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2.1 INTRODUCTION

Themain aim of Part II is to illustrate AA “at work” inwhy-science via three selected topics
drawn from basic (liquid-state) NMR theory, as discussed in Chapters 2–5. As a preliminary
thought, it must be stressed that NMR theory is an awesome depository of great intellectual
feats and a testament to brilliant scientific thinking. However, NMR theory has its own very
interestingDelusors which have created somewidespreadmisconceptions about the physical
essence of some basic NMR phenomena. In that regard, NMR theory is remarkably well
suited for an AA-conscious scrutiny: it is an intriguing intellectual “brew” of quantum
# 2015 Elsevier Inc. All rights reserved.
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98 2. CLASSICAL DESCRIPTION OF NMR
mechanics, classical physics, mathematical and physical descriptions, and pictorial models,
from all of which several Delusors and unsound models have stemmed (note again that, as
expressed in the Preface, this should not be understood as a derogatory statement). Part II
aims to demonstrate that when NMR theory is examined (or more precisely: when it is dared
to be examined) with an AA mentality, these false ideas can come to light and can open the
way to some truly instructive and revealing insights into the Mental Traps behind those mis-
conceptions and theway things should be interpreted correctly (cf. Chapter 1, Pillars 14 and 15).
In that regard, wemust first and foremost clarify the aims, the scope, and the internal technical
“design” of Part II.

This chapter has a triple goal. On the one hand it aims to offer the essential technical back-
ground (the bare necessities) that will be needed for the reader to better appreciate the
subsequent topics laid out in Chapters 3–5. However, the following discourse is not intended
to explain basicNMR theory in any extensive or technically rigorousmanner.NMR theory, even
basic NMR theory, is a staggeringly huge subject which has been extensively, thoroughly, and
eminently explored in the scientific literature over about the last seven decades. Thus,
attempting any thematic and self-contained treatment of NMR theorywould not only be point-
less, but also hopeless, and would derail us from the main theme of this book. I am therefore
forced to assume that the reader has had at least aminimumexposure toNMR theory, and so he
has some idea of the basic concepts of the nuclearmagnetic resonance phenomenon and Fourier-
transform NMR spectroscopy (such as spin, Larmor precession, macroscopic magnetization,
relaxation, excitation by a radio-frequency (RF) pulse, free-induction decay (FID), chemical
shift, scalar, and dipolar coupling, etc.). On the other hand, with this chapter I not only want
to give the necessary technical preliminaries for the subsequent chapters, but by tacitly building
on this presumed prior NMR knowledge of the reader, I want to portray those basic concepts
with a certain degree of AA “flavor” attached to them, thus hoping to present them in a differ-
ent light. This should bring the reader into an AA-conscious “NMR-theory-mood,” also offer-
ing a kind of initiation into NMR from an AA perspective. Thirdly, this chapter is written also
with a view to preparing the reader for Chapter 7 which reviews the NMR techniques used in
the structure-elucidation examples of Part III.

Having presented the basics in this chapter, Chapters 3–5 will address the following three
topics: (1) the flaws of the famous two-cone model of NMR; (2) the myth of Heisenberg’s Un-
certainty Principle being responsible for a monochromatic RF pulse’s ability to excite a broad
spectrum of resonance frequencies; (3) themyth that NMR excitation is caused by a physically
existent rotating magnetic component of the linearly oscillating RF excitation field that elicits
the NMR response.

In the spirit of this book, throughout Part II we will try to be as nontechnical as possible; in
fact, we expressly want to present a largely qualitative and synoptic explanation of NMR phe-
nomena (cf. Pillars 6 and 7). This is a point of much importance for two interlocking reasons.
First, it means that we will make several statements without proof or a deeper explanation,
expecting that they should be accepted “at face value,” but with the understanding that the
technical background behind those statements is available either in the majority of general
NMR textbooks or in the specific literature cited herein in connection with those statements.
Second, “going synoptic” reflects an approach that is seldom practiced in the literature, be it
technical or educational. However, as discussed in Pillar 6, a healthy synoptic understanding
does not automatically emerge from having thoroughly studied the technical details. In fact,
II. EXAMPLES FROM NMR THEORY



992.1 INTRODUCTION
becoming drenched in technical detail may actually create a “not-seeing-the-forest-for-the-
trees” effect, inhibiting one from attaining a proper synoptic apprehension of a topic (see Trap
#15). We will go the other way round and try to approach the pertinent technicalities as syn-
optically as possible. That being said, some technicalities will unavoidable emerge (especially
in Chapter 4), driven by a need to phrase certain concepts as accurately as possible, which
sometimes requires exquisite mathematical expressions.

Finally, I must comment on the significance of understanding and correcting the flaws
brought to attention in Chapters 3–5. Although each of those flaws represents a scientifically
incorrect description of the physical world, the flaws are such that they have no or little
practical implications. In fact, many NMR spectroscopists have been doing excellent science
in theoretical and methodological NMR in spite of holding these misconceptions. So what is
the scientificmerit of addressing such flaws? As already argued in Pillar 15, although itmakes
no practical difference in our daily lives whether the Sun moves around the Earth or vice
versa, it does make a difference whether we are under the illusion that the former is true,
or we know that actually the latter is true. For entirely analogous reasons, it does make a dif-
ferencewhether our understanding of the physical world rests on provably erroneousmodels
or on scientifically validated descriptions, even if this difference has no particular practical
consequence that we can think of at this time. Illusions of understanding (cf. Pillar 5) should
not be tolerated by science, and, as argued in Pillars 14, 15, and 18, uncovering and refuting
Delusors is a legitimate, instructive, and inspiring scientific endeavor.

Finally, the technical framework (the “contextual space”) as well as the scope of our dis-
cussion should be defined.

As for the technical framework, by default wewill restrict ourselves to consider a liquid-state
ensemble of identical spin-1/2 nuclei (see below)with a positive gyromagnetic ratio (see below),
placed in a strong homogeneous static magnetic field. We assume that the spins are
noninteracting or are only very weakly interacting with each other and with the environment
(the “lattice”). The interaction being veryweakmeans that the energy of the system can, to a very
good approximation, be regarded as the sum of the energies of the individual spins, and in that
respect the interaction energy can be ignored. However, the interaction energy is still large
enoughso that spins thathappen tobe sufficiently close toeachothercan“feel” eachother’spres-
ence and can therefore exchange energy; this assumption is needed to explain relaxation phe-
nomena. The number of spins in the ensemble is assumed to be very large, of the order of
Avogadro’s number. In practice, such a system is approximated, for example, by the protons
in a sample of about 1 ml of pure water. In the following, when talking about an “ensemble of
spins,” Iwill implicitlymeananensemblehaving theabovefeaturesand Iwilluse the terms“pro-
ton” and “spin” interchangeably. For simplicity, I will also assume that the T1 and T2 relaxation
times (see below) of the nuclei are equal and are on the order of seconds. Thus, during excitation
by a hard RF pulse which is on the order of microseconds, relaxation effects can be ignored.

As for the scope, when talking about basicNMR theory it is important to appreciate that the
basic NMR phenomenon has two interrelated facets: excitation and relaxation. Both are inher-
ent to NMR and are equally important, and both aspects have their own technical intricacies.
Herein, because of the examples presented in Part II, we will mostly be concerned with the
excitation part, but some attention will also be devoted to relaxation.

In what follows I will put emphasis on the classical description of a single spin and a spin
ensemble, which will also prove to serve as a handy reference for the arguments in the
II. EXAMPLES FROM NMR THEORY



100 2. CLASSICAL DESCRIPTION OF NMR
subsequent chapters. Only marginal comments will be made on the quantum-mechanical de-
scription of NMR so as to serve as a transition into Chapter 3 which will unfold this topic
more fully.
2.2 INTRODUCTORY THOUGHTS ON THE
CHARACTERISTICS OF NMR THEORY

In order to take what I think is a “healthy”mental attitude towardNMR theory, as well as to
prepare for recognizing some of its Delusors, the very first thing that one needs to see clearly is
that NMR phenomena lend themselves to be treated both classically and quantum-
mechanically. This is a centrally important aspect of NMR theory which is known by all
NMR spectroscopists because it is an inescapable feature of the NMR literature. However,
many delicacies ensuing from this duality are not addressed in the basic NMR literature or
are treated in a rather sketchy way, resulting in various misconceptions. The subtleties of this
situation stem from the fact that while the physics of NMR is fundamentally grounded in the
quantum-physics of atomic-scale (often also called microscopic-scale) nuclear magnets, in re-
ality NMR spectroscopy always measures the behavior of the macroscopic bulk magnetization
produced by ensembles of noninteracting or weakly interacting nuclear magnets. That macro-
scopic behavior can be treated both quantum-mechanically and classically, but the latter is often
simpler and intuitivelymore accessible, which is a rather important trait with regard to theway
scientists understand and think creatively about a phenomenon (cf. Pillars 11 and 12). (As it will
be further expounded below, it is an intriguing aspect of NMR theory that some unsound (i.e.,
misleading—cf. Pillar 13), simplified quantum-mechanical descriptions appear to be simple,
convincing, and intuitively accessible, while sound quantum-mechanical descriptions can be
very complicated; it is with respect to the latter that a sound classical description is simple).
One should make note here of the famous Correspondence Principle which, in essence, states
that the phenomenological quantum-mechanical description of a large collection of identical
and noninteracting atomic entities gives the same result as the classical description of that en-
semble. Thus, the phenomenon that an ensemble of nuclear magnetic moments can bemade to
“resonate” when placed in a strong static magnetic field and subjected to a weak alternating
magnetic field should, as pointed out by Hanson,1 not even be called a quantum effect if by
“quantum effect” we mean such phenomena that can only be described correctly by
quantum-mechanical means, and a classical-physical treatment fails. Nevertheless, certain
NMR phenomena (such as the nuclear Overhauser effect (NOE) or J-coupling effects) can typ-
ically be more conveniently treated by quantum-mechanical tools.

Yet another feature of NMRworth keeping in mind is that it is often easier to devise math-
ematical expressions that describeNMRphenomena ratherwell than to understand the phys-
ics behind the mathematics (cf. Pillar 6, Trap #11). In fact, it is notoriously difficult to gain a
sound physical picture of the spin-world in NMR, and it is quite intriguing to observe how
differing NMR spectroscopists can be in their personal conceptualization of even the most
fundamental physical aspects of NMR.

Grasping and dealing with this blend of quantum-mechanical and classical descriptions,
and mathematical and physical understanding, is not easy. We have been accustomed to the
II. EXAMPLES FROM NMR THEORY



1012.2 INTRODUCTORY THOUGHTS ON THE CHARACTERISTICS OF NMR THEORY
way classical mechanics is applied to describing the behavior of macroscopic material objects
that are a part of our “everyday”world as we know it through our normal human perception.
Although we know that those objects are built from atoms, and that in principle their macro-
scopic behavior could be calculated by calculating (quantum-mechanically) the behavior of
the individual atoms and summing up the results (albeit this would be exceedingly compli-
cated), we normally ignore this atomic and humanly imperceptible aspect of the object, and
just deal directly with its macroscopic feature in terms of classical mechanics. In this case, the
distinction between the macroscopic and atomic aspects of the object is trivial because these
are so distant from each other in terms of size and human perception. However, the macro-
scopic and atomic aspects of an ensemble of nuclearmagnets aremuch closer to each other. On
the one hand, the macroscopic magnetization is not more directly accessible to human per-
ception than its constituent atomic magnets. On the other hand, the macroscopic magnetiza-
tion is a somewhat tricky concept hovering between physical reality and abstraction:
although it is convenient to think about it as a vector (see below) which rotates, precesses,
and changes its length in all sorts of complicated andwonderful ways in anNMR experiment,
and we know that it is this bulk behavior that we measure physically, we also know that it is
actually the individual nuclear magnetic “vectors” that “resonate” and not their mathemat-
ical vector sum; thus, in this case it is more difficult to ignore the atomic aspect of the mac-
roscopic magnetization when we want to find or understand classical models that describe
the behavior of the latter.

For all the above reasons, the classical and quantum-mechanical treatments of NMR are
closely intertwined, so we can look upon NMR from two different perspectives: with a
classical-physical “eye” and with a quantum-mechanical “eye.” NMR spectroscopy involves
a plethora of phenomena that derive from the basic magnetic resonance phenomenon, and
sometimes it is the classical-physical, and sometimes the quantum-mechanical approach that
provesmore convenient for describing these phenomena. Personal technical “tastes” and back-
ground schooling alsomatter: some authors prefer to use classical methods (sometimes seem-
ingly at all costs), while others take a similar attitude toward using quantummechanics. This
is probably best attested to by the seminal papers of Bloch et al. and Purcell et al. inwhich they
independently and simultaneously described the discovery and theoretical rationalization of
the basic NMR phenomenon in 1946, thereby launching NMR onto its incredibly successful
orbit of development.2,3 Bloch treatedNMR essentially from a classical point of view, thinking
of nuclear magnets as tiny resonators which precess about the static magnetic field, yielding a
bulk polarization whose orientation can be changed by an oscillating magnetic field, while
Purcell viewed the phenomenon as stemming from transitions induced by the oscillating field
between nuclear quantum states that emerge in a static magnetic field. The two groups
conceptualized the NMR phenomenon so differently that it actually took some time for both
of them to realize that they were describing essentially the same phenomenon.4

This duality is one of the beauties of NMR theory. It is also one of its evils. It is a beauty so
long as someone understands the technical essence of these binary approaches to NMR and
has the faculty of distinguishing between scientific descriptions and reality (cf. Pillars 2
and 3). NMR, as a collection of various phenomena and various descriptions of those phe-
nomena, can be thought of as a “patchwork” of different quantum-mechanical and classical
models that partly overlap and are partly distinct. NMR theory offers a wonderful intellectual
experience if one understands models for what they are (cf. Pillar 13), does not get overly
II. EXAMPLES FROM NMR THEORY



102 2. CLASSICAL DESCRIPTION OF NMR
submergedwithin a givenmodel, does not confusemodels with reality (Trap #18), is aware of
the contextual spaces of models (Traps #19 and #20), and can flexibly “move” mentally be-
tween themwhen contemplating NMR phenomena. NMR theory is a remarkable test of these
faculties. On the other hand, the classical-physical and quantum-mechanical duality of NMR
can be a source of many Mental Traps (as will be discussed below) if their distinction is
blurred or unsoundly merged (as it is the case in several basic treatments of NMR) and
the faculty of model-oriented thinking is absent.

