

Ecotoxicology HAZARDS & RISKS

Ludek Blaha + ecotox colleagues

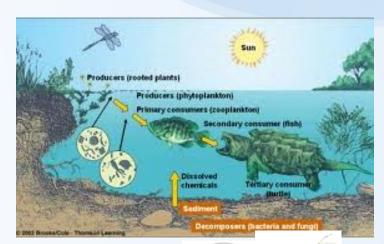
Take home messages from this presentation

- Hazards are properties, while Risks are probabilities that hazards actually happen
- Hazards are primarily estimated by ecotoxicity assays (resulting in LCx, NOEC, LOEC)
 - Regulatory example shown (including requests for standardization - OECD guidelines): REACH
- The results are further used to derive PNEC (dividing tox results by uncertainty factors)
- PNEC can be used as a basis for development of regulatory values (limits such as EQS)
- Risks are most commonly assessed by dividing EXPOSURE data (e.g. measured concentrations or PEC values) with NO-EFFECT limit (e.g PNEC or EQS)
 - Regulatory example shown: EQS for priority pollutants in the EU Water Framework Directive

Ecotoxicology

Science of doses / concentrations

HAZARDS vs RISKS


Assessment of chemical hazards

...to...

Humans (TOXICOLOGY)

Other organisms (ECOtoxicology)

ASSESSMENT and MANAGEMENT of RISKS

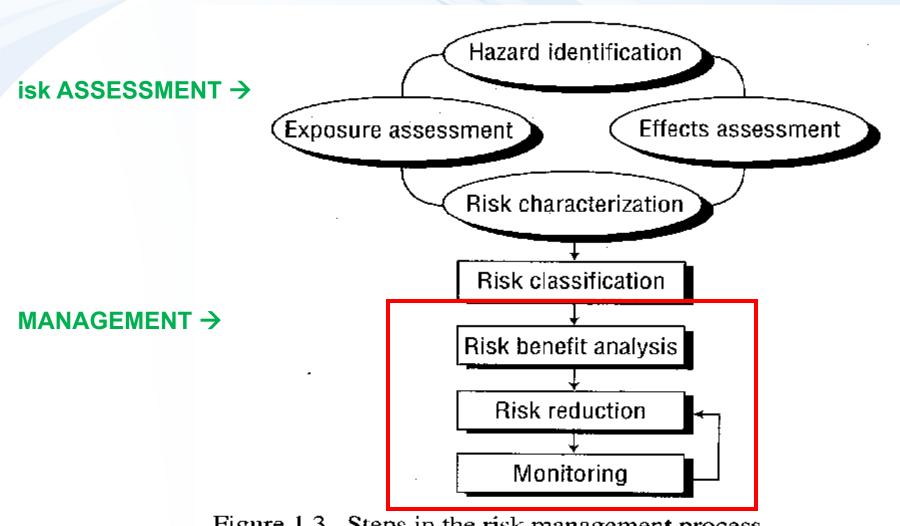


Figure 1.3. Steps in the risk management process.

WHAT IS HAZARD? RISK?

RISKS
(Probability of the actual occurrence of hazard under specific situation)

HAZARDS
(Inherited properties of stressors ... including chemicals)

Table 1.5. Annual mortality rate associated with certain occurrences and activities in the Netherlands [23]

Activity/occurrence	Annual	mortality rate	
Drowning as a result of dike collapse	10 ⁻⁷	1 in 10 million	•. •
Bee sting	$2x10^{-7}$	1 in 5 million	
Struck by lightning	5x10 ⁻⁷	1 in 2 million	
Flying	1.23x10 ⁻⁶	1 in 814,000	
Walking	1.85x10 ⁻⁵	1 in 54,000	
Cycling	3.85x10 ⁻⁵	1 in 26,000	
Driving a car	1.75x10 ⁻⁴	1 in 5,700	
Riding a motorbike	$2x10^{-4}$	1 in 1,000	
Smoking cigarettes (1 packet a day)	5x10 ⁻³	1 in 200	

(Eco)Toxicology - science of "doses"

Paracelsus (1493 - 1541)

'What is there which is not a poison?

"Cause-effect paradigm"

- All things are poison and nothing without poison.
- Solely the dose determines that a thing is not a poison.

Toxicology – ultimate goal ?

