INTRODUCTION TO ALGEBRAIC TOPOLOGY

MARTIN CADEK

11. FUNDAMENTAL GROUP

The fundamental group of a space is the first homotopy group. In this section we
describe two basic methods how to compute it.

11.1. Covering space. A covering space of a space X is a space X together with a
map p: X — X such that (X, X, p) is a fibre bundle with a discrete fibre.

In the previous section we have proved that every fibre bundle has homotopy lifting
property with respect to CW-complexes. In the case of covering spaces the lifts of
homotopies are unique:

Proposition. Let p : X > X bea covering space and let Y be a space. Given a
homotopy I .Y x I — X and a map f Y x {0} = X such that F(—,0) = pf, there
1$ a unique homotopy F:YxI—X making the following diagram commutative:

Y x {0} - X

| A)

Y X ——X
F

Proof. Since the proof follows the same lines as the proof of the analogous proposition
in 10.5, we outline only the main steps.

(1) Using compactness of I we show that for each y € Y there is a neighbourhood

U such that F' can be defined on U x I.
(2) F is uniquely determined on {y} x I for each y € Y.
(3) The lifts of F' defined on U; x I and Uy x I concide on (U; NUsy) X 1.

O
From the uniquiness of lifts of loops and their homotopies starting at a fixed point
we get immediately the following
Corollary. The group homomorphism p, : m ()? To) — 7T1(X xg) induced by a cover-
ing space (X, X, p) is injective. The image subgroup p.(m (X, %o)) inm (X, xo) consists
of loops in X based at xy whose lifts in X starting at Ty are loops.

11.2. Group actions. A left action of a discrete group G on a space Y is a map

GxY =Y, (gy)—g-y
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such that 1 -y = y and (g192) -y = g1 - (g2 - y). We will call this action properly
discontinuous if each point y € Y has an open neighbourhood U such that giUNgU #
() implies g; = go.

An action of a group G on a space Y induces the equivalence x ~ y if y = g - x for
some g € G. The orbit space Y /G is the factor space Y/ ~.

A space Y is called simply connected if it is path connected and 71 (Y, yo) is trivial
for some (and hence all) base point yq.

The following theorem provides a useful method for computation of fundamental
groups.

Theorem. Let Y be a path connected space with a properly discontinuous action of a
group G. Then

(1) The natural projection p: Y — Y /G is a covering space.
(2) G = m(Y/G,p(yo))/p«m1(Y,y0). Particularly, if Y is simply connected, then
m((Y/G) = G.

Proof. Let y € Y and let U be a neighbourhood of y from the definition of prop-
erly discontinuous action. Then p~!(p(U)) is a disjoint union of gU, g € G. Hence
(Y,Y/G,p) is a fibre bundle with the fibre G.

Applying the long exact sequence of homotopy groups of this fibration we obtain

0=m(G,1) = m(Y,y0) 2 m(Y/G;p(yo)) > mo(G) = G — m0(Y) = 0.

In general m of a fibre is only the set with distinguished point. However, here it has
the group structure given by G. Using the definition of ¢ from 10.3 one can check that
0 is a group homomorphism. Consequently, the exact sequence implies that

G =m(Y/G,p(yo))/pemi (Y, 10)-
U

Example A. Z acts on real numbers R by addition. The orbit space is R/Z = S*.
According to the previous theorem

7T1(Sl,8) = 7.

The fundamental group of the sphere S™ with n > 2 is trivial. The reason is that any
loop 7 : S' — S™ is homotopic to a loop which is not a map onto S™ and S™ without
a point is contractible.

Next, the group Z, = {1, —1} has an action on S", n > 2 given by (—1) -z = —=z.
Hence

1 (RPn) = ZQ.
Example B. The abelian group Z @ Z acts on R?

The factor R?/(Z @& Z) is two dimensional torus S' x S1. Its fundamental group is
VASY A
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Example C. The group G given by two generators o, 3 and the relation 3~ 'a = a~!

acts on R? by

a (z,y)=(@+Ly), B-(z,y)=Q1-z,y+1)
The factor R?/G is the Klein bottle. Hence its fundamental group is G.

11.3. Free product of groups. As a set the free product *,G, of groups G, a € I
is the set of finite sequences ¢19s...gm such that 1 # ¢; € G,,, a; # a;41, called
words. The elements g; are called letters. The group operation is given by

(glgg .. gm) . (hlhg .. hn) = (glgg - .gmhlhg e hn)

where we take g,,h; as a single letter g,, - hy if both elements belong to the same group
G,. It is easy to show that x,G, is a group with the empty word as the identity
element. Moreover, for each 8 € I there is the natural inclusion ig : Gg — *,Ga.

Up to isomorhism the free product of groups is characterized by the following uni-
versal property: Having a system of group homomorphism h,, : G, — G there is just
one group homomorphism h : x,G, — G such that h, = hi,.

