

Centrum pro výzkum toxických látek v prostředí

Ecotoxic effects - Cellular and organisms levels -

Luděk Bláha, PřF MU

Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Toxicity at cellular level

Molecular mechanisms (effects on proteins, membranes, DNA) manifest at cellular level

Life trajectories of the cell

Regular pathways of cell life

- 1) Cycling (cell cycle, proliferation)
- Due to limited proliferation → senescence or or terminal differentiation
 - or cell death (controlled) apoptosis

Homeostasis assured through careful check of key processes, i.e.

Cell membrane integrity Aerobic respiration (mitochondria) Proteosynthesis (ribozomes) DNA integrity

.... Effects on these processes \rightarrow toxicity

IMPACTS and manifestation of toxicity at cell level

Disruption of cell proliferation

- Tumors, cancer
- Immune system disruption (proliferation in many processes)

Disruptions of differentiation

- Important for early development (embryotoxicity, teratogenicity)
- Tumors (cells often NOT differentiated)
- Immune systém

Disruptions of apoptosis

- Tumors (cells escape apoptosis)
- Effects on immune system
 - (TCDD induced activation of AhR → apoptosis in thymus → loss of functional immune reactions

The cellular effects further propate → level of the ORGANISM

Acute lethal toxicity (fish) & relevant toxicity mechanisms

Chemical Class

Fig. 4. Observed modes of toxic action associated with fathead minnow 96-h LC50 values (see Appendix 2) as a function of chemical classes. Russom et al. Environmental Toxicology and Chemistry, Vol. 16, No. 5, pp. 948–967, 1997

CHRONIC and DELAYED TOXICITY

"Chronic" mechanisms less explored Usually not tested in ecotoxicity assays Slow manifestation and effects in ecosystems

Various effects:

- \rightarrow growth inhibition (~ lower food uptake)
- \rightarrow diseases such as carcinogenicity
- → teratogenicity and embryotoxicity, developmental toxicity
- → Reproduction toxicity

→ Organ-specific types of toxicity

- → Imunotoxicity
- → Neurotoxicity
- \rightarrow Nefrotoxicity etc.

Centrum pro výzkum toxických látek v prostředí

Effects at different levels - ORGANISM

- Organism level important in ecotoxicology (see Bioassays)
 - Effects on structure
 - Effects on metabolism (maintenance)
 - Effects on regulation

→Changes in functions (e.g. Ethinylestradiol)

→Repair, survival, **growth**

- →Death (lethality)
- → Proliferation = **Reproduction**

3 key apical endpoints (reflected e.g. in regulations)

Example - GROWTH inhibition in fish Exposures to PAHs +/- UV (phototoxicity)

Growth is proportional to food/feed consumption (measuring of food consumption answers how toxicant affects the growth)

Carcinogenicity

Complex process with four main phases/steps:

- initiation (DNA changes) = mutagenesis
- promotion (changes fixed in genome, cell proliferation etc)
- transformation (formation of malignant cells)
- progression (neoplasia, metastasing)

Endocrine disruption

Interference of xenobiotics with normal functioning of hormonal system

Known consequences

- → Disruption of homeostasis, reproduction, development, and/or behavior (and other hormone-controlled processes), such as
 - Shift in sex ratio, defective sexual development
 - Low fecundity/fertility
 - Hypo-immunity, carcinogenesis
 - Developmental processes malformations
 - etc.

Endocrine disrupters in the environment? 2,3,7,8-TCDD

EDCs...

- Persistent Organic Compounds (POPs and their metabolites)
- steroid hormones and their derivatives from contraception pills
- alkylphenols
- organometallics (butyltins) alkylphe
- pharmaceuticals
- Pesticides
- + number of unknowns ...

alkylphenols

Tributyl-tin

Effects of EDs in invertebrates (molluscs)

One of the first EDC effects: = **imposex**

- Development of male sexual characteristic in females
- Effects of alkyltins (e.g. Tributyl tin)
 - anti-fouling agents

Figure 5. Relationship of Imposex index and total organotins in *Buccinum undatum*.

Female estrogens and contraception pills

Feminization Intersex

Female eggs (oocytes) formed in male testes

Centrum pro výzkum toxických látek v prostředí

Reproduction disruption Decline in fish populations

Kidd, K.A. et al. 2007. Collapse of a fish population following exposure to a synthetic estrogen. PNAS 104(21):8897-8901

EE2 - 5 ng/L (!)