To identify (or predict) safe vs hazardous levels

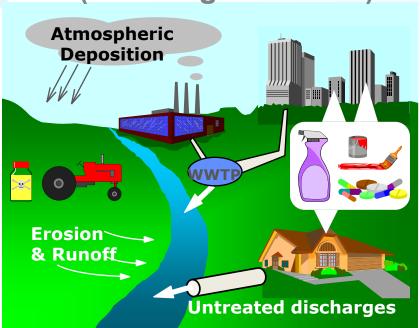
"magnitude" or "impact" of actual risk

Vs.

Example - "P" (probability) is the same for both events- impact is very different

In ecotoxicology – e.g. fish species:

10% risks of malformations ... is compensated by large numbers of eggs 10% risks of feminization → much large impact on population



Cause – effect → Risk assessment

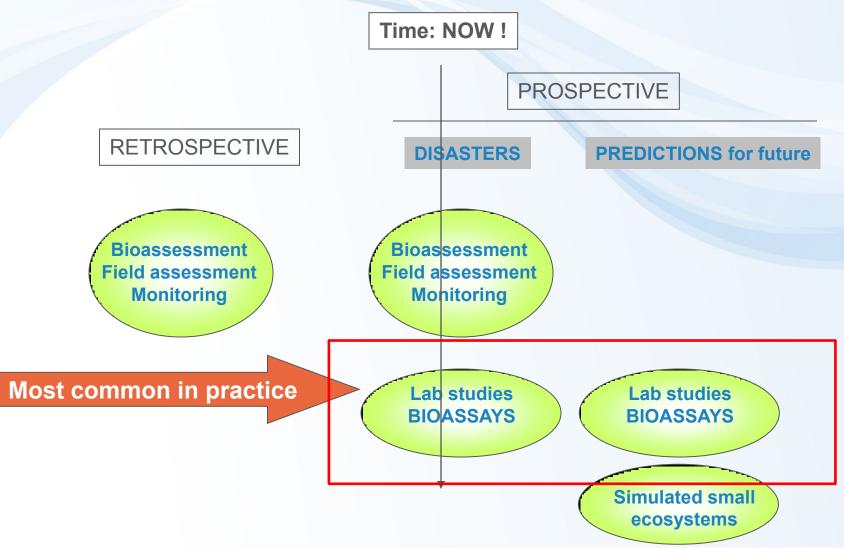
Exposure

(resulting from load)

Effects

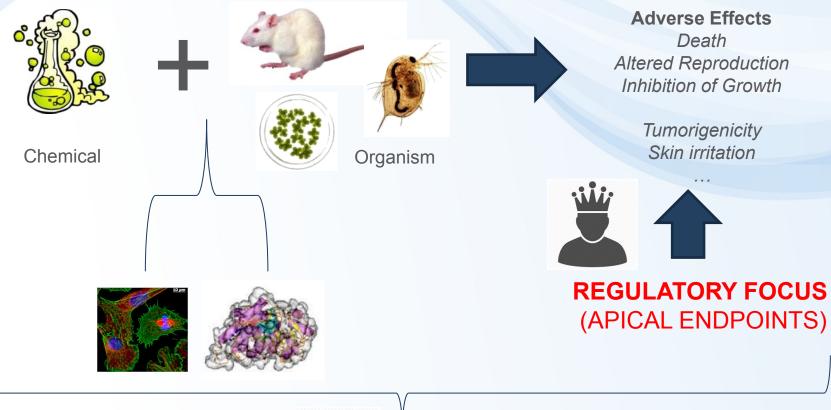
(what exposures cause effects

Predicted Environmental Concentration (PEC)



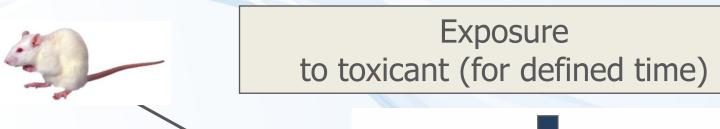
effective concentrations (PNEC)

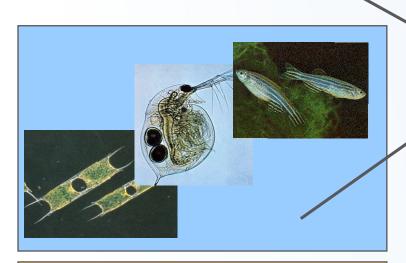
Ecotoxicology: what approaches are available?