Besides this fundamental duality, NMR theory has some other “anthropically” relevant
aspects that should be emphasized right from the start rather than letting them either tran-
spire gradually from a prolonged study of NMR, or, worse (but typical), not to transpire
at all. NMR is about the behavior of nuclear spins (atomic-scale angular momenta) and the
associated magnetization of atoms (the magnetic moments). The concept of spin (and there-
fore that of the magnetic moment) is highly elusive, although it is often treated illusively sim-
ply (see more on this below). What we can do is to use abstract mathematical symbols and
equations to describe the spin, and to validate the mathematics by experiment. The
nonpictorial mathematical descriptions that have been formulated to that effect work nicely,
but the humanmind naturally strives to “morph” these abstract concepts into amore physical
understanding (cf. Pillar 6), typically in the form of pictorial representations that will help one
to think and talk about NMR phenomena in terms of a physically tangible geometrical model
(cf. Pillars 11 and 12). However, the origin and quantum-mechanical behavior of the spin are
somysterious and so unlike anything that ourmind has been conditioned to apprehend in our
macroscopic world, that the true physical understanding of spin seems to be beyond the
scope of the human mind’s apperception. Thus, the ensuing pictorial representations are
quite dubious and have certain properties that must be well understood and always kept
in mind: (a) It is impossible to represent physical “spin-reality” in an entirely satisfactory pic-
torial form, and therefore such images are always more or less skewed. (b) All such pictures
aremetaphoricmodels (cf. Pillar 10). (c) Within the context of (a) and (b) these pictorial models
can be sound or unsound (cf. Pillar 13). (d) A sound pictorial model, albeit not a correct rep-
resentation of physical “spin-reality,” can be very useful in thinking about that reality. (e)
An unsound pictorial model of spins acts as a powerful Delusor because, although mislead-
ing, it seems to provide a convincing visual imagery of reality itself (cf. Trap #16).

Although, as we will see, several Mental Traps contribute to the widespread misconcep-
tions that exist about the physical essence of NMR, as a part of the initial mindset with which
I encourage the reader to approach the whole topic, I want to put particular emphasis on
the Traps associated with our tendency to muddle the difference between mathematical
and physical descriptions (Traps #11-#13). Because of this, and in order to stress the impor-
tance of distinguishing between a mathematical and a physical understanding of the world
(cf. Pillar 6), in the following discussion I will take special care to use a verbiage that reflects
this difference and I encourage the reader to be sensitive about this.

Finally, I want to point out that in spite of the long history of NMR theory, and in spite of
the fact that its mathematical apparatus is well worked out, we can still witness insightful
discourses on the interpretation of its physical essence, often correcting widely held miscon-
ceptions. This shows that one should approach the basics of NMR with an inquisitive mind
(Fig. 1.1) rather than with a default mindset that takes all statements for granted on the per-
ceived precept that NMR theory represents vintage, and therefore proven (Trap #8), science.
II. EXAMPLES FROM NMR THEORY



1032.3 CLASSICAL PORTRAYAL OF AN INDIVIDUAL SPIN
In fact, searching for new and nonparadigmatic ways of looking at the basics can be a very
revealing endeavor (cf. Pillars 16 and 17).

It is, then, with the above intellectual and emotycal attitude that one should (in my view)
approach NMR theory in general, and the short discussion below in particular.
2.3 CLASSICAL PORTRAYAL OF AN INDIVIDUAL SPIN

With reference to theCorrespondence Principle, the classical description ofNMR fundamen-
tally pertains not to the individual spins or magnetic moments m, but to the macroscopic magne-
tization

P
m¼M of the spin ensemble and (more precisely,M is usually defined for the number

of spins contained in a unit volume of sample, but we can ignore that nuance here). Bloch’s
original classical treatment of the NMR phenomenon via the famous Bloch equations reflects
this stance: the equations describe the phenomenological behavior of the macroscopic magneti-
zationwithout any attempt to rationalize that behavior in terms ofmicroscopic considerations.2

The nuclear spin is a quantum-mechanical entity, and therefore any attempt to describe its
physical behavior classically (as it is done in many of the established basic NMR textbooks)
may seem like a strange idea, because we know that a single spin does not behave as a classical
object. So why bother? As it turns out, we have two good reasons to do so. Although we can-
not a priori be certain whether a classical description of a single spin’s behavior in NMR will
yield a sound or an unsoundmodel (cf. Pillar 13), bestowing classical properties upon the spin
is a natural attempt of the humanmind to be able to think about a spin and a spin ensemble in a
constructive manner (cf. Pillar 11). Indeed, there seems to be a very human need to formulate
some idea about what kind of microscopic physical spin-behavior causes the macroscopic
magnetization to move and change its length the way it does during an NMR experiment.
If we approach the situation by deliberately thinking in terms of metaphoric models with well
understood purposive infrastructures and contextual spaces, and if we are aware of the fact
that in doing so we are not trying to rigorously emulate physical reality (cf. Pillars 10 and 13),
we find that we can come up with a convenient and very helpful classical treatment of the
individual spins and the associated m magnetic moments (see below). Although this ap-
proach is physically deceptive in the sense that it attempts to approximate a quantum-
physical object (spin) with a classical-physical object (rotating magnetic dipole), it turns
out to be mathematically justifiable from a quantum-mechanical viewpoint: quite amazingly,
the quantum-mechanical expectation value hmi of the magnetic moment operator for a single
spin obeys the classical equations (see Chapter 3)! Overall, the classical approach can be em-
braced as providing a sound metaphoric model which is a valid, useful, and human-mind-
friendly pictorial representation of physical reality. Many descriptions of basic NMR portray
the individual spin classically without pointing out the metaphoric nature of this model, thus
muddling the difference between the classical and quantum-mechanical description and eas-
ily creating confusion between reality and the model (cf. Traps #18-#20).

To see how the classical approachworks, we first need to review some classical-mechanical
principles thatmay be applied to the individual spins. The classical approximation sets out by
noting that certain so-called NMR-active nuclei (whose atomic number or mass number is
odd, such as, e.g., 1H or 13C) exhibit the special property that they have an angular momentum.
II. EXAMPLES FROM NMR THEORY



104 2. CLASSICAL DESCRIPTION OF NMR
As it is familiar from classical physics, the angular momentum P is a vector quantity (herein
mathematical symbols set in nonitalicized bold denote vectors) which characterizes spinning
objects and which is the product of the spinning body’s moment of inertia (which is a measure
of the object’s resistance to changing its angular velocity) and its angular velocity v (which is
also a vector quantity because it specifies not only the velocity of the rotation but also its direc-
tion). For a body that rotates with a constant angular velocity o¼ vjj about a given axis, the
direction of P gives the direction of the rotational axis and the sense of rotation about the axis
(i.e., whether the body rotates “to the right” or “to the left” about the axis according to the fa-
mous right-hand rule), while its absolute value (magnitude)P¼ Pj j is the larger the bigger is the
mass and the rotational velocity of the rotating body. Those nuclei that possess an angular mo-
mentum may be intuitively conceptualized within this classical framework of description as
tiny spinning tops, which is why the jargon refers to the angular momentum of such nuclei
as “spin.” Note however that in reality spin does not arise because of the actual rotation of
the nucleus or the rotation of its constituent nucleons. Rather, spin is an intrinsic and verymys-
terious feature of atomic particles which is probably beyond the reach of human understand-
ing.5 Nevertheless, viewing nuclei as if they were tiny spinning tops is a useful metaphoric aid
(cf. Pillar 10) so long as we do not confuse this image with reality (cf. Trap #18).

Nuclei also exhibit an intrinsic permanent magnetism (nuclear paramagnetism) which is
closely related to spin and which is just as mysterious as spin (sometimes the magnetism
of nuclei is rationalized as arising because every nucleus carries charges, and due to the nu-
clei’s perceived spin, these charges will circulate about the P vector, generating, as is well
known, a magnetic dipole along the direction of P; this picture however is incorrect: the mag-
netism of nuclei is not due to a circulating charge, it is just there5).

This nuclear magnetism of spin-possessing nuclei may be conceptualized classically as a
tiny cylindrical bar magnet (a magnetic dipole) spinning about its major axis along the direc-
tion of P. Now, ignoring this spinning for a moment, magnetic dipoles are characterized by
their magnetic moment m, a vector quantity which serves to express the “vehemency” with
which the dipole wants to align itself along the direction of a static homogeneous external
magnetic field, the latter being represented by the magnetic induction vector B. More specif-
ically, if we place the dipole m in the static magnetic field of B induction such that B and m
enclose an arbitrary angle y, then B will exert a torque

T¼m�B i:e:,T¼ mBsinyð Þ (2.1)

onm, and if the dipole is not spinning, this torque will act to rotatem in the direction of B about

an axis that is perpendicular to m (excluding of course the situation when y¼ 0 and y¼ p, in
which cases T¼ 0), just as a compass behaves. The magnitude of the magnetic moment
(m¼ mj j) can be measured by the magnitude of the torque (T¼ Tj j) acting upon it. However,
the nuclear magnetic dipole that we are dealing with is spinning, and while this does not affect
the above definition of magnetic moment as far as Eq. (2.1) and themagnitude m are concerned,
it does have a profound effect on how the dipole behaves under the action of the torque T (see
below). It is therefore imperative that every time we see the symbol m, we keep in mind that it
represents a nuclear magnetic dipole that is spinning about the direction of P, that is, it is a
magnetic moment with an angular momentum, in other words a gyromagnetic moment (the
word “gyro” comes from the Greek word “turn”). The connection between the nuclear mag-
netic moment and the angular momentum (spin) is given by the equation
II. EXAMPLES FROM NMR THEORY
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where g is the gyromagnetic ratio, a scalar constant that is characteristic of the atom type and

1052.3 CLASSICAL PORTRAYAL OF AN INDIVIDUAL SPIN
may have a positive or negative sign.Note that for the case of the positive g that we restrict our
discussion to, the moment vector and the angular momentum vector (spin) point in the same
direction (this is noted because it simplifies some aspects of the discussion). Although, strictly
speaking, “spin” means “angular momentum,” NMR people often use the word “spin” more
informally to also imply the magnetic moment m on the basis of Eq. (2.2).

Yet another point to be known is that in a B field the mmoment has a potential energy that
depends on the angle y. According to convention, the potential energy Em

pot of a magnetic mo-
ment m in a magnetic field B is defined as the work W done by the torque T on m when it
causes the reference angle y¼ p=2 to change to an arbitrary value y 0:

Epot
m ¼W¼

Z y

p=2
Tdy0 ¼

Z y

p=2
mBsiny0dy0 ¼�mBcosy¼�m�B (2.3)

Thismeans that the energy of themagneticmoment is at aminimum, E
pot
m ¼�mB, whenm is
aligned parallel withB (y¼ 0), it is zerowhenm andB are perpendicular (y¼ p=2), and it is at a
maximum, E

pot
m ¼ mB, when m is antiparallel with B (y¼ p). The negative energy value asso-

ciated with the stable equilibrium position of y¼ 0 may first seem puzzling because intuition
would dictate that when the moment lines up with the field, the potential energy should be
zero. The answer to this problem is that potential energy is defined as the energy difference
between the energy of an object in a given position and its energy at a reference position; it is
the work done by a so-called conservative force (whose work done when moving an object
does not depend on the path) against a reference position. As noted above, with regard to the
magnetic potential energy this zero-energy reference point has been conventionally defined
as the positionwhen themagneticmoment is perpendicular toB. Conceptually, when starting
from this position, an increase in the angle y requires work, that is, an increase in energy,
while by “letting go” of the magnetic moment, B will do work through the torque (2.1) on
the moment to align it onto itself, which means a negative potential energy.

According to the fundamental laws of classical mechanics, when a force acts on a spinning
object such that it wants to change the spatial orientation of the object’s axis of rotation (i.e.,
the direction of the P vector), then the axis (i.e., P) will move not in the direction of the force,
but in the direction of the torque generated by the force. In the case of themagnetic momentm
with a spin P this can be described quantitatively from (2.1) as

dP

dt
¼T¼m�B: (2.4)

(Note that Eq. (2.4) is valid only for a gyro-magnetic moment.) When (2.4) is combined with

(2.2), we obtain the followingwell-known equation ofmotion for the spinningmagnetic dipole:

dm

dt
¼ g m�B½ �: (2.5)

Equation (2.5) describes the uniform precession of m about the B vector on the surface of a

circular cone with semi-angle y (we speak of a precessing vector if the tip rotates about an axis
when the tail is fixed). Because y is a constant of the motion, the energy Em

pot specified by
II. EXAMPLES FROM NMR THEORY



FIGURE 2.1 Larmor precession.

106 2. CLASSICAL DESCRIPTION OF NMR
Eq. (2.3) also remains constant (Fig. 2.1). This motion is the famous Larmor precession whose
direction and angular frequency are given, as can be derived from (2.5), by the expression

v¼�gB i:e:,o¼ 2pn¼ gBð Þ: (2.6)

In liquid-state NMR spectroscopy, our initial physical condition is always that we place the

sample (i.e., our spin ensemble as specified above) in a strong static homogeneous magnetic
field which is universally denoted by the vector B0. From (2.1) we see that in the B0 field any
given spin will experience a torque T¼m�B0 and thus (2.5) will become

dm

dt
¼ g m�B0½ � (2.7)

so that m will precess about B0 with a Larmor angular frequency
v0¼�gB0 (2.8)

by maintaining a constant y angle and thereby a constant energy Em
pot. This situation is com-
monly portrayedwithin a right-handed 3DCartesian coordinate system (x,y,z), specified such
that the +x, +y, and +z axes point in the direction of the unitary vectors ex, ey, and ez, respec-
tively; the right-handedness of the system is defined through the condition ex�ey¼ ez. In this
system, B0 is chosen to point in the +z (“longitudinal”) direction as shown in Fig. 2.2.

