

Central European Institute of Technology BRNO | CZECH REPUBLIC

Nanobiotechnology

Scanning Probe Microscopies

Jan Přibyl

CEITEC MU Kamenice 5/A35, CZ-62500 Brno pribyl@nanobio.cz

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

OP Research and Development for Innovation

Sample preparation for AFM

AFM sample preparation

Concentration – surface density

Substrates for preparation of AFM samples

1. HOPG Highly Ordered Pyrolytic Graphite

- •Kish's graphite, waste in steel production
- •Hexagonal planar structure
- •C-C bond142 pm, layer-layer distance335 pm
- Conductive, highly hydrophobic
- Planar structure
- •Synthetic form of graphite, high chemical purity
- Traditionally substrate for SEM, STM i AFM (→ conductivity)
- Immobilization spontaneous adsorption (→ hydrophobicity)

1. HOPG Highly Ordered Pyrolytic Graphite

2. Mica (muscovite)

- "Cat's silver", muscovite acc. to city of Moscow
- •Chem. structure: $K_2O \cdot Al_2O_3 \cdot SiO_2$
- •Hydrophilic surface
- Easy to be modified by chemical synthesis
- Immobilization by chemical bonding as well as ionic interaction
- •pKa ~ 3, physiological pH → negative surface charge
- •Mica = silicate, hydrated SiO₂ (~ Si-OH) from the chemical point of view

2. Mica (muscovite)

Extremely flat on small and larger areas

Other surfaces 3. Gold

- Inert metal
- •Traditionally in (bio)electrochemistry (i.e. biosensors) electrodes
- •Conductive STM + AFM
- Hydrophobic: spontaneous non-selective adsorption of molecules (proteins, DNA, ...)
- •Specific chemical binding of thiols (-SH) – organic molecules + cysteine
- Prepared usually by evaporation
- •Adhesion layer for operation in liquids (Al/Cr/Ti)

Sputtered gold layer image by tapping mode AFM

Other surfaces

4. Glass

•Amorphous noncrystalline structure

- •Si-OH \rightarrow from chemical point of view
- Less hydrophilic comparing to mica
- Roughness much higher comparing to mica (production by pressing)
- •Not suitable for individual molecules imaging with AFM
- •Typically used together with optical microscopy cell compartments, whole cells

AFM – optical image overlap

Whole cells on glass under AFM

Other surfaces

- Most of lab supplies made of plastic (PP, PE, PS)
- No functional groups to be used in covalent binding
- PS hydrophobic → spontaneous non-specific adsorption of proteins
 → usually as underlying support (i.e. for cell attachment)

Immobilization procedures

1. Proteins

Surface: mica or HOPG (extremely flat)

Protein: charge is given by IEP + pH
Immobilization on mica: pKa (mica) < pH < IEP</pre>

oΤ

ω

~

ъ

4

m.

N

0

Protein immobilization on HOPG

A. **Spontaneous** (non-specific) **adsorption** of protein \rightarrow hydrophobic surface (best results at zero charge *pH* = *IEP*)

B. **Ionic** (specific) **binding** of molecules \rightarrow creation of charge/chem. groups on HOPG surface

2. DNA

Surface: mica or HOPG (extremely flat)

Immobilization problem:

DNA (sugar-phosphate bone) as well as **mica – negative charge** under physiological pH

 \rightarrow surface introduction of **positive charge**

silanization

hydrophobization

Examples of alkoxysiloxanes

3-(Ethoxydimethylsilyl)propylamine APDMES

Self-polymerization

practical complication

- Especially with **APTES** during liquid silanization
- Even vapors of water can cause this effect
- Fixation for **optical** microscopy **expected** factor
- In contrary in fixation for **AFM** very **disturbing**
- Solution:
 - silanization in **vapours** under **vacuum** (i.e. in desiccator<mark>s)</mark>
 - monoalkoxysilanes can not polymerize

3-(Ethoxydimethylsilyl)propylamine APDMES

4.5 nm

1.0

1.5

Self-polymerization examples 0.5 1.5 1.0 0.0 µm 2.98 nm

B. DNA on HOPG

Adsorption of long chain double-sided ions (C_{16}/C_{18})

HOPG

3. Nanoparticles

Substrates for immobilization: **mica** / **HOPG** (smooth surfaces), also gold, glass in selected cases.

Example: gold nanoparticles (AuNP) mercapto-silanized mica (SH-mica):

Gold nanoparticles (AuNP) conjugated with protein molecules: protein = immobilization bridge

3. Bacteria, spores

Protein adhesive layer, i.e. pLL (poly-L-lysine \rightarrow introducing positive charge)

Standard coating on glass

5. Eukaryotic cells

A. Standard culturing on polystyrene dishes

Adhesive protein layers usually takes place (i.e. pLL, RGD adhesion factors, fibronectin, etc.)

