
3. Probability, distribution, parameter estimates and likelihood 

Random variable and probability distribution 

Imagine tossing a coin. Before you make a toss, you don’t know the result and you cannot 

affect the outcome. The set of future outcomes generated by such process is called random 

variable. Randomness does not mean, that you do not know anything about the possible 

outcomes of this process. You know the two possible outcomes that can be produced and 

also the expectation of getting one or the other (assuming that the coin is “fair”). A random 

variable can thus be described by its properties. This description of the process generating 

the random variable is then indicative of the expectations of individual future observations – 

probabilities. We are not limited by a single observation but can consider a series of them. 

Then, it makes sense to ask e.g. what is the probability to get less than 40 eagles in 100 

tosses. If we do not fix the value to 40 but instead study the probabilities for all possible 

vales (here from 1 to 100), we can define probability associated with each value from 1 to 

100 as: 

pi = P(X< xi) 

where pi is the probability of observing a value lower than a given value xi. Then we can 

construct the probability distribution function defined as: 

f(X) = ∑ 𝑝𝑖𝑋<𝑥𝑖
 

in human (non-mathematical) language, this translates as: Take probabilities of all values 

lower than X, compute their sum and you get the value of probability distribution function 

for value X (Fig. 3.1a). Another option to explore the distribution of values is to sample a 

random variable and examine properties of such sample. After you take such sample (or 

make a measurement), i.e.  record events generated by a random variable, corresponding 

values cease to be a random variable but become the data. The data values may be plotted 

on a histogram of frequencies (Fig.3.1b; see also chapter 2). The frequency histogram can be 

converted to a probability density histogram (Fig. 3.1c) by scaling the area of the histogram 

to 1. The density diagram has a great advantage that probabilities of observing a value 

within given interval can directly be read as size of the area of given column. The histograms 

shown in Fig. 3. indicate sampling probability distribution or density based on the data. By 

contrast the red lines indicate theoretical probability distribution or density; i.e. how the 

values should look like if they followed the theoretical binomial distribution, which describes 

the coin tossing process. As you can see, the sampling and theoretical distributions do not 

match exactly, but there does not seem to be any systematic bias. The density of theoretical 

probabilities can thus be viewed as an idealized density histogram. There are many types of 

theoretical distributions, which describe many different processes generating random 

variables. Each of these types can further have many shapes, which depends on the 

parameters of the probability distribution function. E.g. the shape of the binomial 

distribution, which describes our coin tossing problem, is defined by parameters p indicating 

the average probability of observing one outcome and size, which is the number of trials 

(tosses in our case). 



Coin tossing produced discrete values to which probabilities could directly be assigned 

because there is a limited number of possible outcomes. This is not possible with continuous 

variables, as the number of possible values is infinite. However, if you look back at the 

definition of the probability distribution function, this is not a problem because for any 

value, you can find an interval of lower values.  

 

 

 

Normal distribution 

Among many theoretical distribution types, we will focus on normal (Gaussian) distribution. 

This distribution describes a process producing values symmetrically distributed around the 

 

Fig. 3.1. Probability (a), frequency (b) and density (d) distribution of coin tosses (n = 100, 

size = 100, p = 0.5). Grey histograms represent sampling statistics (prob., freq., dens.). 

Red lines in (a) and (c) represent theoretical binomial probability distribution and 

density, respectively. (d) standard 10 crown coin of the Austrian-Hungarian Empire used 

for the tossing. Depicted here to illustrate why we call the coin sides the Head and Eagle 

instead of Brno and Lion as on the current 10 CZK coin. 



center of the distribution. Normal distribution can be used to describe (or approximate) 

distribution of variables measured on ratio and interval scale. It has two parameters, which 

define its shape (Fig. 3.2a):  

the central tendency (expected value), called the mean: 

 𝜇 =  
∑ 𝑋𝑖

𝑁
𝑖=1

𝑁
 

i.e. sum of all values of the variable divided by the number of objects.  

and the variance, which defines the spread of the probability density: 

𝜎2 =  
∑ (𝑋𝑖  −  𝜇𝑛

𝑖=1 )2

𝑁
 

i.e. mean square of differences of individual values from the mean.  

Variance is given in squared units of the variable itself (e.g. in m2 for length). Therefore, 

standard deviation (σ, SD), which is simply square root of variance, is frequently used. 

Common notation of the normal distribution with mean μ and variance σ2 is: N(μ, σ2). 

Normal distribution has non-zero probability density over the entire scale of real numbers. 

This implies that normal distribution may not always be suitable to approximate distribution 

of some variables, e.g. physical variables such as length or masses because these cannot be 

lower than zero. However, normal density becomes close to zero if one moves several 

standard deviations (SD units) away from the mean (Fig 3.2b). This means that normal 

distribution may be used for the always-positive variables (like length, mass etc.) only if the 

mean is reasonably far from zero (measured by SD units). At the same time, this implies that 

existence of outlying values is not expected and normal approximation of variables 

containing them may be problematic.  

Any normal distribution can be converted to standard normal distribution (with mean = 0 

and SD = 1) by subtracting the mean of the original normal distribution and dividing the 

values by SD. This procedure is called standardization.  

Central limit theorem is an important statement relevant for the use of normal distribution. 

It states that in many situations, when independent random variables are added, their sum 

tends to converge to normal distribution even if the original variables were not normal. For 

instance, biomass production in grasslands is affected by many processes (e.g. water use by 

plants, photosynthesis, …) sum of which can often be reasonably approximated by normal 

distribution.  

Probability computation 

Knowing the probability distribution of certain variables allows probabilities associated with 

given intervals of the variables to be computed. For instance, a producer of clothes may 

design T-shirt sizes to cover 95% of the population of customers if he knows that body size 

has certain probability distribution, e.g. normal distribution described by mean and variance. 