NMR spectroscopy essentially deals with the phenomenon of how this Larmor-precessing
spin, or an ensemble of such spins, can be brought to “resonate” if we subject it to a second,
harmonically oscillating B1 magnetic field which is much weaker than B0 (i.e., B1�B0) and
whose driving frequency oD is near the Larmor frequency o0. The spin thus experiences an
effective field

Beff¼B0 +B1: (2.9)

The fluctuating B1 field is generated by an RF coil surrounding the sample such that the

driving field can be regarded as a B1 vector which rotates in the (x,y) plane (the “transversal”
plane) in the same direction as the Larmor precession (i.e., v0 and vD point in the same
II. EXAMPLES FROM NMR THEORY



FIGURE 2.2 Larmor precession in a B0 static field in a Cartesian system.
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direction) as shown in Fig. 2.3 (this statement is subtle, and the word “regarded” is intention-
ally italicized; I will return to this point in Chapter 5). The driving field will exert a second
torque T¼m�B1 on the magnetic moment, and so the equation of motion (2.5) will become

dm

dt
¼ g m� B0 +B1ð Þ½ � ¼ g m�Beff½ �: (2.10)
FIGURE 2.3 The magnetic moment in a B0 static field and a B1 driving field rotating in the (x,y) plane (the
depicted vector lengths are illustrative only, e.g., in reality B1�B0).
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In order to understand how the rotating B1 field induces resonance in the m magnetic
moment, it may be useful (but not necessary) to draw, as a first approximation, an analogy
with a linear harmonic oscillator, such as a spring with a small weight hung on it, which is
subjected to a sinusoid driving force, such as we jerk it up and down as we hold the upper
end of the spring. Simple resonance theory states that this linear oscillator (resonator) has a
natural frequency (eigen frequency) o0, and if we suddenly act upon it with a sinusoidal
driving force oscillating with frequency oD in the same direction as the oscillator, then after
a short time, duringwhich it adapts to the new condition, the driven oscillator will no longer
oscillate with its eigen frequency, but will be forced to oscillate at the frequency of the
driving force (i.e., the oscillation of the resonator will not be independent of the driving fre-
quency). The amplitude of this driven oscillation will be small if oD�o0 or oD�o0, but it
will be maximal when o0¼oD, which is the resonance condition. Similarly, in magnetic
resonance m can be thought of as a resonator whose Larmor frequency o0 is the natural fre-
quency, and the rotating B1 field acts as the driving force with angular frequency oD. The
amplitude of the motion of m is taken to be the magnitude of its projection onto the (x,y)
plane. Because in magnetic resonance we are dealing with rotating rather than linearly
oscillating entities, the response of the system to the driving force will be more complex.
(The analogy with the linear oscillator should not be over-interpreted: it is merely used
here as a familiar everyday example that is easy to relate to, and which shows that a driven
oscillator no longer oscillates with the free oscillator’s eigenfrequency. Nevertheless, we
should expect that the physics behind the linear and the precessing driven resonators
should be analogous to the extent that in both cases the resonator will take on the driving
frequency.)

The way the “driven” m oscillator actually behaves in a Beff field is rather fascinating.
Because it is neither intuitively, nor mathematically easy to infer this motion in a moving Beff

field, a trick almost universally employed to overcome this difficulty is to convert Eq. (2.10)
into a rotating Cartesian frame6 designed so as to make Beff static. The procedure rests on the
following simple mathematical consideration. Besides our (x,y,z) Cartesian system which is
fixed in the laboratory, we take a second Cartesian frame (x0,y0,z) whose origin is coincident
with the laboratory frame but which rotates about the z axis with angular velocity v with
respect to (x,y,z). If we now consider a vector v which is stationary in the laboratory frame
(x,y,z), that is, dv=dt¼ 0, then an observer positioned within the rotating frame (x0,y0,z) will
perceive v as rotating with angular velocity �v, that is, from that perspective
dv=dtð Þrot¼�v�v. If v is a function of time in (x,y,z), that is, dv=dt 6¼ 0, then an observer
in (x0,y0,z) will perceive v as rotating according to �v�v as well as changing according to
its motion dv/dt within the (x,y,z) frame. Thus, any v vector in the stationary frame (x,y,z)
can be transformed into the rotating frame (x0,y0,z) by the equation

dv

dt

� �
rot

¼ dv

dt
�v�v: (2.11)

The particular rotating frame used in NMR is a frame (x0,y0,z) which rotates about the z axis

in synch with the driving B1 field, that is, with angular frequencyvD so that B1 appears static
for the rotating-frame observer. By default, the B1 vector is conventionally drawn along the x0

axis (although it is by no means restricted to that direction). Applying Eq. (2.11), the transfor-
mation equation for the m vector becomes
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dm

dt

� �
rot

¼ dm

dt
�vD�m¼ dm

dt
+m�vD: (2.12)

Using Eq. (2.12), Eq. (2.10) converts into the rotating frame as
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dm

dt

� �
rot

¼ g m� B0 +B1 +
vD

g

� �� �
¼ g m�Brot

eff

� �
: (2.13)

Note the term vD/g, which appears in Eq. (2.13) as a consequence of the factor m�vD
in Eq. (2.12), and which formally opposes B0, so that we have B0 +vD=gj j ¼B0�oD=g. As a
result, the effective field Beff

rot “felt” by m in the rotating frame becomes

Brot
eff ¼B0 +B1 +

vD

g
(2.14)

as shown in Fig. 2.4.

The concept of resonance can now be interpreted in a rather simple and intuitively conve-

nient way. Since Beff
rot is static in the rotating frame, according to the generic rules (2.5) and

(2.6), Eq. (2.13) tells us that m precesses about Beff
rot with frequency

vrot
eff ¼�gBrot

eff : (2.15)

If we imagine varying the frequency oD of the B1(t) field, then, according to Eq. (2.14), in

the rotating frame the magnitude and direction of Beff

rot will also change. When the term vD/g
cancelsB0 exactly in (2.14), that is, when B0¼oD=g, we haveBrot

eff ¼B1. In this case, the net field
experienced bym in the rotating frame is only B1, som conducts Larmor precession about this
field with frequency
FIGURE 2.4 The rotating frame of reference.
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v1¼�gB1: (2.16)

From Fig. 2.4, it can be readily seen that under this condition the precessing m vector will
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give the largest maximum projection onto the (x0,y0) plane, which is why it is called the res-
onance condition. Note that the resonance condition B0¼oD=g means (cf. Eq. 2.8) that

vD¼�gB0¼v0: (2.17)

If we nowwant to envisage themotion ofm in the laboratory frame, all we have to do is take

this rotating-frame result and allow it to rotate about the z axis with frequency vD, thus we
obtain a motion according to which m precesses about an axis defined by Beff

rot, and this axis
itself precesses with frequency vD about the z axis.

The above explanation, involving the rotating frame, is an elegant and useful description of
magnetic resonance, and one may indeed claim to have gained from it a good and pictorially
accessible understanding of the essence of the resonance condition. Let us, however, look at
this portrayal of magnetic resonance by introducing a touch of “AA-eye,” particularly with
regard to the nature of human understanding (Pillar 6) and the way we can confuse mathe-
matical descriptions with physical understanding (Trap #11).

We arrived at the rotating-frame description by a purely mathematical transformation
using Eq. (2.11), and thenwe started explainingwhatever happens in the rotating frame phys-
ically, that is, in a “mixed-mind-state” (cf. Trap #11). However, the rotating frame can be a
tricky affair: it apparently simplifies things, but it is also a non-inertial frame, and non-inertial
frames are famous for their need to introduce fictitious forces to explain observed motions
(just think of the well-known Coriolis force or centrifugal force which are both fictitious en-
tities that exist only in a rotating frame of observation). Events in non-inertial frames are often
not easily translated into a physical understanding pertaining to the inertial physical world
that we live in, that with which we are familiar with, and that from which we draw our ex-
periential knowledge of Nature. In this respect, I want to bring up the following issue about
the rotating frame as a potential source of illusive understanding.

Consider thevD/g factor that appears in the rotating-frame Eqs. (2.13) or (2.14). Aswe have
seen, this term is central to our physical rotating-frame understanding ofmagnetic resonance,
but in fact it transpires from amathematical necessity dictated by Eq. (2.11).We normally step
over this problem (if it is perceived as a problem at all) by noting that the termvD/g formally
has identical features to a real magnetic field, so we start calling it a “virtual field” or a
“fictitious field,” usually without mulling too much over what exactly that means. Even if
we do, we can readily convince ourselves that vD/g indeed acts as a field. After all, the fact
that vD/g emerges as a mathematical consequence when going into the rotating frame must
surely justify its presence there also as a physical necessity (note the slight emotycal overtone
in this argument). Moreover, since we are in a noninertial frame, the presence of a fictitious
field should not be too surprising. Indeed, if we forget about the B1 field for a moment and
think about laboratory-frame Larmor precession in the B0 field as shown in Fig. 2.2 and
expressed by Eq. (2.8), and imagine that we observe this motion from a frame rotating exactly
with the Larmor frequency vD¼v0, then in this frame the magnetic moment is static,
therefore Larmor precession seizes. Clearly, this is only possible if there is no netm�B torque
acting upon the magnetic moment, that is, there must be “something” compensating the B0

field so that the net B field experienced by m is zero. The term vD=g¼v0=g does exactly this
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“job,” which seems to validate the idea that vD/g can be treated as a field. Furthermore, the
concept of m rotating about the effective field (2.14) is conveniently consistent with its equa-
tion ofmotion according to (2.5). In all, the whole scenario serves our intuitionwell, especially
if one is not aware of, or bothered by, thinking about it in mixed-mind-state mode. However,
if we choose to get sharply sensitive about the difference between mathematical and physical
understanding according to Pillar 6, then we should be honest about the fact that what we
have really done is we have welded a piece of mathematical truth into our physical under-
standing of magnetic resonance, attributing to vD/g a post hoc physical meaning, essentially
claiming that vD/g is physically there because it is mathematically there. Sure enough, vD/g
can be legitimately proclaimed to be a fictitious non-inertial-frame entity, but does this mean
that we have truly understood its deeper physical meaning beyond just making the more or
less “sterile” statement that it is a fictitious field? In essence, we have achieved simplicity at
the expense of introducing a fictitious field which, for many people, somehow remains
vaguely understood.

When we have inferred the laboratory-frame motion of m not directly in the laboratory
frame, but by first making a digression into the rotating frame, then we have essentially
injected into our physical understanding this piece of mathematically conjured ingredient.
Most NMR-literate persons, if asked about the physical meaning of the vD/g term, will start
recounting the above rotating-frame argument. However, if challenged to explain the mag-
netic resonance phenomenon directly in the laboratory frame where there are no fictitious
elements coming up as a result ofmathematical considerations, people often become puzzled.
It may be worthwhile to examine this situation through the following considerations.

As was discussed in connection with Fig. 2.4, in the rotating frame our apperception of
resonance transpires from the concept that the angle Brot

eff∡ez between Beff
rot and ez increases

from almost zero to 90° as we increase the driving frequency from oD�o0 to oD¼o0. As
a result, at resonancem precesses exclusively about B1 as being the only field that it effectively
experiences. The axis of this “resonant” precession is perpendicular to the original axis of
Larmor precession about the B0 field, which allows m to attain its maximal amplitude of mo-
tion in the (x,y) plane. However, if we try to envisage resonance directly in the laboratory
frame, our intuitive understanding based on the rotating-frame description might easily lead
to an apparently puzzling predicament according to the following reasoning. Imagine, in the
laboratory frame, the initial situation in which the m vector is precessing about the B0 field
with a small angle y. Because in the laboratory frame there is no vD/g term, upon turning
on the rotating B1 field the effective field felt by m will be Beff¼B0 +B1 according to (2.9),
and this Beff vector will be precessing about the z axis with constant frequency oD and with
a constant angle Beff∡ez between Beff and ez. Note that because B0�B1, the Beff vector is only
very slightly tilted away from the z axis, that is, Beff∡ez� 0. By analogy with Eq. (2.5) whose
solution is Eq. (2.6), one may expect that the solution of (2.10) will also be a uniform Larmor
precession of m about this moving Beff field, with frequencyveff¼�gBeff. But because the ef-
fective field felt by m now has a constant angle Beff∡ez for all values of oD (as opposed to the
rotating frame in which the effective field felt by m changes the angle Brot

eff∡ez as a function of
oD), the expected Larmor precession of m about Beff, which is almost parallel with z, cannot
cause such a tilting away of m from the z axis at the resonance condition oD¼o0 as what we
have inferred from the rotating-frame considerations. Moreover, note that the result of this
reasoning is different from that obtained when we first went into the rotating frame and then
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transformed the rotating-frame result (Fig. 2.4) into the laboratory frame by allowing the for-
mer to rotate about the z axis with frequency vD. According to that reasoning, in the labora-
tory framemwill also precesses about the axis of Beff

rot even though Beff
rot should now not “exist”

in the absence of the termvD/g. This means that the intuitive idea that in the laboratory frame
m should precess about Beff must be wrong. It is therefore interesting to see if we can make
some physical sense, without using the rotating frame, of why, in the laboratory frame, m pre-
cesses about an axis that is tilted downward of Beff, instead of precessing about Beff itself. Note,
as a starting point, that because the resonance condition oD¼o0 was arrived at by equating
oD/gwith B0 in the rotating frame, and this resonance condition must equally be valid in the
laboratory frame, we can expect that vD/gmust somehow appear as a physical entity also in
the laboratory frame (and not just as an abstraction coming from Eq. 2.12). One way to render
a physically more palpable meaning to vD/g is as follows.