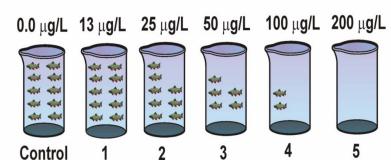
Hazard assessment

Traditionally – Evaluation of adverse effects using the whole organism models





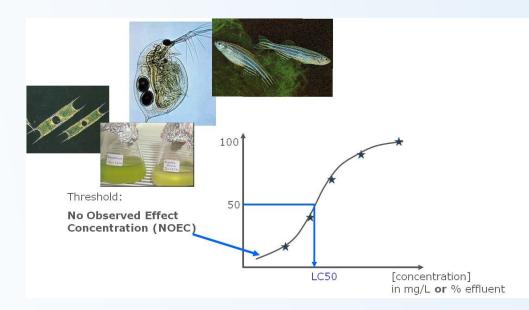
(Eco)Toxicology methods 1 - standardized assays



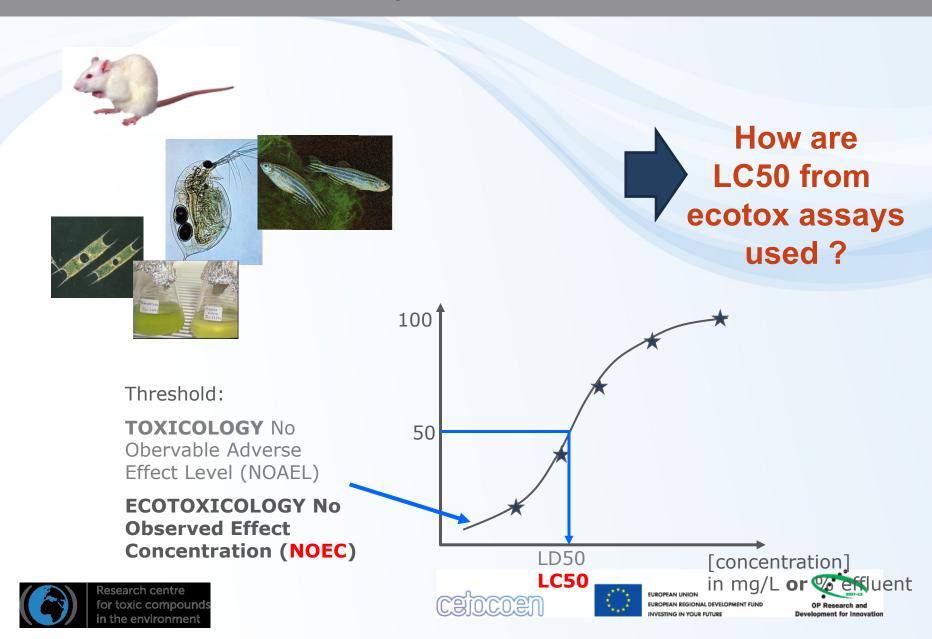
Concentration:

96-hour LC50 = 50 μ g/L

Effective doses
Effective concentrations


Ecotoxicology in current practice

- Most legislations on chemicals)


 (e.g. REACH, Pharmaceuticals, Pesticides)
 have very simple (basic) requirements
 - EC50 from acute toxicity
 - Of 3 basic assays
 - Algae
 - Daphnia
 - Fish

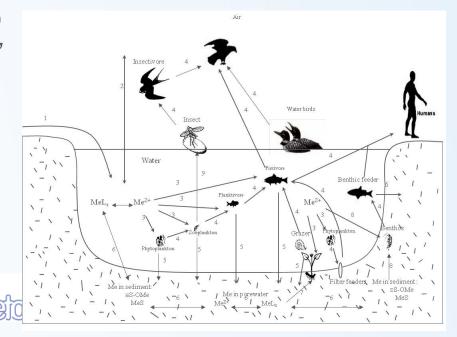
Ecotox database: www.epa.gov/ecotox

Laboratory data and results

Ecotoxicology in current practice

 How to extrapolate 3 (or few more) EC50 values to get legally binding safe concentration, which is protecting virtually all organisms?

