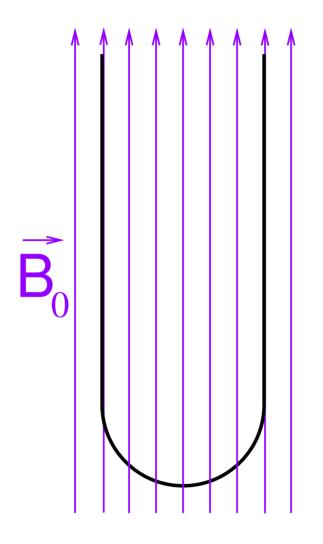
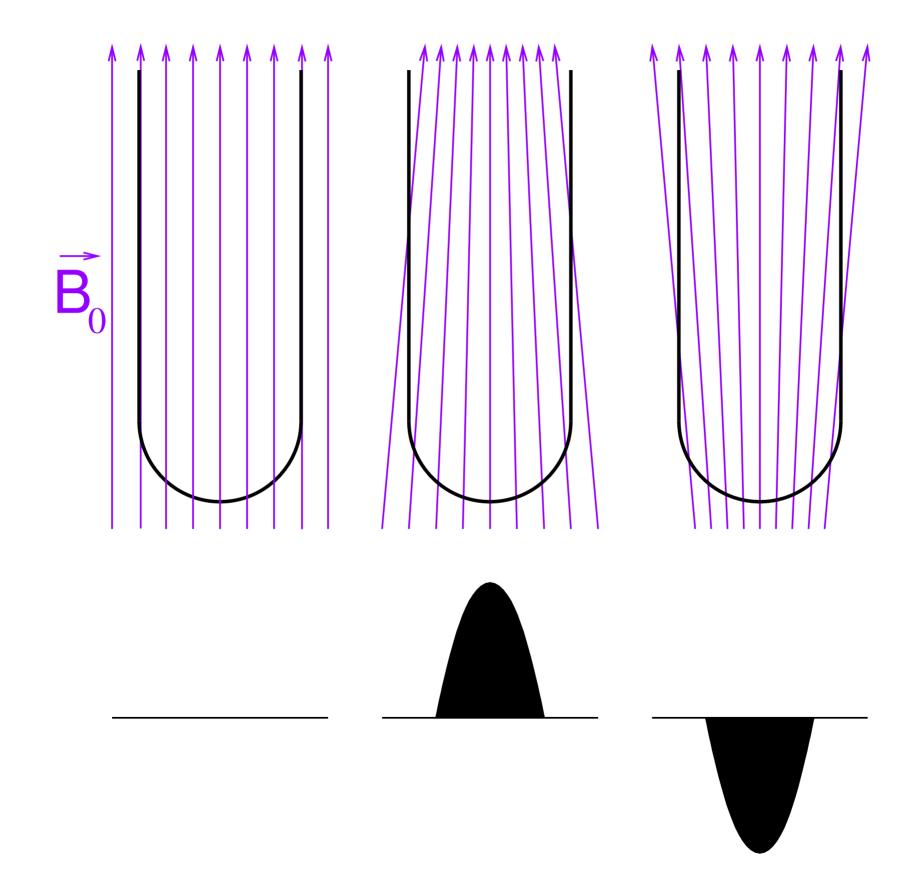
Lecture 13: Field gradients

Homogeneous field



Pulsed field gradients (G_z)



