INTRODUCTION TO ALGEBRAIC TOPOLOGY

MARTIN ČADEK

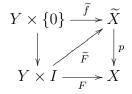
11. Fundamental group

The *fundamental group* of a space is the first homotopy group. In this section we describe two basic methods how to compute it.

11.1. Covering space. A covering space of a space X is a space \widetilde{X} together with a map $p: \widetilde{X} \to X$ such that (\widetilde{X}, X, p) is a fibre bundle with a discrete fibre.

In the previous section we have proved that every fibre bundle has homotopy lifting property with respect to CW-complexes. In the case of covering spaces the lifts of homotopies are unique:

Proposition. Let $p : \widetilde{X} \to X$ be a covering space and let Y be a space. Given a homotopy $F : Y \times I \to X$ and a map $\widetilde{f} : Y \times \{0\} \to \widetilde{X}$ such that $F(-,0) = p\widetilde{f}$, there is a unique homotopy $\widetilde{F} : Y \times I \to \widetilde{X}$ making the following diagram commutative:



Proof. Since the proof follows the same lines as the proof of the analogous proposition in 10.5, we outline only the main steps.

(1) Using compactness of I we show that for each $y \in Y$ there is a neighbourhood U such that \widetilde{F} can be defined on $U \times I$.

- (2) \widetilde{F} is uniquely determined on $\{y\} \times I$ for each $y \in Y$.
- (3) The lifts of F defined on $U_1 \times I$ and $U_2 \times I$ concide on $(U_1 \cap U_2) \times I$.

From the uniquiness of lifts of loops and their homotopies starting at a fixed point we get immediately the following

Corollary. The group homomorphism $p_* : \pi_1(\widetilde{X}, \widetilde{x}_0) \to \pi_1(X, x_0)$ induced by a covering space (\widetilde{X}, X, p) is injective. The image subgroup $p_*(\pi_1(\widetilde{X}, \widetilde{x}_0))$ in $\pi_1(X, x_0)$ consists of loops in X based at x_0 whose lifts in \widetilde{X} starting at \widetilde{x}_0 are loops.

11.2. Group actions. A *left action* of a discrete group G on a space Y is a map

$$G \times Y \to Y, \quad (g, y) \mapsto g \cdot y$$

such that $1 \cdot y = y$ and $(g_1g_2) \cdot y = g_1 \cdot (g_2 \cdot y)$. We will call this action properly discontinuous if each point $y \in Y$ has an open neighbourhood U such that $g_1U \cap g_2U \neq \emptyset$ implies $g_1 = g_2$.

An action of a group G on a space Y induces the equivalence $x \sim y$ if $y = g \cdot x$ for some $g \in G$. The orbit space Y/G is the factor space Y/\sim .

A space Y is called *simply connected* if it is path connected and $\pi_1(Y, y_0)$ is trivial for some (and hence all) base point y_0 .

The following theorem provides a useful method for computation of fundamental groups.

Theorem. Let Y be a path connected space with a properly discontinuous action of a group G. Then

- (1) The natural projection $p: Y \to Y/G$ is a covering space.
- (2) $G \cong \pi_1(Y/G, p(y_0))/p_*\pi_1(Y, y_0)$. Particularly, if Y is simply connected, then $\pi_1(Y/G) \cong G$.

Proof. Let $y \in Y$ and let U be a neighbourhood of y from the definition of properly discontinuous action. Then $p^{-1}(p(U))$ is a disjoint union of $gU, g \in G$. Hence (Y, Y/G, p) is a fibre bundle with the fibre G.

Applying the long exact sequence of homotopy groups of this fibration we obtain

$$0 = \pi_1(G, 1) \to \pi_1(Y, y_0) \xrightarrow{p_*} \pi_1(Y/G; p(y_0)) \xrightarrow{\delta} \pi_0(G) = G \to \pi_0(Y) = 0.$$

In general π_0 of a fibre is only the set with distinguished point. However, here it has the group structure given by G. Using the definition of δ from 10.3 one can check that δ is a group homomorphism. Consequently, the exact sequence implies that

$$G \cong \pi_1(Y/G, p(y_0))/p_*\pi_1(Y, y_0).$$

Example A. \mathbb{Z} acts on real numbers \mathbb{R} by addition. The orbit space is $\mathbb{R}/\mathbb{Z} = S^1$. According to the previous theorem

$$\pi_1(S^1, s) = \mathbb{Z}.$$

The fundamental group of the sphere S^n with $n \ge 2$ is trivial. The reason is that any loop $\gamma: S^1 \to S^n$ is homotopic to a loop which is not a map onto S^n and S^n without a point is contractible.

Next, the group $\mathbb{Z}_2 = \{1, -1\}$ has an action on S^n , $n \ge 2$ given by $(-1) \cdot x = -x$. Hence

 $\pi_1(\mathbb{RP}^n) = \mathbb{Z}_2.$

Example B. The abelian group $\mathbb{Z} \oplus \mathbb{Z}$ acts on \mathbb{R}^2

$$(m,n) \cdot (x,y) = (x+m,y+n).$$

The factor $\mathbb{R}^2/(\mathbb{Z} \oplus \mathbb{Z})$ is two dimensional torus $S^1 \times S^1$. Its fundamental group is $\mathbb{Z} \oplus \mathbb{Z}$.