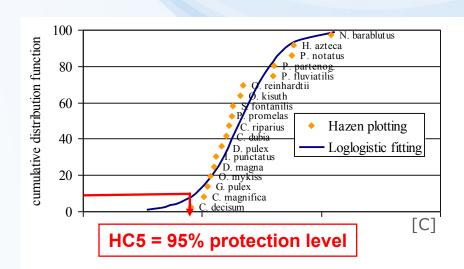
PNEC


(Predicted No Effect Concentration) "value recommended by scientists"

EQS

(Environmental Quality Standard) "value that occurs in legislation"

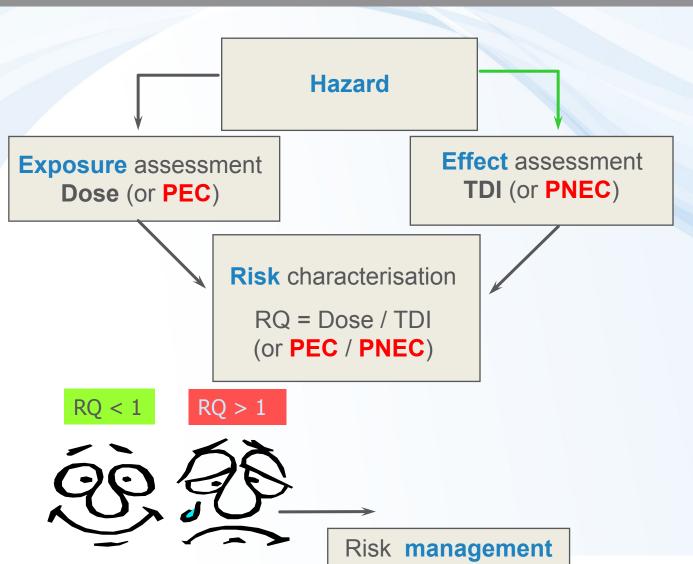
Extrapolation for Risk Assessment

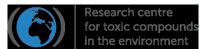

(Eco)Toxicological data

Assessment / **Extrapolation factors**

	_
Data	Assessment factor
L(E)C50 short-term toxicity tests	1000
NOEC for 1 long-term toxicity test	100
NOEC for additional long-term toxicity tests of 2 trophic levels	50
NOEC for additional long-term toxicity tests of 3 species of 3 trophic levels	10

Species sensitivity distribution (SSD)





Regulatory approach: risk assessment and management

Regulatory approach: risk assessment and management

Hazard

EU Directive 98/83/EC (in addition to others) pesticide in drinking water

Exposure assessment **Dose** (or PEC)

TDI (or PNEC)

DW in city of Bruno ... atrazine 0.15 $\mu g/L$

Risk characterisation

RQ = Dose / TDI (or PEC / PNEC)

No pesticide in DW >0.1 μg/L

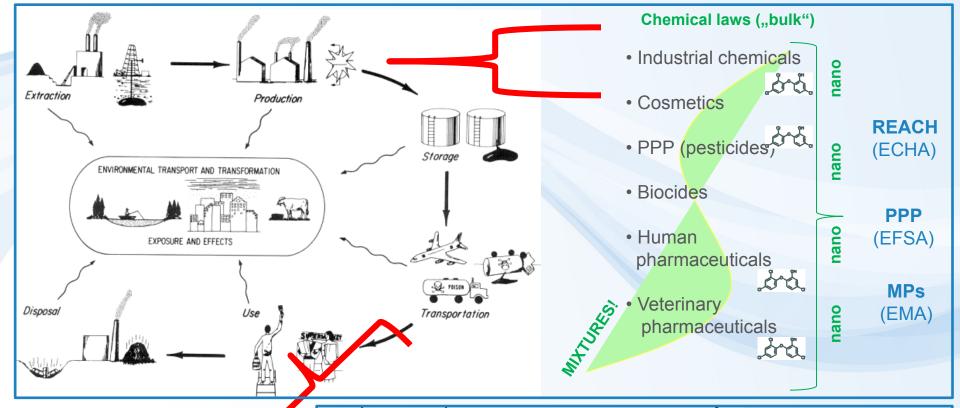
RQ < 1

RQ > 1

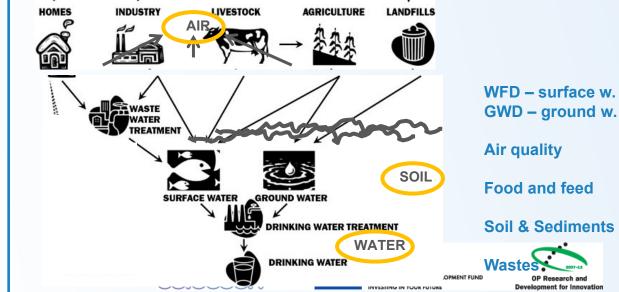
RQ = 0.15/0.1 = 1.5

Risk management

\$\$ for penalty


\$\$ for DWTP improvement

\$\$ lobbying to affect



Two approaches:

- Prospective (chemicals...)
- Retrospective (mixtures ...)