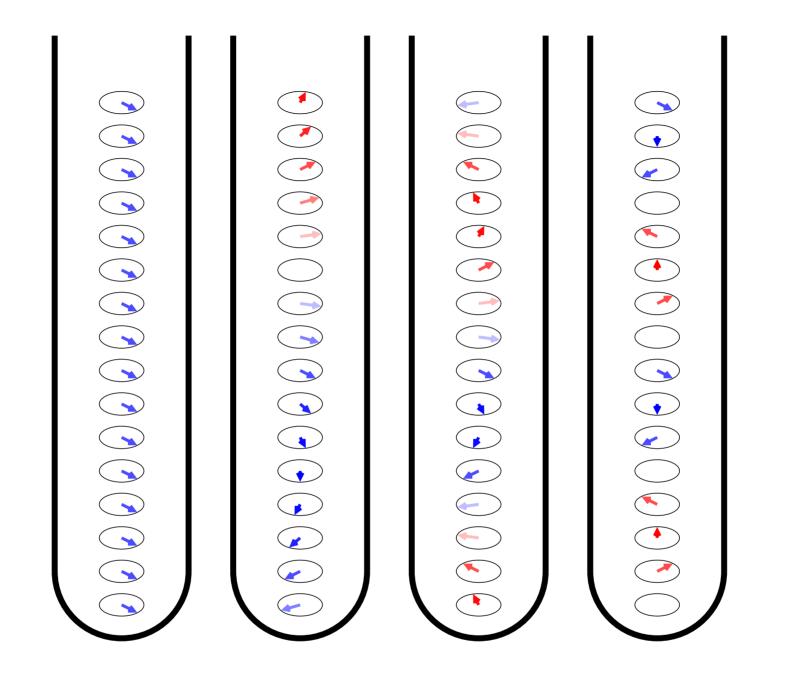
 $G_z = 0$ units

 $G_z = 1$ units

 $G_z = 2$ units

 $G_z = 4$ units

Gradient-induced dependence of phase



 $G_{z} = \Delta B_{0} / \Delta z \quad \Rightarrow \quad \Omega'(z) = \Omega - \gamma G_{z} z$ $-\mathscr{I}_{y} \rightarrow -\mathscr{I}_{y} \cos(\Omega' t) + \mathscr{I}_{x} \sin(\Omega' t)$ $= -\mathscr{I}_{y} \cos(\Omega - \gamma G_{z} z t) + \mathscr{I}_{x} \sin(\Omega - \gamma G_{z} z t)$

Gradient-induced dependence of phase

$$G_{z} = \Delta B_{0} / \Delta z \quad \Rightarrow \quad \Omega'(z) = \Omega - \gamma G_{z} z$$

$$-\mathscr{I}_{y} \rightarrow -\mathscr{I}_{y} \cos(\Omega' t) + \mathscr{I}_{x} \sin(\Omega' t)$$

$$= -\mathscr{I}_{y} \cos(\Omega - \gamma G_{z} z t) + \mathscr{I}_{x} \sin(\Omega - \gamma G_{z} z t)$$

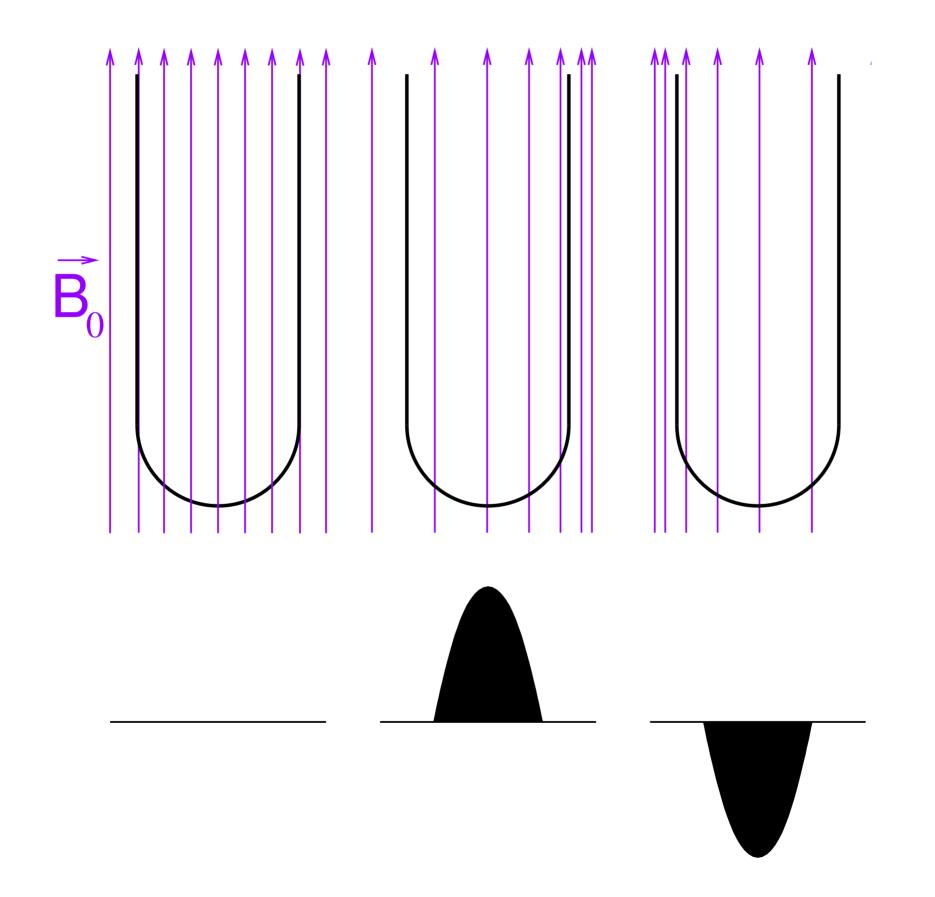
$$\langle M_{+} \rangle = \operatorname{Tr} \left\{ \widehat{\rho}(z, t) \mathscr{I}_{+} \right\}$$