Example C. The group G given by two generators α , β and the relation $\beta^{-1}\alpha\beta = \alpha^{-1}$ acts on \mathbb{R}^2 by

$$\alpha \cdot (x, y) = (x + 1, y), \quad \beta \cdot (x, y) = (1 - x, y + 1).$$

The factor \mathbb{R}^2/G is the Klein bottle. Hence its fundamental group is G.

11.3. Free product of groups. As a set the *free product* $*_{\alpha}G_{\alpha}$ of groups G_{α} , $\alpha \in I$ is the set of finite sequences $g_1g_2 \ldots g_m$ such that $1 \neq g_i \in G_{\alpha_i}$, $\alpha_i \neq \alpha_{i+1}$, called words. The elements g_i are called letters. The group operation is given by

$$(g_1g_2\ldots g_m)\cdot (h_1h_2\ldots h_n) = (g_1g_2\ldots g_mh_1h_2\ldots h_n)$$

where we take $g_m h_1$ as a single letter $g_m \cdot h_1$ if both elements belong to the same group G_{α} . It is easy to show that $*_{\alpha}G_{\alpha}$ is a group with the empty word as the identity element. Moreover, for each $\beta \in I$ there is the natural inclusion $i_{\beta} : G_{\beta} \hookrightarrow *_{\alpha}G_{\alpha}$.

Up to isomorhism the free product of groups is characterized by the following universal property: Having a system of group homomorphism $h_{\alpha}: G_{\alpha} \to G$ there is just one group homomorphism $h: *_{\alpha}G_{\alpha} \to G$ such that $h_{\alpha} = hi_{\alpha}$.

Exercise. Describe $\mathbb{Z}_2 * \mathbb{Z}_2$.

11.4. Van Kampen Theorem. Suppose that a space X is a union of path connected open subsets U_{α} each of which contains a base point $x_0 \in X$. The inclusions $U_{\alpha} \hookrightarrow X$ induce homomorphisms $j_{\alpha} : \pi_1(U_{\alpha}) \to \pi_1(X)$ which determine a unique homomorphism $\varphi : *_{\alpha} \pi_1(U_{\alpha}) \to \pi_1(X)$.

Next, the inclusions $U_{\alpha} \cap U_{\beta} \hookrightarrow U_{\alpha}$ induce the homomorphisms $i_{\alpha\beta} : \pi_1(U_{\alpha} \cap U_{\beta}) \to \pi_1(U_{\alpha})$. We have $j_{\alpha}i_{\alpha\beta} = j_{\beta}i_{\beta\alpha}$. Consequently, the kernel of φ contains elements of the form $i_{\alpha\beta}(\omega)i_{\beta\alpha}(\omega^{-1})$ for any $\omega \in \pi_1(U_{\alpha} \cap U_{\beta})$.

Van Kampen Theorem provides the full description of the homomorphism φ which enables us to compute $\pi_1(X)$ using groups $\pi_1(U_\alpha)$ and $\pi_1(U_\alpha \cap U_\beta)$.

Theorem (Van Kampen Theorem). If X is a union of path connected open sets U_{α} each containing a base point $x_0 \in X$ and if each intersection $U_{\alpha} \cap U_{\beta}$ is path connected, then the homomorhism $\varphi : *_{\alpha}\pi_1(U_{\alpha}) \to \pi_1(X)$ is surjective. If in addition each intersection $U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$ is path connected, then the kernel of φ is the normal subgroup N in $*_{\alpha}\pi_1(U_{\alpha})$ generated by elements $i_{\alpha\beta}(\omega)i_{\beta\alpha}(\omega^{-1})$ for any $\omega \in \pi_1(U_{\alpha} \cap U_{\beta})$. So φ induces an isomorphism

$$\pi_1(X) \cong *_\alpha \pi_1(U_\alpha)/N.$$

Example. If X_{α} are path connected spaces, then

$$\pi_1(\bigvee X_\alpha) = *_\alpha \pi_1(X_\alpha).$$

Outline of the proof of Van Kampen Theorem. For simplicity we suppose that X is a union of only two open subsets U_1 and U_2 .

Surjectivity of φ . Let $f: I \to X$ be a loop starting at $x_0 \in U_1 \cup U_2$. This loop is up to homotopy a composition of several paths, for simplicity suppose there are three such that $f_1: I \to U_1, f_2: I \to U_2$ and $f_3: I \to U_1$ with end points successively $x_0, x_1, x_2, x_0 \in U_1 \cap U_2$. Since $U_1 \cap U_2$ is path connected there are paths $g_1 : I \to U_1 \cap U_2$ and $g_2 : I \to U_1 \cap U_2$ from x_0 to x_1 and x_2 , respectively. Then the loop f is up to homotopy the composition of loops $f_1 - g_1 : I \to U_1, g_1 + f_2 - g_2 : I \to U_2$ and $g_2 + f_3 : I \to U_1$. Consequently, $[f] \in \pi_1(X)$ lies in the image of φ .