Notes on practical testing

- Testing chemicals
 - Traditional / bioassays developed to assess individual chemicals
 - Advantages: Standardized approaches
 - Disadvantage: Limited ecological relevance
 - often acute tests only
 - "too standardized…" (? Less representative ?)
 - does not assess/consider bioavailability
 - no consideration of mixture effects
 - no consideration of specific modes of action
 - no consideration of ecological situation
- Example: Acute (96h) fish toxicity assay with ethanol
 - No deaths (but fish are passive slow swimming) → OK ?
 - Real life: easy prey → population decline

Notes on practical testing

- Testing toxicity of natural contaminated matrices
 - Rather new in ecotoxicology many open challenges
 - Whole effluent toxicity testing (WET)
 - Contact soil toxicity assays
 - More complex and more complicated
 - "cause-effects" often not clear
 - Natural variability in matrices
 - Algal tests nutrients (Nitrogen, Phosporus) >> Toxic compounds

Results of ecotoxicology

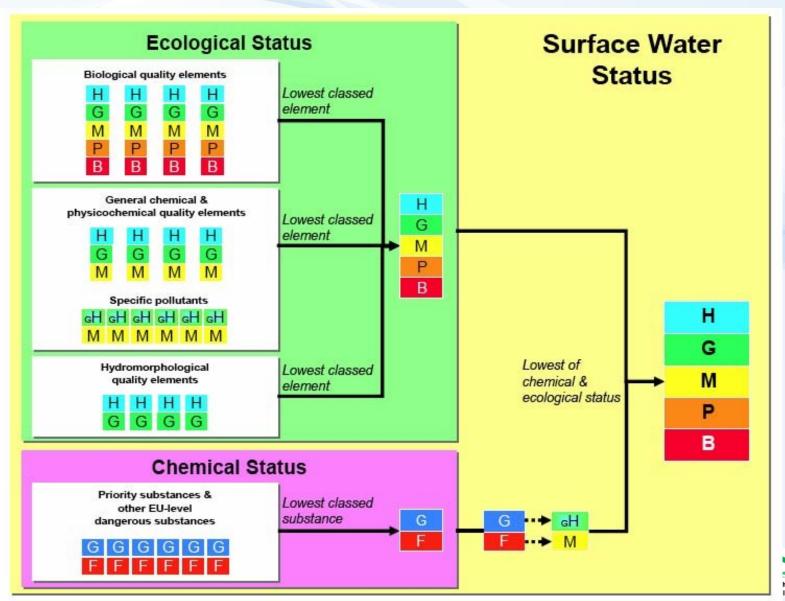
WHAT IS IT GOOD FOR?

SOLVING PRACTICAL PROBLEMS

Example 1

Application of ecotoxicity results (ECx → EQs) in regulatory context

European Water FrameworkDIRECTIVE



EQS in reality – example EU Water Framework Directive

List of priority compounds EU WFD (selection/examples)

44 priority compounds (table here)+ additional "watch list" → see further

DDACTICE.

AA: annual average;

Most recent (2015)

MAC: maximum allowable concentration.

Unit: [µg/l]

Carbon-tetrachloride (7)

(6a)

FINACTICE.	
Chemical measurements vs limits	(EQs

0,9 (Class 4)

1,5 (Class 5)

not applicable

0,9 (Class 4)

1,5 (Class 5)

not applicable

(1)	(2)	(3)	(4)	(5)	(6)	(7)
No	Name of substance	CAS number (1)	AA-EQS (²) Inland surface waters (³)	AA-EQS (²) Other surface waters	MAC-EQS (4) Inland surface waters (3)	MAC-EQS (4) Other surface waters
(1)	Alachlor	15972-60-8	0,3	0,3	0,7	0,7
(2)	Anthracene	120-12-7	0,1	0,1	0,4	0,4
(3)	Atrazine	1912-24-9	0,6	0,6	2,0	2,0
(4)	Benzene	71-43-2	10	8	50	50
(5)	Brominated diphenylether (5)	32534-81-9	0,0005	0,0002	not applicable	not applicable
(6)	Cadmium and its compounds (depending on water hardness classes) (6)	7440-43-9	≤ 0,08 (Class 1) 0,08 (Class 2) 0,09 (Class 3)	0,2	≤ 0,45 (Class 1) 0,45 (Class 2) 0,6 (Class 3)	≤ 0,45 (Class 1) 0,45 (Class 2) 0,6 (Class 3)