= $\mathcal{N} \frac{\gamma^{2} \hbar^{2} B_{0}}{4 k_{\mathsf{B}} T} \mathrm{e}^{\mathrm{i} \frac{\pi}{2}} \mathrm{e}^{\mathrm{i} (\Omega - \gamma G_{z} z) t}$

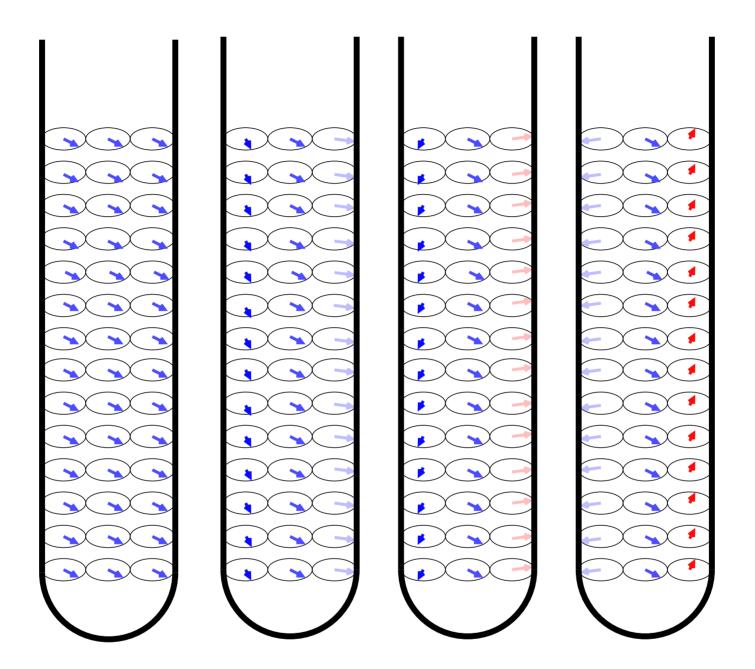
Performing phase correction and including relaxation:

$$\langle M_+ \rangle = \mathcal{N} \frac{\gamma^2 \hbar^2 B_0}{4k_{\mathsf{B}}T} \mathrm{e}^{-R_2 t} \mathrm{e}^{\mathrm{i}(\Omega - \gamma G_z z)t}$$

Pulsed field gradients (G_y)