Exercise. Describe Zq * Z,.

11.4. Van Kampen Theorem. Suppose that a space X is a union of path con-
nected open subsets U, each of which contains a base point xqg € X. The inclusions
U, — X induce homomorphisms j, : m(U,) — m(X) which determine a unique
homomorphism ¢ : x,m (Uy) — m1(X).

Next, the inclusions U, N Uz < U, induce the homomorphisms i,s : m (U, NUs) —
m(Us). We have juias = Jjpisa. Consequently, the kernel of ¢ contains elements of
the form i,s(w)ige(w™!) for any w € m (U, N Up).

Van Kampen Theorem provides the full description of the homomorphism ¢ which
enables us to compute 7 (X) using groups (U, ) and (U, N Up).

Theorem (Van Kampen Theorem). If X is a union of path connected open sets U,
each containing a base point xo € X and if each intersection U, NUgz is path connected,
then the homomorhism ¢ : x,m (Uy) — m1(X) is surjective. If in addition each inter-
section U, N Ug N U, is path connected, then the kernel of ¢ is the normal subgroup
N in x,m1(U,) generated by elements ing(w)iga(w™) for any w € m(Uy NUs). So ¢
induces an isomorphism

7T1(X) = *aﬂ'l(Ua)/N-
Example. If X, are path connected spaces, then

T (\/ Xo) = #4m1(X4).

Outline of the proof of Van Kampen Theorem. For simplicity we suppose that X is a
union of only two open subsets U; and Us.

Surjectivity of p. Let f : I — X be a loop starting at xqg € U; U U,. This loop
is up to homotopy a composition of several paths, for simplicity suppose there are
three such that f, : I — Uy, fo: I — Us and f3 : [ — U; with end points succesively
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Xo, T1, Ta, Tog € UyNUs,. Since Uy NUs is path connected there are paths g, : I — U1NU;
and g9 : I — Uy NU; from xg to x; and x5, respectively. Then the loop f is up to
homotopy the composition of loops fi — g1 : I — Uy, g1+ fo — g2 : I — Us and
g2 + f3: I — Ujy. Consequently, [f] € m1(X) lies in the image of ¢.

[

T2
T

Zo
FIGURE 11.1. [f]=[fi+ fo+ f3s] = [fi — 1] + [91 + fo — g2] + [g2 + f3]

Kernel of ¢. Suppose that the image under ¢ of a word with m letters [f1][g1][f2] - - -,
where [fi] € m(U1), [¢:)) € m(Us), is zero in m(X). Then there is a homotopy
F: I x1I— X such that

F(S,O):f1+gl+f2+..., F(S,l):l’o, F(O,t):F(l,t):ZEO
where we suppose that f; is defined on [222,2=1] and g, is defined on [2-1, 2], Since
I x I is compact, there is an integer n, a multiple of m, such that

P )

is a subset in U; or Usy. Using homotopy extension property, we can construct a
homotopy from F to F rel J! such that again

P )

is a subset in Uy or Us, and moreover,

Further, ﬁ(s,O) =f+49,+ fy+... where f', ~ fi, ¢; ~ g; in Uy and Us, respec-
tively, rel the boundary of the domain of definition. We want to show that the word
[f'1]1l9"1)2[f o)1 - - . belongs to N. Here | ]; stands for an element in m; (U;).



We can decompose
IxI=|]JM,

where M; is a maximal subset with the properties:
(1) M; is a union of several squares [£, ZE1] x [ ZH],
(2) int M; is path connected.
(3) F(M;) is a subset in U; or Us.
For simplicity suppose that we have four sets M; as indicated in the picture.

FIGURE 11.2. [fi]i[g1]2]f3)1 € Keryp

In this situation there are three loops k, [ and p starting at xo and lying in Uy N Us.
They are defined by F' on common boundary of M; and M,, My and M3, M3 and My,
respectively. Now, we get

[f1alg 12l o) = [kli[=k + U2[—1 + pl = [kl [—k)2[l2[=1)1 [P
= [k]1[—Fk]2[l]2[-1]1 € N.
U

Corollary. Let X be a union of two open subsets U and V' where V' is simply connected
and U NV is path connected. Then

m(X) =m(U)/N
where N is the normal subgroup in w1 (U) generated by the image of m (U NV).

Exercise. Use the previous statement to compute the fundamental group of the Klein
bottle and other 2-dimensional closed surfaces.

11.5. Fundamental group and homology. Here we compare the fundamental
group of a space with the first homology group. We obtain a special case of Hurewitz
theorem, see 13.6.
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Theorem. By regarding loops as 1-cycles, we obtain a homomorphism h : m (X, xg) —
Hy(X). If X is path connected, then h is surjective and its kernel is the commutator

subgroup of m(X). So h induces isomorphism from the abelization of m (X, xg) to
Hi(X).

For the proof we refer to [Hatcher|, Theorem 2A.1, pages 166-167.
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