Imagine, as a thought experiment, that the B1 field is initially static in the laboratory frame
and points in the direction of the +y axis, so we have a static effective field Beff in the (z,y)
plane, and let our starting condition be such that m happens to point along Beff. Now let
us allow the B1 field vector to suddenly start rotating with frequency vD about the z axis,
so Beff also starts precessing. If the B1 vector has moved by a small angle d# away from
the +y axis in a short time dt, then Beff will have also moved away by an angle d# from both
the +y axis and from m (note that, as opposed to the case when Beff changes so slowly that
oD� gBeff, which is called the adiabatic condition, mwill not stay “glued” to Beff if we impart
a sudden rotation upon the latter). This situation creates a torque m�Beff which is in the (z,y)
plane, and which will tilt m by a small angle dE, in a time dt, toward the +y axis. During the
next small dt time interval, Beff will again move by a further d# angle away from the +y axis as
well as from m, thus increasing slightly the torquem�Beff. Also, because m has moved down-
ward toward the +y axis in the previous step, the present torque m�Beff is no longer in the
(z,y) plane, but is now slightly skewed toward the +x axis, therefore it tilts m further down by
slightly moving it also toward the +x axis. In all, m lags behind Beff and follows it along an arc
according to theway the torquem�Beff changes during the process. If one follows this train of
thought, with a bit of imagination it is easy to see that the tip ofm�Beff must trace a circle as it
moves under the influence of the changing m�Beff torque, eventually catching up with Beff,
whereby the process starts again. This circle will be the base of a cone traced bym as it follows
the precessing Beff field. We may think of this process as m attempting to precess about Beff

with frequency �gBeff, but Beff keeps “running away” from mwith frequencyvD. The way m
can catch upwith Beff is by lagging behind until the torquem�Beff becomes large enough and
of the proper direction so that it can drive m back onto Beff again. The closer the frequency oD

is to the frequency gBeff with which m attempts to precesses about the net field Beff that it
“feels,” the larger the angle dE traveled by mwhile Beff travels the angle d# in a time dt, there-
fore the larger the yb angle of the cone traced by mwill be. Thus, m does not conduct a simple
Larmor precession about themoving Beff field as onemight intuitively expect from drawing a
hasty analogywith Fig. 2.1, but exhibit an intricatemotion involving Larmor precession about
a moving axis which is tilted away from Beff.

The above motion can be better understood and visualized by applying the rules of rigid-
body dynamics, as was originally pointed out by Corio.7 The situation is first illustrated for
the off-resonance condition where oD <o0 in Fig. 2.5.

In order to understand the essence of Fig. 2.5, we need to lean on a theorem by Euler which
states that any displacement of a 3D rigid body with one point fixed in space (this point may
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ormay not be in the body itself) can in any instant be described as a single rotation about some
single axis, called the instantaneous axis of rotation, with the points of the body falling on this
axis being momentarily at rest. In fact, it can be shown from Euler’s theorem that the most
general motion of any point of a rigid bodywith one point fixed consists of the rollingwithout
slipping of a cone fixed in the body (called the body cone) upon a cone fixed in space (called the
space cone) such that the vertices of the two cones are at the fixed point. (In general, neither of
these cones is necessarily circular, but when applying these concepts to the motion of m, the
cones are of course circular.) According to this description, a point on the body cone precesses
about the central axis of rotation of the body cone. Similarly, the instantaneous axis of rotation
itself precesses about the central axis of rotation of the space cone.

If we adopt the above principles to themotion ofm in the laboratory frame as shown in Fig. 2.5,
we see that at any given instant the space cone and the body cone are tangent along the instanta-
neous axis of rotationRiwhich coincideswith thenet effective fieldvectorBeff¼B0+B1 andwhich
precesseswith frequencyvDabout the central axis of rotationof the space cone,whichof course is
the z axis that is coincidentwithB0. The central axis of rotation of the body cone is theQ axis about
whichm precesses with frequencyvQ. The plane through the Ri and z axes passes through theQ
axis, and this plane turns round the z axis alsowith angular velocityvD.Thus, the axisQ rotates in
FIGURE 2.5 Conceptual illustration of the
motion of an isolated magnetic moment m in a
B0 static field and a B1 driving field rotating in
the (x,y) plane for the off-resonance case when
oD <o0. Using the ideas of rigid-body dynam-
ics, the magnetic moment precesses about the
central axis of rotation Q, forming a body cone
which rolls without slipping on the space cone

along the instantaneous axis of rotation Ri.
For illustrative purposes, the length of B1 is
greatly exaggerated. In reality, B1�B0, and
therefore ys is very small.
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the (x,y) plane in synch with the rotating B1 field in analogy with the way the driven harmonic
linear resonator takesup the frequencyof thedriving force. In thismotion thebodyconerollswith-
out slipping on the space cone. The body cone and space cone are both circular and have semi-
angles yb and ys, respectively. Note that in reality ys� 0 because B1�B0, therefore R

i almost co-
incides with the z axis. While the semi-angle ys of the space cone is constant, yb depends on the
difference between oD and o0.

In order for the rolling-without-slipping condition to hold, oDmust clearly bear a constant
ratio tooQ. This condition is satisfied if the radius vectors rb and rs rotate about theQ and the z
axes, respectively, according to the condition drb=dt¼ drs=dt. From this, the rolling-without-
slipping condition holds if

drb
dt
¼ rboQ	 drs

dt
¼ rsoD, i:e:, ifoQ=oD¼ rs=rbð Þ: (2.18)

Another basic theorem of rigid-body mechanics ensuing from the above considerations

states that at any point in time the instantaneous angular frequency vR

i with which m pre-
cesses about the instantaneous axis of rotation Ri, and therefore also the instantaneous
direction of Ri, can be simply obtained by adding vD and vQ, that is,

vi
R¼vD +vQ: (2.19)

We know of course that vi
R¼vi

eff¼�gBeff¼�gB0�gB1, so from Eq. (2.19) we have
vQ¼�gB0� gB1�vD¼�g B0 +B1 +
vD

g

� �
: (2.20)

We see from Eq. (2.20) that the term vD/g has appeared again as a factor that plays an im-

portant role in determining the axis about whichm conducts Larmor precession on the surface
of the body cone, and from Eq. (2.14) it is evident that this axis corresponds directly with the
direction of Beff

rot that we are already familiar with from the rotating frame. However, the
laboratory-frame result (2.20) immediately renders a more tangible physical meaning to
vD/g than the fictitious entity that appeared in the rotating frame. These considerations show
that the value of ys is uniquely determined by the B0-to-B1 ratio, while the value of yb is
uniquely determined by the B0-to-B1 ratio as well as the angular frequency oD with which
the B1 field rotates. In a way wemay think ofvD/g as a factor which ensures that at any given
instant the axis of the body cone is tilted away from the instantaneous axis Ri to the exact
degree so that m can roll without slipping on the space cone while its axis of Larmor preces-
sion Q moves in synch with the precession of the Beff field about the z axis.

The situation is also illustrated pictorially for the resonance condition in Fig. 2.6. This fig-
ure is instructive from the particular point of view that at resonance the rolling-without-
slipping condition expressed in Eq. (2.18) is directly seen to be oQ=oD¼ rs=rb¼B0=B1, in line
with the fact that in this case the Q axis coincides with the B1 field and thus we simply have
vQ¼�gB1 (cf. Eq. 2.20). Since by definitionvi

R¼� gB0 + gB1Þð , from Eq. (2.19) we thus obtain
vi

R¼� gB0 + gB1Þ¼vD� gB1ð , from which oD¼ gB0¼o0, which is just the resonance
condition (2.17).

The off-resonance condition corresponding to oD >o0 is illustrated in Fig. 2.7, which
should give an added level of understanding to the rigid-body dynamical representation
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FIGURE 2.6 Conceptual illustration of the motion of an
isolated magnetic moment m in the laboratory frame in a B0

static field and aB1 driving field rotating in the (x,y) plane for
the on-resonance case whenoD¼o0. In reality, B1�B0, and
therefore ys� 0. This is a case of a convex body cone rolling
on the outside of a convex space cone.
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of magnetic resonance. Note, in that respect, that in Figs. 2.5 and 2.6 the body cone and the
space cone are convex, with the body cone rolling on the exterior of the space cone. However,
for the off-resonance condition oD >o0 the body cone is concave, rolling with its interior on
the exterior of the convex space cone. Of particular interest here is the fact that in this case the
overall rotation of the body cone is opposite to the sense of precession of the Q axis. This mo-
tion is known as retrograde rotation, as opposed to the “regular” rotation seen in Figs. 2.5 and
2.6. Really “seeing” this motion may tax one’s imagination, but it may be helpful in that re-
gard tomake themental transition from the convex-convex to the convex-concave scenario by
imagining that we “flip” the convex body cone of Fig. 2.6 into a concave cone as shown in
Fig. 2.7 while maintaining the sense of rotation of m.

The above description of NMR in the static frame should be treated in its proper context. It
is of coursemuch easier to envisage themotion of themagnetic moment in the rotating frame,
and the above discussion was certainly not meant as an attempt to lead NMR spectroscopists
away from that practice. However, I assert that grasping the magnetic resonance phenome-
non directly in the stationary frame without first plunging into the rotating frame gives a
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FIGURE 2.7 Conceptual illustration of the motion of
an isolated magnetic moment m in the laboratory frame
in a B0 static field and a B1 driving field rotating in the
(x,y) plane for the off-resonance case when oD >o0. In
reality, B1�B0, and therefore ys� 0. This is a case of a
concave body cone rolling on the outside of a convex
space cone; the body cone exhibits retrograde rotation.
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fuller and “healthier” understanding of NMR, even if subsequently one falls into the usual
and convenient routine of thinking within the rotating frame.
2.4 CLASSICAL PORTRAYAL OF THE
MACROSCOPIC MAGNETIZATION

Having gained some initial idea about how spins would behave under the conditions of
magnetic resonance if they behaved as classical objects, we now turn our attention to how
an ensemble of spins behaves in the presence of the B0 and B1 fields. In particular, we are
II. EXAMPLES FROM NMR THEORY



FIGURE 2.8 General depiction of the macroscopic magnetization M

in the 3D-coordinate system.
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interested in the prospect of the vector sum of the mmoment vectors in the ensemble giving a
non-zero vector

P
m¼M, which we call the macroscopic magnetization of the ensemble.

In general, it will be convenient to treat M in our usual coordinate system as shown in
Fig. 2.8. For convenience the projection of M onto the transversal plane is denoted as Mxy,

where Mxy¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

x +M2
y

q
. The angle between M and the +z axis is F.

Where does this macroscopic magnetization come from in a B0 field? In the absence of an
external magnetic field the m moment vectors in the ensemble are of course oriented ran-
domly in 3D space, giving a kind of “spin-globe” if we imagine that all m vectors are shifted
into the origin of the system as represented in Fig. 2.9a. Because we have a very large number
of spins in the ensemble, in this case

P
m¼ 0 at any given instant. If we now imagine suddenly

placing the ensemble in a B0 field, intuition suggests that, similarly to the way a compass nee-
dle aligns itself along Earth’s magnetic field in order to minimize its magnetic potential en-
ergy, the m moment vectors will likewise try to orient themselves toward the direction of B0

(i.e., to decrease y) in order to decrease their potential energy (Eq. 2.3). However, according to
Eq. (2.7) eachm vector will start to Larmor-precess about the field according to Fig. 2.2, tracing
a cone with the specific y angle that the spin happened to have in the instant that B0 was
“turned on,” and will therefore not be able to lose potential energy. On this basis, we should
initially expect that the

P
m¼ 0 condition will be maintained. In reality however, after a few

seconds the ensemble will become slightly polarized toward the direction of the B0 field, cre-
ating a net equilibrium magnetization

P
m¼Meq¼Meqez; Mxy¼ 0, as illustrated in Fig. 2.9b.

It should be noted that the degree of the polarization of the m vectors is, qualitatively
speaking, extremely small, that is, Meq is a very small value even at high magnetic fields,
which is why NMR is an inherently insensitive spectroscopic method.

The “hedgehog” image of the spin ensemble as shown in Fig. 2.9 represents a sound
metaphoric pictorial model of the spins and the microscopic constitution of the macroscopic
magnetization which, as we shall see in Chapter 3, is physically relevant both classically and
quantum-mechanically. This picture of the spin ensemble is critically important: it reflects a
physically sound pictorial description of spins in a magnetic field and helps greatly to form a
II. EXAMPLES FROM NMR THEORY



FIGURE 2.9 Veryweekly interacting ensemble of classicalmmagneticmoment vectors (represented as “needles”)
shifted into the origin of the 3D-coordinate system. (a) Ensemble in the absence of an external magnetic field, forming
a “spin-globe” in which the m vectors are distributed evenly. (b) Ensemble in the presence of the B0 static field
following the establishment of thermal equilibriumwith the environment (spin-lattice relaxation); them vectors show
a slight polarization toward B0, with their vector sum giving rise to a net equilibrium magnetization Meq¼Meqez.
Individual spins are precessing with the Larmor frequency as indicated by the curved arrow, while they are occa-
sionally also exchanging energy among themselves (spin-spin relaxation). The 3D illustrations of the “hedgehog-like”

distributions of spins shown in the figures were taken from, and modified for the present discussion, Ref. 1 by permission

of John Wiley& Sons.
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humanly tangible mental image of their behavior thus providing the basis of a good intuitive
understanding of many NMR phenomena such as relaxation and coherence.

The process through which the system goes from the state
P

m¼ 0 (Fig. 2.9a) to
P

m¼Meq

(Fig. 2.9b) is called spin-lattice, longitudinal, or T1 relaxation. More generally speaking, if by
perturbing the system via an RF field (see below) we create a situation where we have a mac-
roscopicmagnetizationMwhich points in an arbitrary direction so thatMz <Meq andMxy > 0
as shown in Fig. 2.8, then if the perturbing influence is removed, the system will relax back
into its equilibrium position as shown in Fig. 2.9b. In this more general scheme, besides the
longitudinal relaxation process Mz�!Meq we have a transversal decaying process Mxy�!0,
called transversal or T2 relaxation.

Spin-lattice relaxation is an exponential process described by the equations

dMz

dt
¼Meq�Mz

T1
(2.21a)

Meq�Mz¼ Meq�Mt¼0
z

	 
 
 e�tT1 ; (2.21b)

where Mt¼0
z is the longitudinal non-equilibrium magnetization at t¼ 0, that is, at the time
when we start observing the development of the Mz component, and the time-constant T1

is called the spin-lattice relaxation time.
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Transversal relaxation is also an exponential process described as

dMxy

dt
¼�Mxy

T2
(2.22a)

Mxy¼Mt¼0
xy 
 e

�t
T2 ; (2.22b)

where the time-constant T2 is the transversal relaxation time.