Two functions are used for the conversion between the values of the variable and 



probabilities. Probability distribution function computes probabilities of observing values 

lower (lower tail) or higher (upper tail) than given threshold. Quantile function is inverse to 

probability distribution function and allows computing the quantiles – threshold values of 

the original variable associated with given probability value. 

 

Fig 3.2. Normal distribution: shapes of probability density of normal distributions differing in 

their μ and σ2 parameters (a). Illustration of SD -unit intervals and their importance for 

probability quantiles (note here that these are quantiles of probability corresponding to plot 

area under the density line; not quantiles produced by quantile function) (b). Standard 

normal distribution with μ = 0 and σ2 = 1 (c). 

Parameter estimates, statistical sampling and likelihood 

Probability computation can be a very informative analysis but it requires prior knowledge of 

the theoretical distribution and its parameters. This is usually not the case. In most cases, we 

have just the data, i.e. the statistical sample. This sample can be imagined as a subset of the 

statistical population, i.e. possibly infinite set of all values contained in the random variable.  

It seems as a logical step to estimate the population parameters from those of the sample. 

Recall now the story of prisoners in the cave in chapter one. In parallel with them, we have 

the information only on a fraction of reality (sample) from which we estimate how the 

reality (population) looks like. 



Such process of statistical inference is possible under certain conditions: 

1. The type of the theoretical distribution of population values must be known or at least 

assumed (the latter is the case in reality). This cannot be derived from the data. However, it 

is possible to compare the sampling distribution of the data (illustrated e.g. by a histogram) 

and a theoretical distribution (e.g. Fig. 3.1.c). 

2. The data must be generated by random sampling from the population. If the sampling is 

not random, parameter estimates get biased. 

Population parameters are assumed to be fixed (as opposed to random) in classical statistics 

(sometimes called frequentist statistics). This corresponds to the fact, that there is only one 

true value of a single population parameter – no alternative truths are allowed. We cannot 

assign any probabilities either to population parameters or to completed estimates because 

probabilities can only be assigned to future outcomes of a random variable. However, we 

can assign likelihood to the estimates. In continuous variables, likelihood of a parameter 

value given the observed data is the product of probability densities corresponding to the 

observed values which are derived from density distribution function containing given 

parameter estimate. For practical reasons, we use log-likelihoods where the product 

transforms into sum. Maximum likelihood estimation then involves searching for such 

parameters which have the highest log-likelihood values (Fig.3.3).  

Practically, the population parameters are estimated by computing estimators: 

maximum-likelihood estimator of μ is the arithmetic mean: 

�̅� =  
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
 

the uncertainty of the estimation of population mean can be characterized by error 

associated with �̅�. This is called standard error of the mean (SE, 𝑠�̅�): 

𝑠�̅� =  
𝑠

√𝑛
 

as you can see the uncertainty about the population mean decreases with square-root of the 

number of observations. The more observations, the more precise inference! 

maximum-likelihood estimator of population variance is sample variance:  

𝑠2 =  
∑ (𝑥𝑖  −  �̅�𝑛

𝑖=1 )2

𝑛 − 1
 

Note the difference in the denominator between formulae of sample and population 

variances. Sample standard deviation s = √𝑠2 



 

Fig 3.3. Maximum likelihood estimation of normal distribution parameters. A sample (n = 50) 

was sampled from a normally distributed population with μ = 10 and σ2 = 4. Maximum 

likelihood estimation was then performed on the sample aiming at reconstruction of the 

population parameters. Mean value was estimated �̅� = 9.57 and variance s2 = 3.37. 

Corresponding probability density function was plotted onto the sampling density histogram 

(a). Log-likelihoods of a series of possible mean and variance values are plotted together 

with the estimated and population population parameters (b,c). Note that in real-life 

statistical inference, the information on population parameters is not known. 

 

I guess, you may now think I am completely crazy. It took no less than 6 pages to explain all 

the complicated principles of probability calculation, likelihood and parameter estimate to 

end up with simple calculation of arithmetic mean and variance! However, you will see that 

it was worth it. In following classes, we will discuss other probability distributions, which are 

less intuitive than the normal. So, it may make sense to have the first look at what is rather 

intuitive and familiar. It may also seem possible to rely on the simple calculation of mean 

and variance and not bothering about the underlying principles. But then, you run into the 

risk of misuse these statistics such as using the arithmetic mean to determine final grades at 

schools (school grades indeed do not follow the normal distribution and arithmetic mean is a 

very poor estimator of the central tendency of their distribution). Note also that the 

principles of statistical inference (e.g. the distinction between sample and population) 



described here have very universal importance and represent the core of statistical theory. 

So it seems to make sense to be familiar with them. 

 

How to do in R 

Normal distribution probability: pnorm 

parameter q in this function refers to quantiles, i.e. the values 

of the original variable. 

parameter lower.tail with possible values T (the default) or F 

indicates whether probability of observing lower or higher value 

than a given threshold is to be computed, respectively.  

 

Normal distribution quantile function: qnorm 

parameter p in this function refers to probability(ies), i.e. 

the values of normal probability distribution function for which 

the corresponding quantiles (values of the original variable) 

should be computed. 

 

Function rnorm can be used to generate a sample (series of 

values) of normal distribution (was employed e.g. for Fig. 3) 

 

Functions for parameter estimates: 

arithmetic mean: mean 

standard error of the mean: there is no dedicated function in 

the default packages. Function se can be found in package 

sciplot. Alternatively, it is possible to create a custom 

function for this: 

se<-function(x) sd(x)/sqrt(length(x}) 

variance: var 

standard deviation: sd 

 