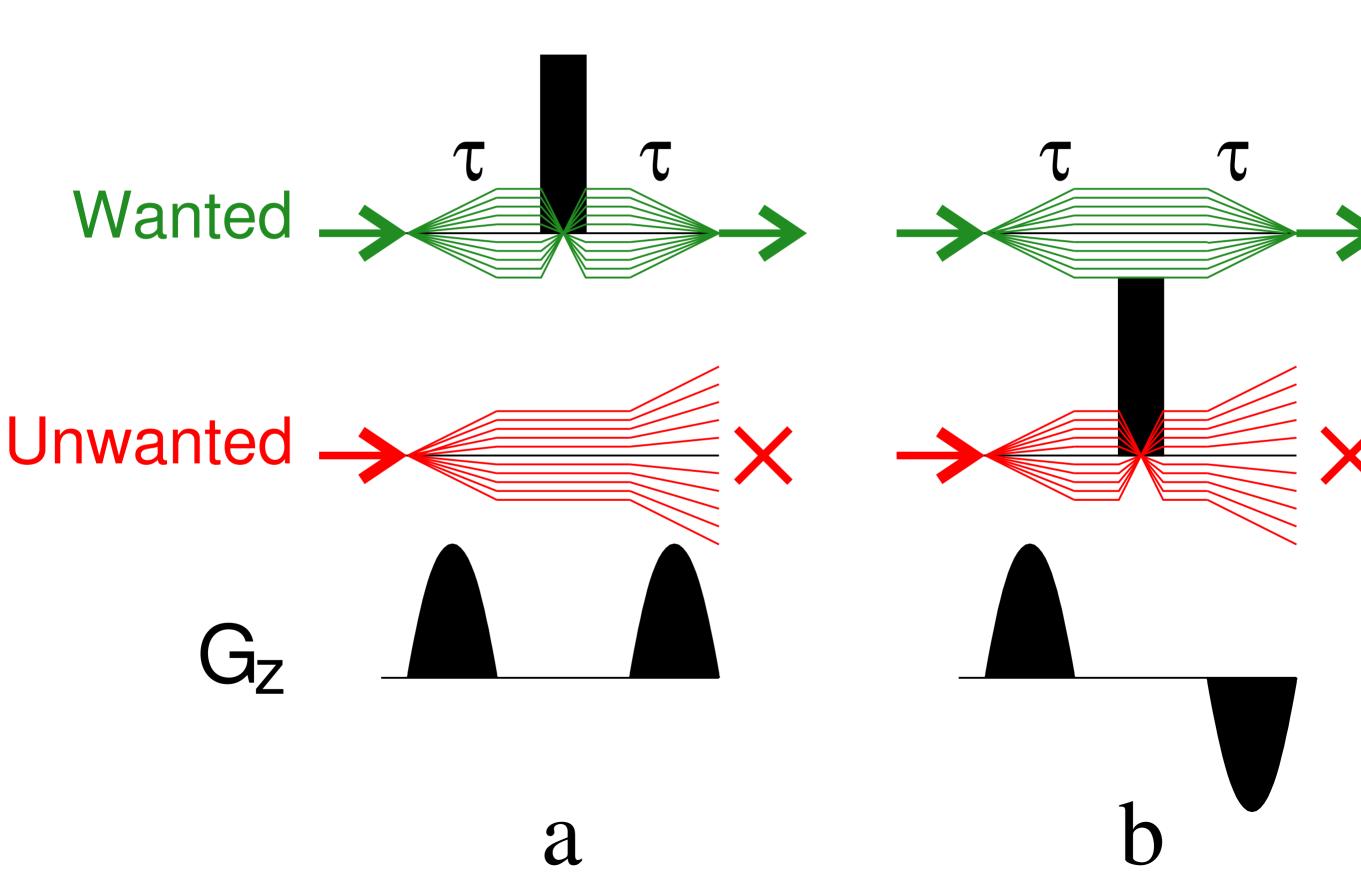


Gradient-induced dependence of phase

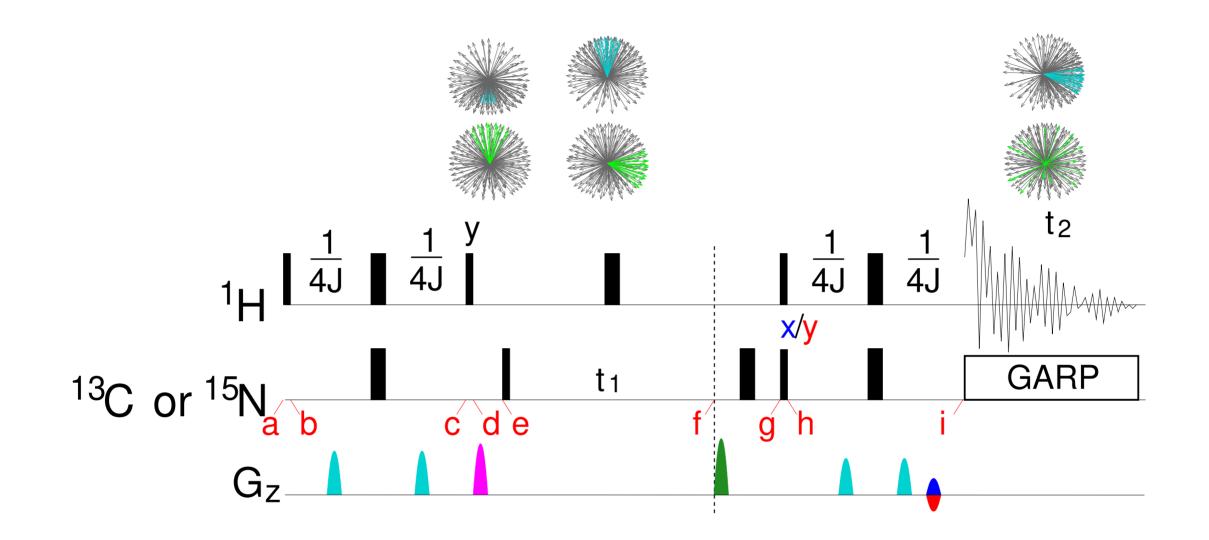


 $G_{y} = \Delta B_{0} / \Delta y \quad \Rightarrow \quad \Omega'(y) = \Omega - \gamma G_{y} y$ $-\mathscr{I}_{y} \rightarrow -\mathscr{I}_{y} \cos(\Omega' t) + \mathscr{I}_{x} \sin(\Omega' t)$ $= -\mathscr{I}_{y} \cos(\Omega - \gamma G_{y} y t) + \mathscr{I}_{x} \sin(\Omega - \gamma G_{y} y t)$

Gradient echoes

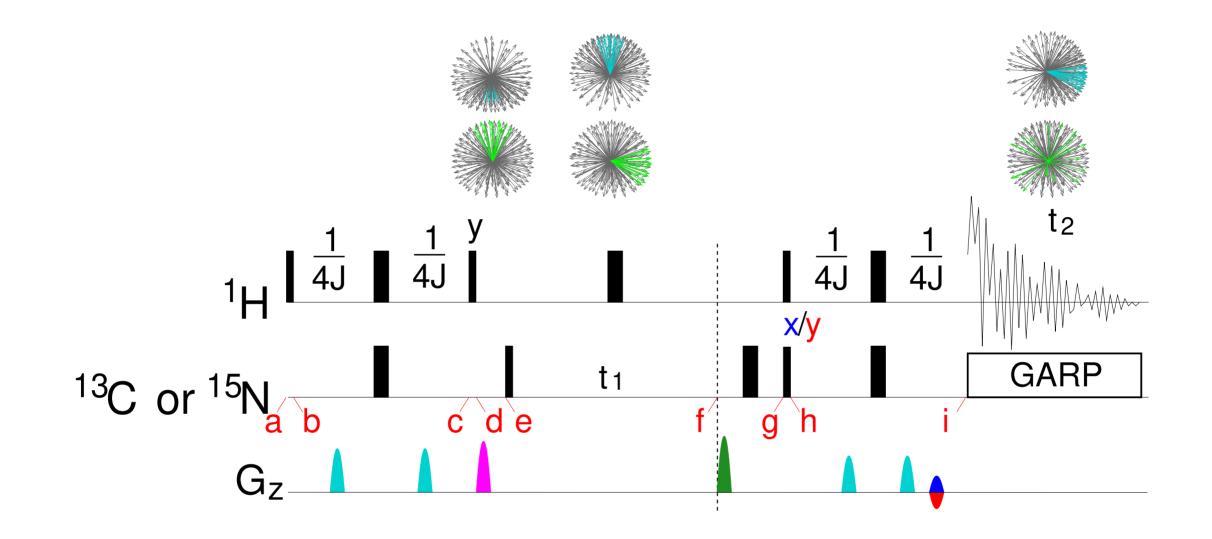


Gradient-enhanced HSQC



 G_z Cleaning echo imperfections G_z Cleaning INEPT imperfections

Gradient-enhanced HSQC



$$x: \quad G_z = \frac{\gamma_2}{\gamma_1} G_z$$
$$y: \quad G_z = -\frac{\gamma_2}{\gamma_1} G_z$$