NMR relaxation theory is a rather intriguing and difficult topic in its own right. Relaxation

theorists are (more or less) a subspecies ofNMR spectroscopists, and in that respectNMRpeo-
ple may be divided (more or less) into two groups: those who have a detailed knowledge of
relaxation based on some heavy mathematics, and those who simply take relaxation for
granted without getting involved in how or why it happens. Indeed, many NMR spectrosco-
pists can “live and breathe” NMR in a most constructive and fruitful manner without under-
standingrelaxationverymuchbeyond thephenomenological level representedbyEqs. (2.21a),
(2.21b), (2.22a), and (2.22b), and by succumbing merrily to a cursory explanation such as the
following. “T1 relaxation occurs because the B0 field tries to orient the m moment vectors to-
ward itself, thereby decreasing the energy of the ensemble, while this process is counteracted
by the thermal agitation of the system which tries to randomize the spins; the ‘relaxed’ state
represents an equilibriumbetween these twoprocesses.T2 relaxation occurs because in the ab-
sence of an orienting field in the (x,y) plane, the randomization process prevails.” This is an
intuitively attractive description (cf. Trap #10) which certainly has elements of truth, but if
one starts scratching below the surface, some interesting questions emerge (e.g., according
to Eq. (2.5) the B0 field does not “pull” the spins toward itself but makes them precess; also,
it is not clear how exactly Brownian motion can influence the orientation of the spins, etc.).
Addressing such questions reveals that the (synoptic) understanding of relaxation requires
dealingwith some counter-intuitive concepts, which however lead to someAha!-type insights
into the nature of relaxation. These aspects of relaxation are, at the very least, nice to know
(cf. Pillar 15). Below is a brief attempt to approach relaxation in such a synoptic manner.

Note, first of all, that the concept of relaxation is applicable only to the macroscopic mag-
netizationM. It is not possible to speak of the relaxation of a single spin. We need to keep this
in mind when attempting to conceptualize the microscopic mechanism of relaxation at the
level of only a few spins, as discussed below.

Because in the absence of the B0 field spins are distributed uniformly within the spin-globe
(Fig. 2.9a), in the instant whenwe “turn on” theB0 field the total potential energy

P
Em
pot of the

ensemble is zero according to Eq. (2.3). The fact that after a while the system exhibits a net
equilibrium magnetization Meq means that the Northern hemisphere of the spin-globe has
become more densely populated with spins than the Southern hemisphere (Fig. 2.9b), that
is, the total energy

P
E
pot
m has decreased slightly relative to that in the absence of B0; in other

words the system has relaxed into a lower energy state than it was in when the B0 field
appeared. This process raises several interesting questions, such as: how can we explain
the decrease in the average y value of the spins in light of the y-conserving nature of the
Larmor precession? Where does the lost energy go? What determines the degree of loss inP

E
pot
m , that is, the magnitude of Meq?
The first step in answering these questions is to note that the spin ensemble is not “alone”:

in our model the proton spins form pairs in an H2O molecule. This is significant for two
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reasons. First, the spins of a spin-pair are close enough to each other to feel each other’s local
magnetic field, denoted herein as b. Secondly, watermolecules undergo continuous rapid and
random Brownianmotion, whereby the relative position of the spins in a spin-pair constantly
changes, creating randomly fluctuating b fields at each other’s site. The situation is illustrated
for a pair of magnetic momentsmj andmk, generating the fluctuating local fields bj(t) and bk(t),
in Fig. 2.10.

With the above notions in mind, the essence of relaxation can be understood by taking
some fundamental principles of statistical thermodynamics7 and applying them to our spin
ensemble model (note that it is not at all easy to do this with a view to keeping our description
and understanding at a synoptic level). In particular, it should be realized that from a
statistical-thermodynamical point of view the spin ensemble is not an isolated system, but
is coupled to another system, namely a thermal reservoir (the “lattice”) characterized by
the kinetic energy of the water molecules due to their Brownian motion. Let us simplify as
well as specify the situation so as to facilitate intuitive understanding. Because of the
Brownian motion the molecules continually collide and thus exchange rotational energy,
so at any instant a given water molecule rotates with an instantaneous angular frequency
vmol

rot . We assume that the molecules behave as rigid rotors and tumble isotropically in 3D
space, therefore all directions of rotation are equally possible as illustrated conceptually in
Fig. 2.11. Classically the rotational energy Emol

rot of a molecule is proportional to (omol
rot )2. In re-

ality Emol
rot is of course quantized according to the quantized rotational states of a molecule.

One may choose to keep this aspect in mind during the following discussion, but is has no
particular relevance with regard to our main theme of understanding what statistical rules
drive relaxation. The total rotational energy

P
Erot
mol of the molecular ensemble is distributed

among themolecules according to statistical physics principles. By “lattice” wemean the sum
of these rotational energies. In a 3D angular-velocity vector space the angular velocities of the
FIGURE 2.10 Schematic illustration of the way the two magnetic moments, mj and mk, of the protons in a water
molecule “sense” each other’s fluctuating local fields bj and bk that arise as a result of the Brownian motion of the
molecule. For simplicity, in this figure the (arbitrary) orientations of mj and mk were kept constant as the molecule
has rotated from (a) to (b), so as to illustrate more directly the phenomenon that in (a) mj is located in a different po-
sition of themagnetic field-linemap ofmk than in (b), thereforemj feels a randomly fluctuating field bk coming frommk

(the same goes for thewaymk feelsmj of course). In reality, in aB0 field both spins also undergo Larmor precession (not
shown) which also contributes to bj and bk.
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FIGURE 2.11 Schematic illustration of the distribution of the
angular-velocityvectors (all brought into theorigin) of isotropically
rotating water molecules in 3D angular-velocity space.
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water molecules may be assumed to be distributed according to Maxwell-Boltzmann statis-
tics, in analogy with the well-known Maxwell distribution of linear velocities in an ideal gas
(this is just a conceptual approximation, the exact shape of the distribution is irrelevant in the
present context).

In a B0 field the spin ensemble and the lattice represent two different forms of energy, the

potential energy
P

E
pot
m and the rotational energy

P
Erot
mol. Spin-lattice relaxation is about the

way the spin ensemble exchanges energy with the lattice such that when the former loses
energy, this is dissipated into the lattice in the form of a tiny amount of heat by increasing
its energy

P
Erot
mol slightly. The macroscopic magnetization Meq represents the state when

the spin ensemble and the lattice have attained a state of thermal equilibrium. In order to
see how this happens, we need to further specify the model of the spin-lattice system through
the following simplifying assumptions. (1) The total system is isolated, therefore the total
energy of the combined spin-lattice system Etotal is constant. (2) The spin ensemble and the
lattice are free to exchange energy. (3) There is only a weak contact between the two systems,

therefore their energies are additive, that is, Etotal¼
P

E
pot
m +

P
Erot
mol. (4) The spin ensemble and

the lattice relate to each other as a small and a largemacroscopic system, meaning that the lat-
ter has manymore degrees of freedom than the former (a system having f degrees of freedom
means that f independent physical parameters are needed to specify each possible state of the
system). For this reason, the lattice acts as a thermodynamic heat reservoir against the spin
ensemble, whichmeans that nomatter howmuch energy flows into it in the form of heat from
the spin ensemble, its temperature will only increase negligibly.

As already noted, the transfer of energy between the spin ensemble and the lattice, and also
within the spin ensemble, is made possible by the local fluctuating fields b. To see how, let us
reduce in thought the situation again to the magnetic moments mj and mk situated in a single
water molecule as shown in Fig. 2.10, and let us assume that within a short examined interval

of time the sum of the energies E
pot
m jð Þ +E

pot
m kð Þ +Erot

mol may be regarded as constant. If Larmor pre-

cession is also taken into account, the local field bk generated by mk will contain a fluctuating
transversal field bxy(k) which also contains a component rotating with the Larmor frequency,
and a longitudinal field bz(k) fluctuating according to the rotational motion of the water
molecule (transversal motion also counts here but we ignore that for simplicity). From the
II. EXAMPLES FROM NMR THEORY
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considerations represented in Fig. 2.2, it is easy to see that the fluctuating bz(k) field either
slightly increases or slightly decreases the Larmor frequency o0 jð Þ ¼ gB0 of mj (depending

on whether, at a given instant, bz(k) is parallel or antiparallel with B0), but does not change
the potential energy of the system. Because this process gives rise to slightly different preces-
sion frequencies in the spin ensemble, it causes a dephasing of the spins in the (x,y) plane, thus
contributing to T2 relaxation (cf. Eqs. 2.22a and 2.22b).

As for the bxy(k) field, because it rotates in the transverse plane at the Larmor frequency of
mj, it will induce a kind of “microresonance” on mj, either increasing or decreasing slightly its
potential energy Em(j)

pot (note that, as opposed to B1(t), bxy(k) contains randomly varying compo-
nents due to molecular tumbling). If, say, Em(j)

pot slightly increases, one of two things can happen.
One possibility is thatmk simultaneously decreases its Em(k)

pot potential energy to the same degree
under the influence of the fluctuating field bxy(j)due tomj (one should not forget thatmk affects
mj the same way as vice versa). Thus, there is a mutual exchange of energy between mj and mk

in the process, leaving their total potential energy intact—this process is also a T2 relaxation
mechanism.

The second thing that can happenwhenEm(j)
pot slightly increases due to a “micro-resonance” of

mj is that this increase in Em(j)
pot is compensated by an appropriate decrease in Emol

rot , that is, the
molecular rotation slows down a tiny bit—in other words, a bit of heat flows from the lattice
into the spin-system. Conversely, if Em(j)

pot happens to decrease as a result of a micro-resonance of
mj, then the “price” of this energy loss can be a slight increase in the angular velocity of the
molecule, that is, in a slight increase of the heat of the lattice. Extending this concept to the in-
teraction of the whole spin ensemble and the lattice, we see that this process provides a mech-
anism for energy exchange between the two systems, which is the basis of T1 relaxation:

X
Epot
m  !

b tð Þ X
Erot
mol: (2.23)

From all this, we see that both the spin ensemble and the lattice are statistical ensembles.

Within each system the members of the ensemble are continually exchanging energies, which
means that in Fig. 2.9 the individual spin vectors constantly change their longitudinal and
latitudinal positions on the surface of the spin-globe (while maintaining their Larmor preces-
sion), and in Fig. 2.11 the angular-velocity vector of eachmolecule changes direction andmag-
nitude according to the assumed Maxwell distribution. Also, there is a constant energy
transfer to and fro between the two systems. Energy exchange between the spins does not
affect the total energy

P
E
pot
m of the spin ensemble, that is, it does not explain the development

ofMeq. The latter requires that
P

E
pot
m must decrease to a certain extent, and from (2.23) this is

possible only if a certain amount of energy flows from
P

E
pot
m into

P
Erot
mol. The question is,

what “motivates” the spin ensemble, when placed in aB0 field, to give up some of its potential
energy to the lattice, and what determines the degree to which it will do so?

These questions bring us to the very important and interesting concepts of the macrostates
andmicrostates of a system. Let us, in that respect, consider again our “hedgehog” distribution
of spins shown in Fig. 2.9. Imagine that we divide the surface of the spin-globe into small
equal surface elements (cells), such as the hexagons shown in Fig. 2.12. The cells are assumed
to be small enough so that within a given cell the energy Em

pot may be regarded as constant (in
that respect, Fig. 2.12 exaggerates the cells for illustrative purposes).
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FIGURE 2.12 The concept of dividing the surface of the
spin-globe into small equal surface elements (cells) such as the
hexagons shown here.
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Let us now take our spin ensemble as shown in Fig. 2.9a, assuming initially that there is no
B0 field (there is no potential energy associated with the spins). Imagine that we pick out, say,
two water molecules, that is, four specific moment vectors, and let us label them individually
as m1, m2, m3, and m4 (just for a while we ignore the rest of the spins). Now let us choose any
four different cells in Fig. 2.12, and label them in some convenient way, say as cella, cellb, cellc,
and celld. The tips of the moment vectors will keep moving randomly on the surface of the
spin-globe, which means that in time m1 may be found with equal probability in cella, cellb,
cellc, and celld. The same is true of course for m2, m3, and m4. Let us specify which particular
spin occupies which particular cell in a given instant. For example, we may have m1 and m3 in
cella, no spin in cellb, m4 in cellc, and m2 in celld, which is a microscopic configuration of the
system that I will denote here as {m1,m3@cella; m4@cellc; m2@celld}. Such an instantaneous mi-
croscopic configuration, that is, when we know which individual spin is located in which in-
dividual cell, is called a microstate of the system. For example, the states {m1,m2,m3,m4@cella}
and {m3@cella; m1@cellb; m4@cellc; m2@celld} are different microstates of this system. As far as
the macroscopic behavior of the spin ensemble is concerned, it is of course indifferent which
spin occupies which cell, all that matters is how many spins are located in a given cell. The
state of the system characterized by the number of spins found in the individual cells is called
the macrostate of the system. For example, the states {m,m,m,m@cella} and {m@cella; m@cellb;
m@cellc; m@celld} represent different macrostates of the system. A fundamental principle
of statistical thermodynamics, known as the postulate of equal a priori probabilities, states that
an isolated system in equilibrium is equally likely to be in any of its accessible microstates.
This means that the probability of finding the system in microstate {m1,m2,m3,m4@cella} is
the same as the probability of finding it in the microstate {m3@cella; m1@cellb; m4@cellc;
m2@celld} or {m3,m4@cella;m1@cellb;m2@celld}, etc. Note however that themacrostate {m@cella;
m@cellb; m@cellc; m@celld} corresponds to 4!¼24 different microstates (all possible permuta-
tions according to which m1,m2,m3, andm4 can occupy the cells in a one-to-one arrangement),
whereas the macrostate {m,m,m,m@cella} corresponds of course to only one microstate,
{m1,m2,m3,m4@cella}. This means that while all microstates are equally probable, finding the
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system in a macrostate of {m@cella; m@cellb; m@cellc; m-@celld} is 24 times more probable than
finding it in the macrostate {m,m,m,m@cella}. This example illustrates the general rule that the
probability of any macrostate is proportional to the number of microstates accessible to that macrostate.
Clearly, if we take more spins into account, the number of microstates compatible with a
macrostate in which each spin is situated in a different cell increases rapidly. On that basis,
the argument can be readily extended to the whole spin ensemble. If, for simplicity, we ima-
gine that we have the same number of cells as spins, and each spin is individually labeled,
then a microstate where we find all of the spins in any single given cell is equally probable
as a microstate where spins are evenly distributed on the surface such that each cell with a
known location is occupied by a single spin with a known label (Fig. 2.9a). Clearly, there will
be a very huge number of microstates that give the same macrostate for this evenly distrib-
uted arrangement, while any other configuration, such as the all-spins-in-a-single-cell
macrostate, will have far less accessiblemicrostates, andwill thus bemuch less likely to occur.