56-23-5

0,15 (Class 4)

0,25 (Class 5)

12

12

Watch list of substances for Union-wide monitoring as set out in Article 8b of Directive 2008/105/EC

Name of substance/group of substances	CAS number (1)	EU number (²)	Indicative analytical method (3) (4) (5)	Maximum acceptable method detection limit (ng/l)
17-Alpha-ethinylestradiol (EE2)	57-63-6	200-342-2	Large-volume SPE — LC-MS-MS	0,035
17-Beta-estradiol (E2), Estrone (E1)	50-28-2, 53-16-7	200-023-8	SPE — LC-MS-MS	0,4
Diclofenac	15307-86-5	239-348-5	SPE — LC-MS-MS	10
2,6-Ditert-butyl-4-methylphenol	128-37-0	204-881-4	SPE — GC-MS	3 160
2-Ethylhexyl 4-methoxycinnamate	5466-77-3	226-775-7	SPE — LC-MS-MS or GC-MS	6 000
Macrolide antibiotics (6)			SPE — LC-MS-MS	90
Methiocarb	2032-65-7	217-991-2	SPE — LC-MS-MS or GC-MS	10
Neonicotinoids (7)			SPE — LC-MS-MS	9
Oxadiazon	19666-30-9	243-215-7	LLE/SPE — GC-MS	88
Tri-allate	2303-17-5	218-962-7	LLE/SPE — GC-MS or LC-MS-MS	670

Another example where ecotoxicology is required

European strategy how to deal with chemicals REACH

REACH Registration, Evaluation and Authorisation of Chemicals

- 27-2-2001: White Paper on the Strategy for Future **Chemicals Policy**
- 23-10-2003: Commission's proposal REACH
- December 2008: Pre-registration mandatory (all chemicals in EU must be registered at ECHA

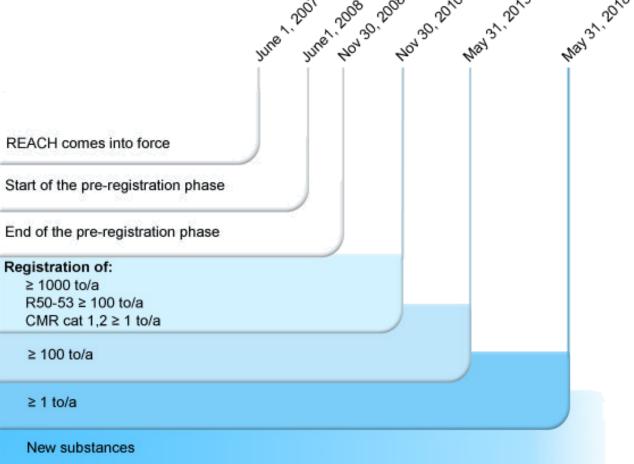
ECHA > Homepage

15/06/2015 - Press release

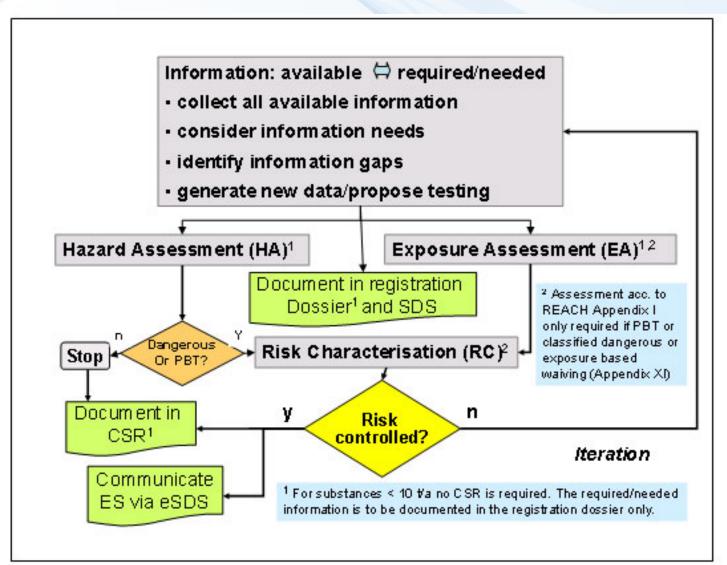
Two new substances of very high concern (SVHCs) added to the Candidate List

ECHA took the decision to include two substances on the Candidate List based on proposals by Sweden and the Netherlands respectively, following the SVHC identification process with involvement of the Member State Committee. The Candidate List now contains 163 substances. Of those, 31 have subsequently been included in the Authorisation List.

