).

is exact.

Proof. Substitute the isomorphism p∗ : πn(E,F, x0) → πn(B, b0) into the exact se-
quence for the pair (E,F ). In this way we get the required exact sequence ending
with

· · · → π0(F, x0)→ π0(E, x0).

We can prolong it by one term to the right. The exactness in π0(E, x0) follows from
the fact that every path in B ending in b0 can be lifted to a path in E ending in F . �

The direct definition of δ : πn(B, b0)→ πn−1(F, x0) is given by

δ[f ] = [g/In−1]

where g is the lift in the diagram

Jn−1
x0 //

��

E

p

��
In

f
//

g

<<z
z

z
z

z
B

Some applications of this long exact sequence to computations of homotopy groups
will be given in Section 14.
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