Control lake

lake with EE2

Reproduction toxicity, developmental toxicity, embryotoxicity and teratogenicity

Reproduction and development are closely related

DEVELOPMENTAL TOXICITY

Embryotoxicity

= general term - toxicity to embryo

Teratogenicity

- = morphological developmental effects Malformations, missing organs etc.
- well characterized in aquatic vertebrates -ecotoxicity tests - Danio rerio, Xenopus laevis

Teratogenicity effects

Examples of teratogens

- organochlorine compounds (DDT, DDE)
- new types of pesticides ATRAZIN
- PCBs and compounds with dioxin-like mechanims
- toxic metals
- natural toxins (e.g. From cyanobacteria)

Japanese medaka teratogenicity of PCBs

IMMUNOTOXIC EFFECTS OF ECOTOXICANTS

Environmental Pollution Volume 152, Issue 2, March 2008, Pages 431-442

doi:10.1016/j.envpol.2007.06.075 | How to Cite or Link Using DOI Copyright © 2007 Elsevier Ltd All rights reserved.

Permissions & Reprints

Cited By in Scopus (3)

Persistent organic pollutants (POPs) in Caspian seals of unusual mortality event during 2000 and 2001

Natsuko Kajiwara^{a, , , , , Mafumi Watanabe^{a, 1}, Susan Wilson^b, Tariel Eybatov^c, Igor V. Mitrofanov^d, David G. Aubrey^e, Lev S. Khuraskin^f, Nobuyuki Miyazaki^g and Shinsuke Tanabe^a}

Examples

- Mortalities of seals, dolfins morbillivirus infections / PCBs, PCDDs
- Elevated skin lesions (fungi, bacteria) in fish from contaminated sites
- Arsenic \rightarrow direct toxicity to natural killer cells in immune system (responsible for removal of tumors \rightarrow increased carcinogenicity)

- Prenatal exposures to DIOXINS \rightarrow complete "apoptosis" (convolusion) of thymus \rightarrow not immune system in offsprings (no T-cells)

NEUROTOXIC EFFECTS (e.g. Insecticides)

1] Acute toxicity

- spasms, effects on CNS, suffocation, death

2] Chronic effects

→ effects on behaviour, learning etc..

Behavioral changes – critical for **survival of individuals and populations**

- male-female attraction / reproduction, foraging, hiding from predators

-Loss of synchronization in release of gametes

(aquatic invertebrates and vertebrates)

- Complex reproduction behaviour (birds and mammals)
- Slower burrying of molluscs into sediments ← fast predation

 \rightarrow lower fitness and lower reproduction success

NEFROTOXICITY IN VULTURES

Damaging effects of veterinary pharmaceuticals on vulture populations
 primary effect → kidney in vultures = nephrotoxicity

TOXIC EFFECTS TO PRODUCERS (plants, algae) Unique process of PHOTOSYNTHESIS

Target to many herbicidies – e.g. Diuron (DCMU) and Paraquat

Acute effects in producers

Damage to photosynthetic pigments cell and plant death

Example: Effects of metals on chlorophyll-a content in algae

Zn+Cd

Treatments

Cd+P

Zn+Cd+P

Zn+P

1.5

0.5

Zn

()

Cd

Ρ

Centrum pro výzkum toxických látek prostředí

EFFECTS on DECOMPOSERS bacteria, microorganisms Key component for global GEO-BIO-CHEMICAL CYCLES

Specific notes on ecotoxicity to microorganisms

1) Unicellular (or small in general) large specific surface – easy uptake of chemicals

2) Relativelly good protection (cell wall)

3) Fast division and proliferation

- generally good ADAPTATION of populations (antimicrobial resistencies)

Antibiotic Resistance in Bacteria

Step 1

In a population of bacteria, one bacterium mutates and becomes antibiotic resistant.

Step 2

Antibiotic kills off all bacteria except for the antibiotic resistant bacterium.

Step 3

Antibiotic resistant bacterium multiplies, forming a population of antibiotic resistant bacteria.

Step 4

Antibiotic resistant bacteria can transfer their mutation to other bacteria.

Therapeutic antibiotics ... and resistance

How antibiotic resistance spreads

v prostředí

FIGURE 1: Global antibiotic consumption in livestock (milligrams per 10 km² pixels) 2010

Source: Van Boeckel et al. 2015

WHO Report: The Review of Antimicrobial Resistance, Chaired by Jim O'Neil, UK, 2014

Total 10 million deaths per year