European Chemicals Agency (http://echa.europa.eu)



Existing substances and REACH


- > 95,000,000 known chemicals (...and counting http://www.cas.org/)
- 100,000 substances in EINECS (i.e. commercial use)
- 30,000 relevant for R
- cc 3000 HPVCs (Hig Volume Chemicals)

REACH legislation in EU

Registration, Evaluation and Authorisation and Restriction of Chemicals

REACH: what data type must be registered?

- Physico-chemical properties, e.g.:
 - Vapour pressure, boiling point, Kow,...
- Human toxicology, e.g.:
 - Acute and chronic toxicity, skin irritation, carcinogenity,...
- Environment/ Ecotoxicological information, e.g.:
 - Acute and/or chronic toxicity for aquatic organisms, biodegradation, ...

REACH: testing

Classification categories	Test requirements in REACH			
\$ 5 \tag{5}	>1	t	>10t	>100t
	New or prioritised substance			
Reproductive toxicity (a generation test)	no	no	no	no
Chronic toxicity and cancer	no	no	no	(yes)
90-day study	no	no	no	(yes)
28-day study	no	no	(yes)	yes
Acute toxicity (a second route of exposure)	no	no	yes	yes
Acute toxicity	no	yes	yes	yes
Skin allergy	no	yes	yes	yes
Skin and eye irritation	no	yes	yes	yes
Mutageneicity (in vitro)	no	yes	yes	yes
Further ecotoxicity studies (incl long term tests)	no	no	no	yes
Acute toxicity: fish	no	no	yes	yes
Acute toxicity: algae	no	yes	yes	yes
Acute toxicity: Daphnia	no	yes	yes	yes
Biotic degradation	no	yes	yes	yes

Total costs: 2,8 to 5,6 billion € (industry pays)

Testing costs (50-60% of total) 60% For Human, european regional development fund

What assays and how exactly?

Depends on legislation (... of course!)

... but current EU legislations tend to be harmonized (use similar approaches)

→ example of REACH

Assays must be STANDARDIZED for REACH should follow OECD Guidelines

Other standardization agencies (also include toxicity tests) e.g. ISO, ASTM

OECD guidelines for testing of chemicals

- 5 main sections
 - Section 1: Physical Chemical Properties
 - Section 2: Effects on Biotic Systems (i.e. Ecotoxicity)
 - Section 3: Degradation and Accumulation
 - Section 4: Health Effects(i.e. Toxicity)
 - Section 5: Other Test Guidelines

OECD guidelines (examples – selection)

SECTION 2 - Aquatic organisms

Test No. 201: Alga, Growth Inhibition Test	11 July 2006
Test No. 221: Lemna sp. Growth Inhabition Test	11 July 2006
Test No. 202: Daphnia sp. Acute Immobilisation Test	23 Nov 2004
Test No. 211: Daphnia magna Reproduction Test	16 Oct 2008
Test No. 203: Fish, Acute Toxicity Test	17 July 1992
Test No. 204: Fish, Prolonged Toxicity Test: 14-Day Study	04 Apr 1984
Test No. 210: Fish, Early-Life Stage Toxicity Test	17 July 1992
Test No. 212: Fish, Short-term Toxicity Test on Embryo and Sac-Fry Stages	21 Sep 1998
Test No. 215: Fish, Juvenile Growth Test	21 Jan 2000
Test No. 229: Fish Short Term Reproduction Assay	08 Sep 2009
Test No. 230: 21-day Fish Assay	08 Sep 2009
Test No. 231: Amphibian Metamorphosis Assay	08 Sep 2009

OECD guidelines (examples – selection)