Cell culturing equipment

BioAFM incl. Petri dish heater for in-vitro imaging of cell cultures

B. Fixation agents

- Adhesion of cells out of incubator (37°C, 5% CO₂) is mostly problematic
- Allows study of cells in long term periods after removal from incubator
- Cell wall destruction
- Example: EtOH, acetic acid, paraformaldehyde, glutardialdehyde

AFM spectroscopy

Force Distance curves (FD curves)

Evaluation of curves containing binding 'event'

Types of FD curves

Containing single binding event

No interaction between tip and surface (Young's modulus can be determined)

Containing multiple binding events

Useless curve

Height (measured & smoothed) (µm)

ScanAssyst – automatic AFM

ScanAssyst - principle

Z-scanner position

 (A) Typical force–distance curves for hard (green) and soft (blue) materials. (B) Adhesion on a hard surface. (C)
 Molecule–molecule and cell–surface detachment process with three unbinding events.

Phys. Chem. Chem. Phys., 2015, 17, 2950-2959

QI-imaging examples

Fig. 10: Herpes Simplex Virus capsid imaged in liquid, scan size 300 nm x 300 nm. a) Height image (z-range: 100 nm) shows substructure of the virus. b) In the adhesion image it is possible to detect the sticky virus (data range: 200 pN). c) the substructures can be also recognized in the elasticity image.

Fig. 6: Living Cyanobacteria were measured in buffer solution. Scan size 10 µm x 10 µm, z-range 4 µm.

a) 3D Topography of the Cyanobacteria.

b) Elasticity image (data range: 40 kPa) shows the softness of the bacteria.

c) Adhesion image (data range: 100 pN) illustrates a higher adhesion region on top of the bacteria

JPK supporting info

PeakForce QNM = quantitative nanomechanical information (biological samples without damaging) Based on Peak Force Tapping technology - probe is oscillated (~TappingMode), res. freq 1 - 8 kHz (=sampling rate) depending on the tool). Difference: Tapping Mode – const. amplitude,

Peak Force Tapping maximum peak force on the probe (much lower comparing to contact mode – biological samples)

PeakForce QNM on Bacteria

(A) PeakForce QNM (250Hz) Sneddon modulus

 (B) PeakForce curves
 (C) Force volume Sneddon modulus image of the same bacteria collected at a ramp rate of 2Hz. (Standard DNP-A probe in water with 300nm modulation amplitude, Scan size 5µm.)

AFM force mapping *Examples*

Mapping receptors on living cells under physiological conditions

Topography (100 x 100 µm)

Adhesion (100 x 100 µm)

Material properties mapping by AFM Young's modulus mapping

Young's modulus of materials

http://www-materials.eng.cam.ac.uk/

Methods for YM measurement

Olympus 38DL PLUS

Measure the longitudinal and shear wave sound velocity of the test piece using the appropriate transducers and instrument setup.

Cell Young's modulus - methods

Soft membrane

Acta Biomater. 2007 Jul; 3(4): 413–438.

Hertzian fit

Measured curves were fitted to following function:

$$F(\delta) = \frac{4}{3} \frac{E}{(1-\nu^2)} \sqrt{R} \,\delta^{3/2}.$$

where *F* is force, *E* is Young modulus, α – face angle, δ – tip-sample separation, v – Poisson ratio:

Parabolic tip shape

Four sided pyramid

😫 😪 💷 📰 🦉 Wed Jul 29, 2:43 PM 🥻

Force-distance curves

5.4 5.6 5.8

Height (measured & smoothed) (µm)

10

8

6

2

C

-2

5.0 5.2

Vertical Deflection: Extend (nN)

With Giancarlo Forte, ICRC

10

8

6

0

-2

Vertical Deflection: Extend (nN)

Adhesion

6.0 6.2 6.4 6.6

AFM in biomechanical characterization of cardiomyocytes

AFM CoreFacility CEITEC MU

CEITEC AFM CoreFacility JPK NanoWizard3

Bruker FastScan Bio

NTMDT NTgra Vita

NTMDT Solver Next

AFM visualization of biomolecules and bioobjects

- P. Bouchal YM mapping
- J. Paleček DNA
- M. Pešl, V. Rotrekl CMCs
- J. Sládková CMCs

- A. Meli CMC
- M. Kalbáčová TiO2 NT
- H. Kolářová DNA
- I. Crha sperms

Thank you for your attention!