An entirely analogous argument applies to the lattice, except that in Fig. 2.11 the angular-
velocity vectors do not have a fixed length. As noted above, for argument’s sake we may as-
sume a Maxwell distribution of angular velocities. This means that along any given spatial
direction the angular velocities follow a Boltzmann distribution (i.e., smaller rotational
frequencies with smaller energies are more probable), but if all possible spatial directions
are taken into account, then the probability of finding a molecule in the small range
orot

mol + dorot
mol, irrespective of its direction of rotation, goes through a maximum. To see

why, imagine that we divide the entire angular-velocity space shown in Fig. 2.11 into a 3D
grid of very small volume elements (voxels), with each voxel covering the range omol(x)

rot to
orot

mol xð Þ + dorot
mol xð Þ, omol(y)

rot to orot
mol yð Þ + dorot

mol yð Þ, and omol(z)
rot to orot

mol zð Þ + dorot
mol zð Þ. Let us now, in or-

der to simplify illustration, look onto, say, the 2D (z,x) plane of the angular-velocity space
shown in Fig. 2.11, and also for simplicity, let us, in this plane, represent as a dot the tip of
each vmol

rot vector. Accordingly, the distribution of angular velocities in the lattice at thermal
equilibrium will look something like that shown in Fig. 2.13.

It is easy to appreciate from Fig. 2.13 that if we draw a straight line in any arbitrarily chosen
direction from the origin, then the probability of finding molecules whose rotational axes
FIGURE 2.13 Conceptual illustration of the most probable
macrostate according to which molecular angular velocities are
distributed in the lattice at thermal equilibrium, as represented
in a 2D slice of angular-velocity space. The dots indicate the tips
of the angular-velocity vectors starting from the origin (cf.
Fig. 2.11). The shaded line represents an arbitrarily chosen linear
series of voxels starting from the origin, along which molecules
are distributed according to Boltzmann’s formula. The shaded
circles denote the 2D slices of two spherical shells of a single layer
of voxels that have the same rotational energy.
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point in (almost) the same direction decreases with increasing angular frequency, that is, with
increasing energy Emol

rot . This is Boltzmann’s distribution: it has amaximum value at the origin
and drops exponentially with increasing energy. Thus, for example, finding amolecule which
rotates at a speed and direction that corresponds to, say, voxel A in Fig. 2.13 is more likely
than finding it in voxel B. If however we take into account all possible rotational directions,
that is, all of the accessible microstates that belong to a given energy, a different situation
emerges. The shaded circles in Fig. 2.13 illustrate this point. They represent the 2D slices
of two spherical shells of arbitrarily chosen radius which contain all those voxels that have
the same energy between the narrow range Emol

rot and Erot
mol + dErot

mol (each shell is as thick as
a single voxel). We see from this that although for a given molecule state A is more likely than
state B, there are a lot more voxels that have the same energy as state B than there are that have
the same energy as state A. In other words, there are many more accessible microstates for
higher energy molecules than for lower energy ones (recall that the volume of a sphere in-
creases with the cube of the sphere’s radius). Thus, from a macroscopic viewpoint, in which
case we are only interested in the number of molecules that have a given rotational energy, the
distribution of rotational speeds will be determined by two competing factors: with increas-
ing energy, single voxels will be less densely populated (this factor decreases the probability
of molecules being in a higher energy rotational state), but at the same time the number of
voxels compatible with a given energy will increase (this factor increases the probability of
molecules being in a higher energy molecular state). A Maxwell-type distribution of angular
speeds ensues: macroscopically the distribution function is zero at the origin, then goes
through a maximum and diminishes toward zero with increasing energies.

Now that we have a feel for macrostates andmicrostates in both the spin ensemble and the
lattice, we need to bring the two systems together and think about it as a combined spin en-
semble+ lattice system in order to understand the reason why the spin ensemble develops
an equilibrium macroscopic magnetization

P
m¼Meq in a B0 field. To that end, we need

to make an additional important observation regarding the behavior of such a combined sys-
tem. Recall, first, our initial premise that the energies of the respective systems are additive
and their sum is a constant:

Etotal¼
X

Epot
m +

X
Erot
mol: (2.24)

From the above considerations, we should intuitively expect that the combined systemwill

also be most likely found in a state which has the largest number of microstates accessible to

the system as awhole.With that inmind, wewant to look for themost probable energy
P

E
pot
m

of the spin ensemble that ensures that the combined system has the maximum number of ac-
cessiblemicrostates. Adopting, alongwith some of his argument, the symbolO used by F. Reif

to indicate the number of microstates,8 let us denote by Ototal

P
E
pot
m

� �
the number of micro-

states accessible to the combined system if the spin ensemble has an energy
P

E
pot
m (or more

precisely, very nearly that energy). According to the principle of a priori probabilities, at equi-
librium all accessible microstates of the combined system are equally likely, consequently

finding the spin ensemble to have an energy
P

E
pot
m is proportional to the number of micro-

states Ototal

P
E
pot
m

� �
accessible to the combined system. However, if the spin ensemble has an

energy
P

E
pot
m , it can be in any one of its own Ospins

P
E
pot
m

� �
microstates. From (2.23) we see
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that at the same time the lattice has an energy
P

Erot
mol¼Etotal�

P
E
pot
m , so it can be in any one of

its Olattice

P
Erot
mol

	 
¼Olattice Etotal�
P

E
pot
m

� �
accessible microstates. Clearly, every possible mi-

crostate of the spin ensemble can be combined with every possible microstate of the lattice,
and each combination will give a different microstate for the combined system, therefore the

number ofmicrostatesOtotal

P
E
pot
m

� �
accessible to the combined systemwhen the spin ensem-

ble has an energy
P

E
pot
m will be the product

Ototal

X
Epot
m

� �
¼Ospins

X
Epot
m

� �
Olattice

X
Erot
mol

� �
; (2.25)

and therefore the probability P
P

E
pot
m

� �
of the spin ensemble having an energy

P
E
pot
m is
given by

P
X

Epot
m

� �
∝Ospins

X
Epot
m

� �
Olattice

X
Erot
mol

� �
: (2.26)

Equation (2.26) holds the key to understandingwhy the spin ensemble polarizes itself to a

certain degree toward theB0 field. Note that the number of accessible states for both the spin
ensemble and the lattice increases very rapidly as a function of their energies because both

systems have very many degrees of freedom f (in fact, O∝Ef ). If
P

E
pot
m decreases slightly,

then the term Ospins

P
E
pot
m

� �
decreases extremely rapidly while the term Olattice

P
Erot
mol

	 
¼
Olattice Etotal�

P
E
pot
m

� �
increases even more rapidly (because the lattice has many more

degrees of freedom than the spin ensemble). The result is that the product of these two

terms, that is, the probability P
P

E
pot
m

� �
exhibits an extremely sharp maximum for some

particular value of
P

E
pot
m , and this will be the most probable macrostate of the spin ensem-

ble. Obviously, with reference to Eq. (2.3), the most probable energy
P

E
pot
m will determine

the extent to which the spin ensemble will become polarized toward the B0 field, and
therefore the magnitude of the equilibrium macroscopic magnetization Meq.

We can illustrate the above conclusion in a semi-quantitative manner with some very small
numbers (in which case the probability of the most probable macrostate will of course not have
such a sharpmaximum). Imagine that the spin ensemble has 240microstates available when its
energy is 0, expressed in arbitrary units, and we denote this condition as [240(0)]spins. Assume,
furthermore, that if the spin ensemble decreases its energy stepwise by single energy units, it
will exhibit the following number of microstates: [160(�1)]spins, [90(�2)]spins, [40(�3)]spins,
[10(�4)]spins. Now assume that the lattice has 10 units of rotational energy with 300 accessible
microstates, that is, we have [300(10)]lattice, andwhenwe increase the energy of the lattice in one
energy-unit steps, we obtain the following figures: [800(11)]lattice, [1600(2)]lattice, [2600(13)]lattice,
[4000(14)]lattice. Let the total energy of the system be 10 units at equilibrium,whichmeans that if
the spin ensemble has 0 energy units, the lattice has 10 energy units, and by each energy unit
that the spin ensemble “gives up,” the energy of the lattice will increase by 1 unit. Under these
circumstances, using Eq. (2.26) we obtain the following conceivable pairs of spin-lattice config-
urations and associated total number of microstates for the combined system:

[240(0)]spins; [300(10)]lattice ! [72,000(10)]total
[160(�1)]spins; [800(11)]lattice ! [128,000(10)]total
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[90(�2)]spins; [1600(12)]lattice ! [144,000(10)]total
[40(�3)]spins; [2600(13)]lattice ! [104,000(10)]total
[10(�4)]spins; [4000(14)]lattice ! [40,000(10)]total

We see from this simple example that if we suddenly place the spin ensemble in a B0 field
so that it is imparted with a potential energy

P
E
pot
m , which at this instant is 0, then this will not

be the most probable state of a spin ensemble at equilibriumwith the lattice. The total system
will achieve the maximum number of microstates if the spin ensemble gives up 2 units of po-
tential energy and transfers it to the lattice’s rotational energy, so this will be the most prob-
able state of the spin ensemble (transferring more energy to the lattice would again decrease
the total number of microstates). All this is illustrated pictorially in Fig. 2.14.

Figure 2.14a represents the situation when the B0 field is suddenly “turned on.” At this
instant our spin ensemble is as yet nonpolarized (

P
m¼ 0), so we have very nearly the same

number of spins in each cell on the surface of the spin-globe, corresponding to the maximum
number of microstates available to the spin ensemble. The spin ensemble starts exchanging
energy with the lattice, which at this instant has a certain number of microstates as suggested
by the shaded globe in its angular-velocity space as shown in Fig. 2.14b. As per the previous
argument, this however is not the most probable state of the spin ensemble with regard to the
combined system. By letting some energy flow into the lattice, the spin ensemble will to some
become polarized along B0 field (

P
m¼M), that is, cells near the North pole of the spin-globe

will become more densely populated by spins, therefore by this act the spin ensemble loses
some of its microstates as shown in Fig. 2.14c. However, at the same time the lattice, due to its
slightly increased energy, gains many more microstates (Fig. 2.14d), thereby increasing the
probability of this polarized configuration of the spin ensemble according to Eq. (2.25). As
described above, by giving up too much energy the spin ensemble will start losing too many
FIGURE 2.14 Conceptual illustra-
tion of how a nonpolarized spin ensem-
ble becomes polarized due to its
thermal interaction with the lattice, giv-
ing rise to the phenomenon of T1 relax-
ation. (a) Macrostate of the
nonpolarized spin ensemble at the mo-
mentwhenplaced in aB0 field, having a
maximum number of microstates and
(b) simultaneous macrostate of the lat-
tice in angular-velocity space, with a
given number of microstates as indi-
cated by the shaded globe. (c) Transfer-
ring some energy from the spin
ensemble to the lattice results in some
degree of polarization of the spins,
whereby the number of microstates
available to the spin ensemble decreases
and (d) at the same time the number
of microstates available to the lattice
increases considerably, thereby this con-
figuration of the combined system will
bemore probable according to Eq. (2.26).
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microstates that will not be compensated by the associated gain in the number of lattice mi-

crostates as far as the productOspins

P
E
pot
m

� �
Olattice

P
Erot
mol

	 

is concerned, therefore at equilib-

rium a compromise is reached in the respective number of microstates which corresponds to
the

P
m¼Meq condition. This is the essential motivation behind T1 relaxation.

Now that we have gained a sense of how and why a macroscopic magnetizationM emerges
from the spin ensemble from statistical considerations, we focus attention on howM behaves in
the staticB0 and rotatingB1 fields. Note, first of all, that because of the distributive nature of both
the vector product and the scalar product, that is, m1�B+ m2�B¼ m1 +m2ð Þ�B and
m1

�B+m2
�B¼ m1 +m2ð Þ�B, Eqs. (2.1) and (2.3) can be readily applied to the macroscopic mag-

netization
P

m¼M, that is, we have

T¼M�B i:e:, T¼MBsinYÞð (2.27)

E
pot
M ¼

X
Epot
m ¼�M�B ¼�MBcosY; (2.28)

whereY is the angle betweenM and B. Using also Eqs. (2.2) and (2.4) under the understand-P P

ing that m¼ g P, the equation of motion (2.5) can be written for the macroscopic magne-
tization as

dM

dt
¼ g M�B½ �; (2.29)

which tells us, of course, that M also precesses about the B field with a Larmor frequency of

v¼�gB.

Note thatwehave arrived atEqs. (2.27)–(2.29) by starting fromEqs. (2.1)–(2.5) and applying to
them some simple and absolutemathematical truths. This however does not, in itself, guarantee
the physical truth of Eqs. (2.27)–(2.29) (cf. Traps #11 and #12).When thinking this way (i.e., when
going from a microscopic description to a macroscopic description), Eqs. (2.27)–(2.29) will be
physically valid only to the extent that Eqs. (2.1)–(2.5) are physically valid. This, however, is
not a priori known sincewe know that spins and atomicmagneticmoments are quantum entities
and not classical-physical objects. As it turns out, Eqs. (2.27)–(2.29) do indeed provide a sound
descriptionofphysical reality,but this reflectsamacroscopicphysical truthwhichwemayaswell
have “guessed” on classical-physical grounds without any prior microscopic considerations.
Neither does the validity of Eqs. (2.27)–(2.29) per se follow from a microscopic physical truth
of Eqs. (2.1)–(2.5), nor does it, by itself, indicate the physical correctness of Eqs. (2.1)–(2.5). As al-
readynoted inSection2.3, the justificationofusingEqs. (2.1)–(2.5)asa soundmetaphoricdescrip-
tion of the individual spin comes from quantum-mechanical considerations (see Chapter 3).

Based on the above ideas, we can combine Eq. (2.29) with Eqs. (2.21a), (2.21b), (2.22a), and
(2.22b), which leads to the famous Bloch equation:

dM

dt
¼ g M� B0 +B1 tð Þð Þ½ �+ Meq�Mz

T1
�Mxy

T2
(2.30)

wherein it will be of particular interest to note that the torque exerted upon M is due to the

effective field Beff¼B0 +B1.