SECTION 4 – Human health effects

Test No. 401: Acute Oral Toxicity

Test No. 402: Acute Dermal Toxicity

Test No. 403: Acute Inhalation Toxicity

Test No. 404: Acute Dermal Irritation/Corrosion

Test No. 405: Acute Eye Irritation/Corrosion

Test No. 406: Skin Sensitisation

Test No. 407: Repeated Dose 28-day Oral Toxicity Study in Rodents

Test No. 408: Repeated Dose 90-Day Oral Toxicity Study in Rodents

Test No. 409: Repeated Dose 90-Day Oral Toxicity Study in Non-Rodents

Test No. 410: Repeated Dose Dermal Toxicity: 21/28-day Study

Test No. 411: Subchronic Dermal Toxicity: 90-day Study

Test No. 412: Subacute Inhalation Toxicity: 28-Day Study

OECD Guidelines for the Testing of Chemicals

OECD Guidelines for the Testing of Chemicals, Section 4

Also available in French

Health Effects

Hide / Show Abstract

The OECD Guidelines for the Testing of Chemicals is a collection of about 150 of the most relevant internationally agreed testing methods used by government, industry and independent laboratories to identify and characterise potential hazards of chemicals. They are a set of tools for professionals, used primarily in regulatory safety testing and subsequent chemical and chemical product notification, chemical registration and in chemical evaluation. They can also be used for the selection and ranking of candidate chemicals during the development of new chemicals and products and in toxicology research. This group of tests covers health effects.

English

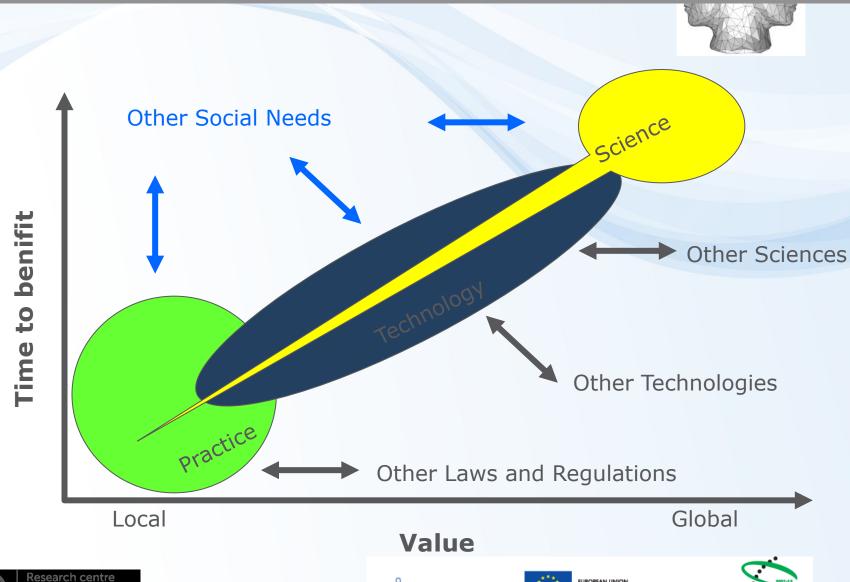
ISSN: 2074-5788 (online) DOI: 10.1787/20745788

			Hide / Show all Abstracts
Mark	 Date	♣ Title	Click to Access
	11 Sep 2006	Summary of Considerations in the Report from the OECD Expert Groups on Short Term and Long Term Toxicology OECD	♣ PDF ♠ READ
	24 Feb 1987	Test No. 401: Acute Oral Toxicity OECD	PDF 🕢 READ
	24 Feb 1987	Test No. 402: Acute Dermal Toxicity OECD	№ PDF ○ READ
	08 Sep 2009	Test No. 403: Acute Inhalation Toxicity	♣ PDF

Risks of chemicals: a balancing act

between perception, uncertainties, science and pragmatism?

Final considerations



SOCIETY - RISKS vs BENEFITS (!)

Society is a balancing act ...

Scientists should contribute (provide valid data) for decision making

Scientists

WRAP UP and take home message – part 2

- What are hazards vs risks?
 - Risk assessment and management?
 - IMPACTS of risks? Risks vs benefits?
- How are the risks calculated
 - By comparing EXPOSURES (PEC) with HAZARDS (PNEC)
- How are hazards assessed?
 - By toxicity assays
 - there are 3 most widely used!
 - They must be done by standardized approaches (OECD guidelines)
 - What are results of toxicity assays (ICx, NOEC, LOEC)?
 - How are the results used?
 - Predictions of PNEC (by application of AFs)
 - Regulatory acceptance → EQS
- Know examples of ecotox applications
 - PNEC (EQs) in Water framework directive
 - Predictive risk assessment in REACH regulation