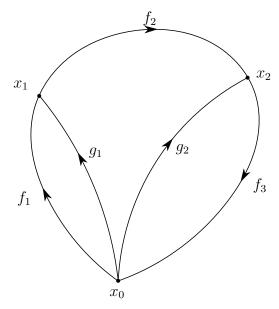


FIGURE 11.1. $[f] = [f_1 + f_2 + f_3] = [f_1 - g_1] + [g_1 + f_2 - g_2] + [g_2 + f_3]$

Kernel of φ . Suppose that the image under φ of a word with m letters $[f_1][g_1][f_2]\ldots$, where $[f_i] \in \pi_1(U_1), [g_i] \in \pi_1(U_2)$, is zero in $\pi_1(X)$. Then there is a homotopy $F: I \times I \to X$ such that

$$F(s,0) = f_1 + g_1 + f_2 + \dots, \quad F(s,1) = x_0, \quad F(0,t) = F(1,t) = x_0$$

where we suppose that f_i is defined on $\left[\frac{2i-2}{m}, \frac{2i-1}{m}\right]$ and g_i is defined on $\left[\frac{2i-1}{m}, \frac{2i}{m}\right]$. Since $I \times I$ is compact, there is an integer n, a multiple of m, such that

$$F\left(\left[\frac{i}{n},\frac{i+1}{n}\right]\times\left[\frac{j}{n},\frac{j+1}{n}\right]\right)$$

is a subset in U_1 or U_2 . Using homotopy extension property, we can construct a homotopy from F to \widetilde{F} rel J^1 such that again

$$\widetilde{F}\left(\left[\frac{i}{n},\frac{i+1}{n}\right]\times\left[\frac{j}{n},\frac{j+1}{n}\right]\right)$$

is a subset in U_1 or U_2 , and moreover,

$$\widetilde{F}\left(\frac{i}{n},\frac{j}{n}\right) = x_0.$$

Further, $\widetilde{F}(s,0) = f'_1 + g'_1 + f'_2 + \ldots$ where $f'_i \sim f_i$, $g'_i \sim g_i$ in U_1 and U_2 , respectively, rel the boundary of the domain of definition. We want to show that the word $[f'_1]_1[g'_1]_2[f'_2]_1\ldots$ belongs to N. Here []_i stands for an element in $\pi_1(U_i)$.

We can decompose

$$I \times I = \bigcup_i M_i$$

where M_i is a maximal subset with the properties:

- (1) M_i is a union of several squares $\left[\frac{i}{n}, \frac{i+1}{n}\right] \times \left[\frac{j}{n}, \frac{j+1}{n}\right]$.
- (2) int M_i is path connected.
- (3) $F(M_i)$ is a subset in U_1 or U_2 .

For simplicity suppose that we have four sets M_i as indicated in the picture.

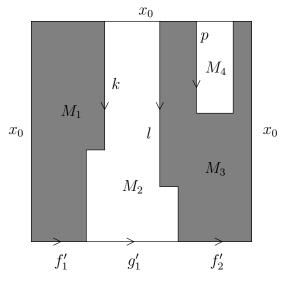


FIGURE 11.2. $[f'_1]_1[g'_1]_2[f'_2]_1 \in \text{Ker}\varphi$

In this situation there are three loops k, l and p starting at x_0 and lying in $U_1 \cap U_2$. They are defined by \widetilde{F} on common boundary of M_1 and M_2 , M_2 and M_3 , M_3 and M_4 , respectively. Now, we get

$$[f'_1]_1[g'_1]_2[f'_2]_1 = [k]_1[-k+l]_2[-l+p]_1 = [k]_1[-k]_2[l]_2[-l]_1[p]_1$$

= $[k]_1[-k]_2[l]_2[-l]_1 \in N.$

Corollary. Let X be a union of two open subsets U and V where V is simply connected and $U \cap V$ is path connected. Then

$$\pi_1(X) = \pi_1(U)/N$$

where N is the normal subgroup in $\pi_1(U)$ generated by the image of $\pi_1(U \cap V)$.

Exercise. Use the previous statement to compute the fundamental group of the Klein bottle and other 2-dimensional closed surfaces.

11.5. Fundamental group and homology. Here we compare the fundamental group of a space with the first homology group. We obtain a special case of Hurewitz theorem, see 13.6.

Theorem. By regarding loops as 1-cycles, we obtain a homomorphism $h : \pi_1(X, x_0) \to H_1(X)$. If X is path connected, then h is surjective and its kernel is the commutator subgroup of $\pi_1(X)$. So h induces isomorphism from the abelization of $\pi_1(X, x_0)$ to $H_1(X)$.

For the proof we refer to [Hatcher], Theorem 2A.1, pages 166–167.

CZ.1.07/2.2.00/28.0041 Centrum interaktivních a multimediálních studijních opor pro inovaci výuky a efektivní učení

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