We now want to consider what Eq. (2.30) tells us about the behavior of M during NMR
excitation by the rotatingB1 field. Using Eq. (2.12), Eq. (2.30) readily converts into the rotating
frame as follows:
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dM

dt

� �
rot

¼ g M� B0 +B1 +
vD

g

� �� �
+
Meq�Mz

T1
�
Mx0y0

T2
: (2.31)

Let us assume that B1 is applied in the form of a short rectangular pulse, that is, it is sud-
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denly turned on, has constant amplitude B1 for a time Dtpulse as viewed in the rotating frame,
and then it is instantaneously turned off. In this case, under the on-resonance condition the
flip angle F (cf. Fig. 2.8) is proportional to the duration of the pulse:

F¼ gB1Dtpulse¼o1Dtpulse: (2.32)

Figure 2.15b illustrates the situation when the torqueM�Brot
eff ¼M�B1 drivesM down to
the +y0 axis (if the B1 field is chosen to be aligned along the +x0 axis), that is, F¼90°, which is
called a 90° pulse. The off-resonance conditions oD <o0 and oD >o0 are shown in Fig. 2.15a
and c, respectively. Fig. 2.15a and c shows the off-resonance trajectories traced by M for
oD <o0 and oD >o0, respectively, under the influence of the torque M�Brot

eff when B1 is
applied for the same length of time Dtpulse as in Fig. 2.15b.

As another intricacy involving the rotating frame, consider the situation whenM has been
tilted away from the z axis by, say, a 90° resonant B1 pulse along the x0 axis in the rotating
frame, and the B1 field has just been turned off. If we remind ourselves ofM being comprised
of a spin ensemble (cf. Fig. 2.9), the situation can be represented as shown in Fig. 2.16. Note
that in this process the individual spins do not change their relative orientation, therefore the
magnitude of M does not change, that is, after the pulse it still has the value of Meq.

At the instant of having turned off the B1 field, the spins distributed on the spin-globe are
slightly polarized toward the y0 axis, giving a transversal magnetization M¼My0 , but no lon-
gitudinal magnetization, that is,Mz¼ 0. Clearly, T1 and T2 relaxationmust start to take effect in
order to re-establish the equilibrium magnetizationMz¼Meq,Mx0y0 ¼ 0, whether or not we are
FIGURE 2.15 The trajectories traced byM in the rotating frameunder off-resonance and on-resonance conditions.
(a) oD <o0; (b) oD¼o0; and (c) oD >o0. Case (b) illustrates the condition when B1 is applied in the form of a 90°
pulse; in (a) and (c) B1 has been turned on for the same duration as in (b).
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FIGURE 2.16 The spin ensemble after an on-resonance 90° pulse in
the rotating frame.
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in a rotating frame. As far as T2 relaxation is concerned, we do not have much of a problem,
since the weak interaction among spins will disperse them evenly in the (x0,y0) plane according
to the statistical considerations outlined above, irrespective of whether we are in a static or a
rotating frame. However, the situationwith T1 relaxation is less evident: because in the rotating
frameB0 is formally compensated by thevD=g term to giveB0 +vD=g¼ 0, apparently there is no
external magnetic field felt by the spins in the rotating frame that would polarize them toward
the z axis. In that context, how can we thus explain T1 relaxation in the rotating frame? Quite
often, even seasoned NMR experts become perplexed when confronted with this very basic
question. One way to rationalize the fact that T1 relaxation still “works” in the rotating frame
is to treat the relaxation terms (2.20a) and (2.21a) as vectors9 according to the definitions

R1¼Meq�Mz

T1
; (2.33)

R2¼�
Mxy

T2
: (2.34)

which may be visualized as shown in Fig. 2.17.
FIGURE 2.17 The relaxation vectors.
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Upon transformation into the rotating frame (2.34) remains unchanged except for writing
Mx0y0 instead of Mxy. Thus, T2 relaxation, as driven by the R2 vector, takes place just as in the
laboratory frame. More importantly however, we immediately see that R1 is not affected by
the transformation Eqs. (2.21a) and (2.21b). This invariance of R1 to transforming it into the
rotating frame ensures that relaxation will progress exactly as in B0 in the laboratory frame,
and that having reached the equilibrium condition Mz¼Meq, R1 vanishes.

There are now a few more points left to be mentioned in preparation of the forthcoming
chapters.

One of the greatest strengths of NMR spectroscopy lies in its capability to manipulate spins
by using various forms of RF excitation, which allows us to obtain diverse and detailed infor-
mation onmolecular structure (see Chapter 7). Below I will brieflymention three basic forms of
RF excitation: (A) the “hard” pulse; (B) the “soft” pulse; and (C) continuous excitation.

(A) Themost basic formof hard pulse is a short, rectangular,monochromatic RF pulsewhich is
applied physically as a harmonically oscillatingmagnetic field of the form2B1sin oDt+’ð Þ.
As mentioned above, this wave can, as far as its influence on the spins or the M
magnetization is concerned, be regarded as a B1 field vector rotating in the (x,y) plane
in the same sense as the Larmor precession occurs in the B0 field (this statement has its
own intriguing subtleties, as will be detailed in Chapter 5). The adjective “hard” refers
to the fact that the B1 amplitude, and therefore the angular frequency o1¼ gB1, are large
enough so that a 90° flip angle is achieved on the order of a few microseconds
according to Eq. (2.32). If we have a sample that is more “complicated” than water in
the sense that it has several different spin ensembles that each give their own net
magnetization M such that these magnetizations exhibit different Larmor frequencies,
then because the B1 amplitude is sufficiently large, it can excite a broad range of Larmor
frequencies nearly uniformly, that is, the different M magnetizations behave nearly as
that shown in Fig. 2.15b (this phenomenon will be further elaborated in Chapter 4). As
discussed in connection with Figs. 2.16 and 2.17, immediately after the pulse the M
magnetization is not in equilibrium with the lattice, and therefore it returns back onto
the z axis in a process that is determined by three influences: (a) T1 relaxation restores
Mz to its equlibrium value Mz¼Meq according to Eqs. (2.21a) and (2.21b); (b) T2

relaxation restores Mxy to its equilibrium value Mxy¼ 0 according to Eqs. (2.22a) and
(2.22b); and (c) M precesses about the z axis with frequency v0¼�gB0 under the
influence of the torque M�B0 according to Eq. (2.29). The motion of M under the
combined influence of these factors following a 90° pulse that is assumed to have tilted
M down to the y axis of the laboratory fame is shown in Fig. 2.18.
If we look at the projection onto the (x,y) plane of the spiral path traced by the tip ofM
in Fig. 2.18 as a function of time such that we commence observation at time t¼ 0 right
after the pulse has been turned off, we see a damped harmonic oscillation which decays
with a time-constant T2, as shown for the My component in Fig. 2.19a.

In an RF coil designed such as to detect theMxy component, this oscillating magnetiza-
tion will induce, according to Faraday’s law of induction, a voltage which can be received
in the form of a signal, called the free induction decay (FID), that corresponds to Fig. 2.19a.
The spectrum is obtained by the Fourier transform (FT) of the FIDwhich converts the tem-
poral signal into a frequency-dimension signal (Fig. 2.19b). Because of the exponentially
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FIGURE 2.18 Return of the M magnetization to equilibrium
following a 90° pulse.

FIGURE 2.19 The detected temporal signal
(a) and its Fourier-transformed spectrum (b).
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decaying form of the FID, the resonance signal of the spectrumhas a Lorentzian shapewith
a peakmaximum at the Larmor frequencyo0, and a half-width at half-height Do1=2¼ 2=T2

(in reality o0 is measured relative to a suitable reference frequency).
For a sample which has, say, two equilibrium macroscopic magnetizations MA

eq and
MB

eq due to two different spin ensembles (such as, e.g., in the case of a 1:1 molar mixture
of dimethyl ether and acetone), upon having tilted these magnetizations away from their
equilibrium position, they will precess about the z axis with different Larmor frequencies
o0A and o0B. Using a hard pulse whose frequency oD is not too far from o0A and o0B, we
can flip themagnetizations simultaneously, inwhich case the FID obtained after the pulse
will be the superposition of the individual FID-components due to MxyA and MxyB

(Fig. 2.20), and so the spectrum resulting from the FT of the FID (Fig. 2.20c) will give both
resonance frequencies from one experiment.

Besides the capability associated with RF pulses to manipulate spins in wonderfully in-
novative and useful ways (see Chapter 7), one of the main practical advantages of using
hard-pulse excitation is the convenient possibility to increase the spectral signal-to-noise
ratio (S/N) through the process of spectral accumulation, which is of primary importance
because of the inherent insensitivity of NMR. As a result of this insensitivity, the detected
resonance signal is relatively small as compared to the electronic noise of the spectrometer.
During accumulation several pulses are applied in a row by allowing sufficient time be-
tween two consecutive pulses for the spin ensemble to relax; the FIDs are recorded after
II. EXAMPLES FROM NMR THEORY



FIGURE 2.20 The FID detected as a
superposition (c) of two FIDs with dif-
ferent Larmor frequencies (a) and (b)
and their Fourier-transformed spectra.
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each pulse and summed before the FT is performed. Because at each resonance frequency
the noise level varies randomly after each individual pulse, but the resonance signal “stays
put,” by adding (accumulating) several spectra originating from a number of consecutive
pulses the S/N ratio will increase with the square root of the number of pulses:
S=N∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
numberofpulses

p
. Because a hard pulse together with relaxation takes only a

few seconds, pulsed excitation offers a handy means for accumulation.

(B) In the case of a “soft” pulse, we employ an RF driving field with a much smaller B1

amplitude but over a longer durationwhich is on the order of 10 ms (this is still very short
relative to typical T1 and T2 relaxation times). With soft pulses one may excite a narrow
frequency range or even just a single selected resonance within the whole spectrum.
Soft pulses are typically not rectangular but can have a variety of shapes that are
tailored to give different excitation profiles. Shaped soft pulses play an important
practical role in the so-called selective measurement techniques (see Chapter 7).

(C) In a continuous-wave (CW) RF excitation we again use a wave of the form
2B1sin oDt+’ð Þwith a constant but weak amplitude over a time which is on the order of
T1 and T2. The most typical purpose of such an irradiation is to quench the macroscopic
magnetization of a given spin ensemble within the spectrum while leaving other spin
ensembles unaffected. More specifically, the purpose of such a Larmor-frequency-
selective irradiation is to achieve a state close to that shown in Fig. 2.9a even though
the spin ensemble is in the B0 field, so that Mz� 0, and also Mxy� 0. In NMR
terminology, such a condition is called a saturated state which has many practical uses,
such as when suppressing large solvent signals or investigating chemical exchange
phenomena or dipolar spin-spin interactions—see Chapter 7. The transient process
through which saturation is achieved is shown in Fig. 2.21: under the influence of a
resonant CW irradiation with a B1 field employed along the +x0 axis in the rotating
frame, the M magnetization keeps precessing in the (z,y0) plane about the B1 field
while its magnitude decreases until a steady state is reached in which the torque
M�B1 that tilts M toward the y0 axis becomes balanced by relaxation.
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FIGURE 2.21 The transient process of achieving saturation
in a continuous B1 field.
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Note that in the “saturated” steady state neitherMz norMy0 can be exactly zero, only a small
finite value. In fact, full saturation by this approach can only be achieved in the theoretical
limit of B1!1, in which case Mz! 0, My0 ! 0. The nature of this steady-state condition
can be understood by considering again the relaxation vectors R1 and R2 as defined by
Eqs. (2.33) and (2.34). Let us also define a total relaxation vector R as

R¼R1 +R2 (2.35)

and let us remind ourselves of our assumption that T1 ¼ T2. As it follows from the definition of

(2.35) and the underlyingdefinitions (2.33) and (2.34), ifMhas been tilted away from the z axis by
an angle F, theR vector always points toward the tip of theMeq vector. If for simplicity we take
both T1 and T2 to be unity, then we have R¼Meq�M as shown in Fig. 2.22. If the B1 field is
FIGURE 2.22 The steady-state condition of (semi) saturation
achieved in a continuous B1 field employed along the +x0 axis in
the rotating frame. The points a, b, and c represent steady-state
conditions corresponding to increasing B1 field amplitudes, which
results in smallerMzmagnetizations, that is, the degree of saturation
increases. In each steady-state point the torque vector T¼M�B1

balances the relaxation vector R¼R1+R2. With increasing B1, the
tip of M moves along a Thales circle if T1¼T2.
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continually turned on along the +x0 axis in the rotating frame, then in essence we end up with a
steady-state situation in which the torque T¼M�B1 keeps “pushing” M toward the +y0 axis,
while the R vector keeps “pulling” it back toward the state corresponding to Meq. Because T is
perpendicular toM, the steady-state condition T+R¼ 0 ensures thatRmust also be perpendic-
ular toM. Thus,when,byusing largerB1 fieldswe increase the torqueT¼M�B1 and therebywe
forceM to take up largerF values,Mwillmove along a Thales circle in the (z,y0) plane.8 Thus, the
larger the B1 field, the smallerMz becomes, therefore the greater the degree of saturation will be.
2.5 PRELIMINARY COMMENTS ON THE QUANTUM-MECHANICAL
DESCRIPTION OF MAGNETIC RESONANCE

The quantum-mechanical principles that pertain to the NMR phenomenon, as well as a
number of false myths which have become quite prevalent in the NMR community and stem
from a misunderstanding of those principles or from their unjustified combination with clas-
sical concepts, will be discussed in Chapter 3. Nevertheless, a few preliminary comments
leading from the above classical considerations to the forthcoming discourse, with our spin
ensemble of spin-1/2 nuclei in mind, are due here.

As is almost universally discussed in the basic NMR literature, in a B0 field the mmagnetic
moment of a single isolated spin-1/2 nucleus (which is not a member of a spin ensemble),
when measured in the direction of the field (i.e., the z direction in our usual Cartesian frame),
will give one of two possible discreet values, namely, mz¼ +ð1=2Þgħ or mz¼�ð1=2Þgħ, where h
is Planck’s constant and ℏ¼ h=2p. Accordingly, a spin can have two possible energy values,
E
pot
m ¼�ð1=2ÞgℏB0 or E

pot
m ¼ +ð1=2ÞgℏB0 (cf. Eq. 2.3). This is the basis of the concept that a spin,

if treated as a vector, can have two quantum states, one inwhich it points “up,” that is, toward
the B0 field, which is called the a state, and one in which it points “down,” that is, opposite to
the B0 field, which is called the b state.

