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11. Fundamental group

The fundamental group of a space is the first homotopy group. In this section we
describe two basic methods how to compute it.

11.1. Covering space. A covering space of a space X is a space X̃ together with a

map p : X̃ → X such that (X̃,X, p) is a fibre bundle with a discrete fibre.
In the previous section we have proved that every fibre bundle has homotopy lifting

property with respect to CW-complexes. In the case of covering spaces the lifts of
homotopies are unique:

Proposition. Let p : X̃ → X be a covering space and let Y be a space. Given a

homotopy F : Y × I → X and a map f̃ : Y × {0} → X̃ such that F (−, 0) = pf̃ , there

is a unique homotopy F̃ : Y × I → X̃ making the following diagram commutative:

Y × {0}

��

f̃ // X̃

p

��
Y × I

F
//

F̃

;;wwwwwwwwww
X

Proof. Since the proof follows the same lines as the proof of the analogous proposition
in 10.5, we outline only the main steps.

(1) Using compactness of I we show that for each y ∈ Y there is a neighbourhood

U such that F̃ can be defined on U × I.
(2) F̃ is uniquely determined on {y} × I for each y ∈ Y .
(3) The lifts of F defined on U1 × I and U2 × I concide on (U1 ∩ U2)× I.

�

From the uniquiness of lifts of loops and their homotopies starting at a fixed point
we get immediately the following

Corollary. The group homomorphism p∗ : π1(X̃, x̃0)→ π1(X, x0) induced by a cover-

ing space (X̃,X, p) is injective. The image subgroup p∗(π1(X̃, x̃0)) in π1(X, x0) consists

of loops in X based at x0 whose lifts in X̃ starting at x̃0 are loops.

11.2. Group actions. A left action of a discrete group G on a space Y is a map

G× Y → Y, (g, y) 7→ g · y
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such that 1 · y = y and (g1g2) · y = g1 · (g2 · y). We will call this action properly
discontinuous if each point y ∈ Y has an open neighbourhood U such that g1U∩g2U 6=
∅ implies g1 = g2.

An action of a group G on a space Y induces the equivalence x ∼ y if y = g · x for
some g ∈ G. The orbit space Y/G is the factor space Y/ ∼.

A space Y is called simply connected if it is path connected and π1(Y, y0) is trivial
for some (and hence all) base point y0.

The following theorem provides a useful method for computation of fundamental
groups.

Theorem. Let Y be a path connected space with a properly discontinuous action of a
group G. Then

(1) The natural projection p : Y → Y/G is a covering space.
(2) G ∼= π1(Y/G, p(y0))/p∗π1(Y, y0). Particularly, if Y is simply connected, then

π1(Y/G) ∼= G.

Proof. Let y ∈ Y and let U be a neighbourhood of y from the definition of prop-
erly discontinuous action. Then p−1(p(U)) is a disjoint union of gU , g ∈ G. Hence
(Y, Y/G, p) is a fibre bundle with the fibre G.

Applying the long exact sequence of homotopy groups of this fibration we obtain

0 = π1(G, 1)→ π1(Y, y0)
p∗−→ π1(Y/G; p(y0))

δ−→ π0(G) = G→ π0(Y ) = 0.

In general π0 of a fibre is only the set with distinguished point. However, here it has
the group structure given by G. Using the definition of δ from 10.3 one can check that
δ is a group homomorphism. Consequently, the exact sequence implies that

G ∼= π1(Y/G, p(y0))/p∗π1(Y, y0).

�

Example A. Z acts on real numbers R by addition. The orbit space is R/Z = S1.
According to the previous theorem

π1(S
1, s) = Z.

The fundamental group of the sphere Sn with n ≥ 2 is trivial. The reason is that any
loop γ : S1 → Sn is homotopic to a loop which is not a map onto Sn and Sn without
a point is contractible.

Next, the group Z2 = {1,−1} has an action on Sn, n ≥ 2 given by (−1) · x = −x.
Hence

π1(RPn) = Z2.

Example B. The abelian group Z⊕ Z acts on R2

(m,n) · (x, y) = (x+m, y + n).

The factor R2/(Z ⊕ Z) is two dimensional torus S1 × S1. Its fundamental group is
Z⊕ Z.
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Example C. The group G given by two generators α, β and the relation β−1αβ = α−1

acts on R2 by

α · (x, y) = (x+ 1, y), β · (x, y) = (1− x, y + 1).

The factor R2/G is the Klein bottle. Hence its fundamental group is G.

11.3. Free product of groups. As a set the free product ∗αGα of groups Gα, α ∈ I
is the set of finite sequences g1g2 . . . gm such that 1 6= gi ∈ Gαi

, αi 6= αi+1, called
words. The elements gi are called letters. The group operation is given by

(g1g2 . . . gm) · (h1h2 . . . hn) = (g1g2 . . . gmh1h2 . . . hn)

where we take gmh1 as a single letter gm ·h1 if both elements belong to the same group
Gα. It is easy to show that ∗αGα is a group with the empty word as the identity
element. Moreover, for each β ∈ I there is the natural inclusion iβ : Gβ ↪→ ∗αGα.

Up to isomorhism the free product of groups is characterized by the following uni-
versal property: Having a system of group homomorphism hα : Gα → G there is just
one group homomorphism h : ∗αGα → G such that hα = hiα.

Exercise. Describe Z2 ∗ Z2.

11.4. Van Kampen Theorem. Suppose that a space X is a union of path con-
nected open subsets Uα each of which contains a base point x0 ∈ X. The inclusions
Uα ↪→ X induce homomorphisms jα : π1(Uα) → π1(X) which determine a unique
homomorphism ϕ : ∗απ1(Uα)→ π1(X).