These considerations lead to the widely held idea that if we take a spin ensemble of
noninteracting or weakly interacting spins, the ensemble behaves just as a single spin
would, except for being multiplied by the number of spins in the ensemble. Accordingly,
the ensemble is viewed as exhibiting two energy levels (the Zeeman levels) with energies
Ea¼�ð1=2ÞgℏB0 and Eb¼ +ð1=2ÞgℏB0, and so the energy difference is DE¼ gℏB0¼ℏo0. At
any given time, the spins are inferred to be in either of the two states, with the number of spins
populating the a and b energy levels beingNa andNb, respectively. According to this scenario,
the population difference Na–Nb is proportional to the longitudinal macroscopic magnetiza-
tionMz. At thermal equilibriumwith the lattice, there are slightlymore spins populating the a
state than the b state and Na�Nb

	 

∝Meq. In this case, the population ratio is determined by

Boltzmann’s formula so that Na=Nb¼ exp �gℏB0=kTð Þ¼ exp �DE=kTð Þ.
This two-level image is not only a vintage model of magnetic resonance, but also a rather

convenient one for many purposes. For example, it readily lends itself to viewing the reso-
nance phenomenon as transitions between the two energy levels. These transitions can be in-
duced by irradiation with an electromagnetic field whose frequency satisfies the condition
DE¼ gℏB0¼ℏo0, that is, ifo0¼ gB0, which is just the formula for Larmor precession discussed
above (Eq. 2.8).

The two-level concept seems to be consistent with other forms of spectroscopy (such as UV,
IR) which are all based on the phenomenon that electromagnetic waves can interact with
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matter such that the latter absorbs an energy quantum (a “photon” with energy ℏo0) from the
wave,while some physical feature of thematter undergoes a transition between two quantum
states whose energy difference corresponds with ℏo0 (such as electronic quantum states in
the case of UV and vibrational quantum states in the case of IR).

The two-level formalism of magnetic resonance offers a correct mathematical treatment of
such NMR phenomena that can be treated in terms of rate equations describing the transition
of spins between the a and b energy levels. For example, it is well suited to treat relaxation
phenomena by using the concept of transition probabilities. During the dynamic energy
exchange between the spin ensemble and the lattice an “upward,” that is, energy-gaining spin
transition between the a and b states can induce a “downward,” that is, energy-losing tran-
sition of the molecule from a higher rotational quantum state to a lower state, such that the
energy difference between the spin energy levels and the lattice energy levels is the same. The
probability of an a!b spin transition induced by this interaction can be characterized by the
probability constantWa!bwhich denotes the number of a!b transitions occurring for a unit
number of a spins in unit time. The same applies to the reverse process, of course, and so the
reverse transition probability constant is Wb!a. Thus, at any given time the “upward” spin
flux is given by the product NaWa!b, while the downward spin flux is given by NbWb!a.
The same statistical considerations can be applied to this model of the spin-lattice interaction
as discussed in Section 2.4. These considerations also lead to the result that at thermal equi-
librium, in which case NaWa!b¼NbWb!a, Na must be slightly larger than Nb in order for the
number of microstates of the combined spin-lattice system to be the maximum, that is,
Wb!a>Wa!b.

Saturation can also be easily conceptualized in terms of the two-level model. In the inter-
action of the spin ensemble with the RF irradiation we have upward and downward tran-
sition probability constants Pa!b and Pb!a for which it can be proved that Pa!b¼Pb!a.
Thus, if relaxation were not present, under the influence of a continuous RF irradiation
the steady-state condition NaPa!b¼NbPb!a would mean that Na ¼ Nb, that is, the two levels
would become equally populated (saturated), giving Mz¼ 0. In reality relaxation of course
works against saturation as described above, so steady state will correspond to the condition
Na(Pa!b+Wa!b)¼Nb(Pb!a+Wb!a). These concepts typically form the basis of treating sev-
eral phenomena that are important in NMR, such as saturation transfer and the NOE.10

The two-level concept of spins also offers a convenient and intuitively convincing way of
explaining the phenomenon of J-coupling: if two spins, j and k, are separated by only a few
chemical bonds, theywill sense each other’s “up” or “down” orientation as transmitted by the
electrons of these bonds. Thus, if spin k is “up,” this will add a very tiny bit ofmagnetic field to
the main magnetic field experienced by j, while if spin k is “down,” this will very slightly de-
crease themagnetic field experienced by j. As a result, jwill exhibit two, very slightly different
Larmor frequencies, and its resonance signal will accordingly be split into two parts.

In all, the two-level portrayal ofmagnetic resonance seems to be a rather appealingmodel. It
gives accurate predictions regarding several NMR phenomena, and treats magnetic resonance
directly at the quantum-mechanical level without trying to “force” classical-mechanical equa-
tions upon the quantum world. All this lends to the two-level model an air of credibility that
seems to surpass that of the classical description.

A pictorial extension of this model that attempts to accommodate phenomena involving
the transverse component of either the magnetic moment vector or the macroscopic
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magnetization, such as Larmor precession, T2 relaxation, or the tilting of the macroscopic
magnetization M, is the famous double-cone model. In this model, an ensemble of Na +Nb

spins is envisaged in the B0 field as Na spins Larmor-precessing in unison on a cone aligned
along the z axis (as in Fig. 2.2) so that the spins are scattered evenly within the transverse
plane; this cone represents the a state. On the other hand, Nb spins are Larmor-precessing
similarly on a cone pointing in the opposite direction, representing the b state. The two cones
have a common apex in the origin. This double-cone image of a spin ensemble is so widely
accepted that it has become an almost iconic symbol of NMR spectroscopy.

Both the two-level model and the double-cone picture are in sharp contrast with the clas-
sical description of a spin as discussed in Section 2.3, and the “hedgehog” image of a spin
ensemble shown in Figs. 2.9 and 2.16. This raises the question: wherein lies the truth?

As argued in Chapter 1, Pillar 3, there is no such thing as absolute truth in science, only an
approximation of that truth by a suitable description. That description may be sound or
unsound (Pillar 13), it may reflect different levels and modes of understanding (Pillar 6),
and the same phenomenon can be described by quite different models (Pillar 13). However,
no matter how philosophical we chose to be about the gray-zone nature of scientific truths,
and no matter how liberally we can switch our thinking from one model to another, this
discrepancy between the “hedgehog” and the two-level picture of a spin ensemble is certainly
not something that can go unresolved, because these descriptions paint completely different
pictures of the same physical reality. This issue will be unfolded in Chapter 3. However, in
order to substantiate the validity of the classical description outlined above so as to wrap up
this chapter without having to leave this discrepancy lingering, suffice to point out here
briefly the following items.

Unlike in optical spectroscopy, in NMR the resonance signal is not caused by radio-
frequency electromagnetic photons of ℏo0 energy being absorbed by the spin ensemble,
and NMR relaxation is not a process of emitting those photons whilst the spins return from
an “excited” state to a “nonexcited” state. Rather, the NMR signal is induced by a purelymag-
netic interaction between the driving B1 field and the magnetic moments (or the macroscopic
magnetization, if you will) and during NMR relaxation the energy released by the spin en-
semble passes into the lattice in the form of a tiny amount of heat as was described earlier.
This topic was brought to light and thoroughly explored in a series of wonderful papers
by David Hoult.11–13

The two-level model of a spin ensemble gives accurate predictions within the model’s con-
textual space (cf. Pillar 13), that is, for several important NMR phenomena whose treatment
focuses on the Mz magnetization and requires only rate equations as discussed above. How-
ever, many NMR phenomena fall outside the contextual space of the two-level formalism, for
example, the transversal magnetization generated by, say, a simple 90° pulse, cannot be de-
scribed by the two-level rate equations, and in that regard the model fails. The point that I
want to make from this is that although within its contextual space the two-level model gives
valid predictions mathematically, it is a misleading representation of the physical world. In re-
ality, deeper quantum-mechanical considerations tell us that spins in a spin ensemble placed
in a B0 field do not exist in a pure a or b state, but in a mixed, or so-called superposition state, of
which one may think of as a spin being simultaneously to some extent in an a, and to some
extent in a b state. As will be more fully explained in Chapter 3, this quantum-mechanical
mixing of the two states leads not to a simple vector-addition of the “up” and “down”
II. EXAMPLES FROM NMR THEORY
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a and b spin vectors as one might intuitively expect, but to the “mixed” spins becoming
oriented in any direction in space. It may be worth pointing out that a spin being in a super-
position state of the a and b states is not the same thing as having a probability of being
in either.

Thus, according to the physically correct quantum-mechanical picture, spins are actually
distributed in a 3D spin space in a manner which is analogous to the spin-globe expected clas-
sically as shown in Fig. 2.9. This feature of the spins was pointed out by several authors in
NMR—see, for example, Refs. 1,5,7,14. As noted by Slichter:

“We emphasize that an arbitrary orientation can be specified, since sometimes the belief is erroneously held
that spins may only be found pointing either parallel or antiparallel to the quantizing field. In terms of the two
quantum states a and b we can describe an expectation value of magnetization which may go all the way from
parallel to antiparallel, including all values in between.”14

As it happens, the expectation value for a single spin that is a part of the spin ensemble
obeys the equation d mi=dt¼ mi� gBhh , which is just the classical equation of motion (2.5).
Because the experimentally measured net magnetization M is simply the expectation value
of the total magnetic moment, the classical equation correctly describes the dynamics of
M.14 Indeed, it should be appreciated that a complete quantum-mechanical description of
magnetic resonance describes vector dynamics, not just rate equations as the simple two-level
picture implies.

Although the two-level picture does not represent physical reality appropriately, the fact
that calculations based on this picture give good predictions under many circumstances is
however no coincidence. This is because with regard to the quantum-mechanically calculated
behavior of the spins, in those circumstances it is irrelevant whether the spins are oriented
arbitrarily within a spin-globe of mixed states, or are only in pure a and b states. Thus we
may say that, according to the considerations and terminological definitions discussed in
Pillar 13, the two-level model is mathematically sound in the sense that it gives accurate pre-
dictions, but physically unsound in the sense that it misrepresents physical reality. The wide-
spread misunderstanding of the two-level model is due mainly to Traps #7, #8, #10, #11, and
#18: because of its broad and traditional acceptance, its intuitive appeal, as well as its good
predictive power, the two-level picture is easily mistaken for physical reality (note, e.g., that
the Larmor formula o0¼ gB0 derived above from the two-level picture is the same as that in-
ferred from classical considerations, and this identity can be easily interpreted as a physical
validation of the two-level model).

The double-cone model is however an unsound metaphoric pictorial model, that is, a
Delusor, in every respect: It does not serve the purpose of quantitative predictions and is en-
tirely inconsistent with physical reality, especially when it is used to explain the motion ofM
during or following excitation by a B1 field. The reason why it has become an iconic entity in
NMR is again clearly due to its intuitively appealing nature and the preconceived knowledge
that it is a universally accepted “truth.” All this creates a strong emotycal support for this
model, which can block people’s incentive to “scratch below the surface.” This is all the more
interesting because the double-cone model carries serious and almost glaringly obvious in-
ternal inconsistencies (see Chapter 3) which are simply skipped over by many people (see
the concept of emotycal heuristic mentioned in Pillar 4), although these could be easily dis-
covered by directing one’s Rational Mind to the problem.
II. EXAMPLES FROM NMR THEORY



1392.6 SUMMARY
J-coupling is a particularly intriguing topic with regard to the two-level versus “hedgehog”
picture of spins: while it can be very easily explained, and formally correctly treated in terms
of the two-level model, it is at first sight far less obvious how J-coupling can be rationalized
with either the quantum-mechanical or the classical “hedgehog” model. Since the two-level
description is not a faithful representation of physical reality, this situation can again create an
uncertainty in one’s mind as to “wherein lies the truth.” In fact, J-coupling can be understood
classically if one treats the j and k spin as a system of coupled pendulums1 (see somewhat
more on this in Chapter 3).

As stated previously, the above very cursory foray into the quantum-mechanical world of
NMR served the purpose of putting the classical description offered in this chapter in the
context of the quantum-mechanical concept of the behavior of spins in a magnetic field, as
well as to serve as a thematic bridge toward the next chapter. Chapter 3 will discuss the above
items in proper detail.
2.6 SUMMARY

In this chapter, I attempted to give an introductory discourse on some fundamental aspects
of the NMR phenomenon by mainly focusing on a classical description at a “synoptic” level
(Pillar 6). I also injected some elements of AA into this treatment, particularly by trying to
sensitize the discussion toward approachingNMR in amodel-conscious frame ofmind (Pillar
13, Trap #18) and toward differentiating between ourmathematical and physical understand-
ing of the world (Pillar 6). With this standpoint in mind, I tried to offer a view of the behavior
of spins in a magnetic field in terms of some statistical considerations pertaining to relaxation
and by drawing an analogywith rigid-body dynamics for the understanding of the resonance
phenomenon itself. In their present form, such descriptions are rarely found in the NMR
literature. The approach to treat spins in a classical manner is initially clearly based on a heu-
ristic (in a scientific sense) assumption since we know that spins are quantum-mechanical en-
tities that give quantized magnetic moments in a magnetic field. Nevertheless, deeper
quantum-mechanical considerations (not discussed here) show that the classical approach
gives a physically sound model within its contextual space (Pillar 13). I also made some brief
comments on the quantum-mechanical approach to NMR in order to place the classical de-
scription in context without which this chapter could not have been reasonably self-
contained. There are some widespread misconceptions about the physical essence of NMR
stemming from a naı̈ve and emotycs-driven understanding of what quantum mechanics tell
us about the behavior of spins. These will be discussed in Chapter 3. All this shows that even
some 70 years after laying down the theoretical and experimental foundations of NMR, there
are still issues to be clarified and ongoing arguments about the proper physical interpretation
of the NMR phenomenon, highlighting the need to always keep looking backward (Pillar 17)
in a quest of searching for scientific “truth” (Pillar 3).
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