Next, the inclusions Uα ∩Uβ ↪→ Uα induce the homomorphisms iαβ : π1(Uα ∩Uβ)→
π1(Uα). We have jαiαβ = jβiβα. Consequently, the kernel of ϕ contains elements of
the form iαβ(ω)iβα(ω−1) for any ω ∈ π1(Uα ∩ Uβ).

Van Kampen Theorem provides the full description of the homomorphism ϕ which
enables us to compute π1(X) using groups π1(Uα) and π1(Uα ∩ Uβ).

Theorem (Van Kampen Theorem). If X is a union of path connected open sets Uα
each containing a base point x0 ∈ X and if each intersection Uα∩Uβ is path connected,
then the homomorhism ϕ : ∗απ1(Uα)→ π1(X) is surjective. If in addition each inter-
section Uα ∩ Uβ ∩ Uγ is path connected, then the kernel of ϕ is the normal subgroup
N in ∗απ1(Uα) generated by elements iαβ(ω)iβα(ω−1) for any ω ∈ π1(Uα ∩ Uβ). So ϕ
induces an isomorphism

π1(X) ∼= ∗απ1(Uα)/N.

Example. If Xα are path connected spaces, then

π1(
∨

Xα) = ∗απ1(Xα).

Outline of the proof of Van Kampen Theorem. For simplicity we suppose that X is a
union of only two open subsets U1 and U2.
Surjectivity of ϕ. Let f : I → X be a loop starting at x0 ∈ U1 ∪ U2. This loop

is up to homotopy a composition of several paths, for simplicity suppose there are
three such that f1 : I → U1, f2 : I → U2 and f3 : I → U1 with end points succesively
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x0, x1, x2, x0 ∈ U1∩U2. Since U1∩U2 is path connected there are paths g1 : I → U1∩U2

and g2 : I → U1 ∩ U2 from x0 to x1 and x2, respectively. Then the loop f is up to
homotopy the composition of loops f1 − g1 : I → U1, g1 + f2 − g2 : I → U2 and
g2 + f3 : I → U1. Consequently, [f ] ∈ π1(X) lies in the image of ϕ.

f2

f1
f3

x0

x1
x2

g1 g2

Figure 11.1. [f ] = [f1 + f2 + f3] = [f1 − g1] + [g1 + f2 − g2] + [g2 + f3]

Kernel of ϕ. Suppose that the image under ϕ of a word with m letters [f1][g1][f2] . . . ,
where [fi] ∈ π1(U1), [gi] ∈ π1(U2), is zero in π1(X). Then there is a homotopy
F : I × I → X such that

F (s, 0) = f1 + g1 + f2 + . . . , F (s, 1) = x0, F (0, t) = F (1, t) = x0

where we suppose that fi is defined on [2i−2
m
, 2i−1

m
] and gi is defined on [2i−1

m
, 2i
m

]. Since
I × I is compact, there is an integer n, a multiple of m, such that

F

([
i

n
,
i+ 1

n

]
×
[
j

n
,
j + 1

n

])
is a subset in U1 or U2. Using homotopy extension property, we can construct a

homotopy from F to F̃ rel J1 such that again

F̃

([
i

n
,
i+ 1

n

]
×
[
j

n
,
j + 1

n

])
is a subset in U1 or U2, and moreover,

F̃

(
i

n
,
j

n

)
= x0.

Further, F̃ (s, 0) = f ′1 + g′1 + f ′2 + . . . where f ′i ∼ fi, g
′
i ∼ gi in U1 and U2, respec-

tively, rel the boundary of the domain of definition. We want to show that the word
[f ′1]1[g

′
1]2[f

′
2]1 . . . belongs to N . Here [ ]i stands for an element in π1(Ui).
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We can decompose

I × I =
⋃
i

Mi

where Mi is a maximal subset with the properties:

(1) Mi is a union of several squares [ i
n
, i+1
n

]× [ j
n
, j+1

n
].

(2) intMi is path connected.

(3) F̃ (Mi) is a subset in U1 or U2.

For simplicity suppose that we have four sets Mi as indicated in the picture.

x0

x0 x0

M1

M2

M3

M4

p

k

l

f ′1 g′1 f ′2

Figure 11.2. [f ′1]1[g
′
1]2[f

′
2]1 ∈ Kerϕ

In this situation there are three loops k, l and p starting at x0 and lying in U1 ∩U2.

They are defined by F̃ on common boundary of M1 and M2, M2 and M3, M3 and M4,
respectively. Now, we get

[f ′1]1[g
′
1]2[f

′
2]1 = [k]1[−k + l]2[−l + p]1 = [k]1[−k]2[l]2[−l]1[p]1

= [k]1[−k]2[l]2[−l]1 ∈ N.
�

Corollary. Let X be a union of two open subsets U and V where V is simply connected
and U ∩ V is path connected. Then

π1(X) = π1(U)/N

where N is the normal subgroup in π1(U) generated by the image of π1(U ∩ V ).

Exercise. Use the previous statement to compute the fundamental group of the Klein
bottle and other 2-dimensional closed surfaces.

11.5. Fundamental group and homology. Here we compare the fundamental
group of a space with the first homology group. We obtain a special case of Hurewitz
theorem, see 13.6.
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Theorem. By regarding loops as 1-cycles, we obtain a homomorphism h : π1(X, x0)→
H1(X). If X is path connected, then h is surjective and its kernel is the commutator
subgroup of π1(X). So h induces isomorphism from the abelization of π1(X, x0) to
H1(X).

For the proof we refer to [Hatcher], Theorem 2A.1, pages 166–167.
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