Use of gradients

• Cleaning, filtering, selection similar use as phase cycling

• Translational diffusion measurement

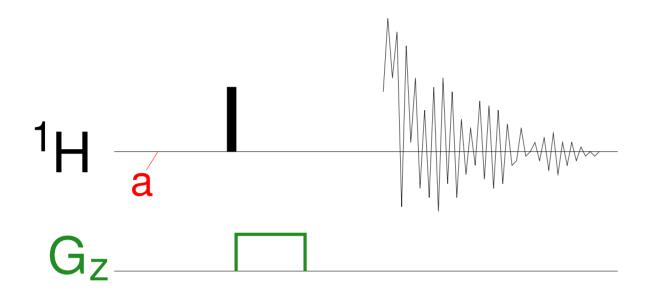
• Imaging

GRADIENTS AND MAGNETIC RESONANCE IMAGING

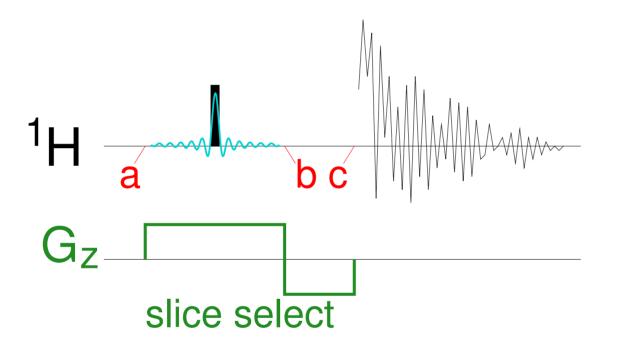
Lars G. Hanson Copenhagen University Hospital Hvidovre

http://eprints.drcmr.dk/37/1/MRI_English_a4.pdf

Slice selection by G_z

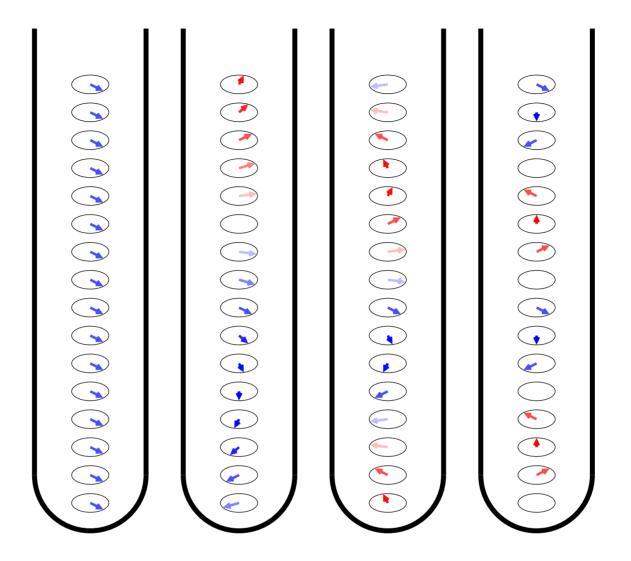


Slice selection by G_z



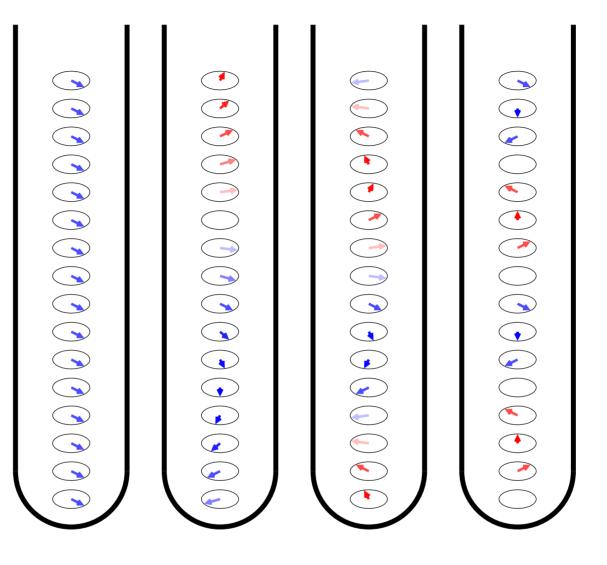
Selective pulse: amplitude modulation

Slice selection



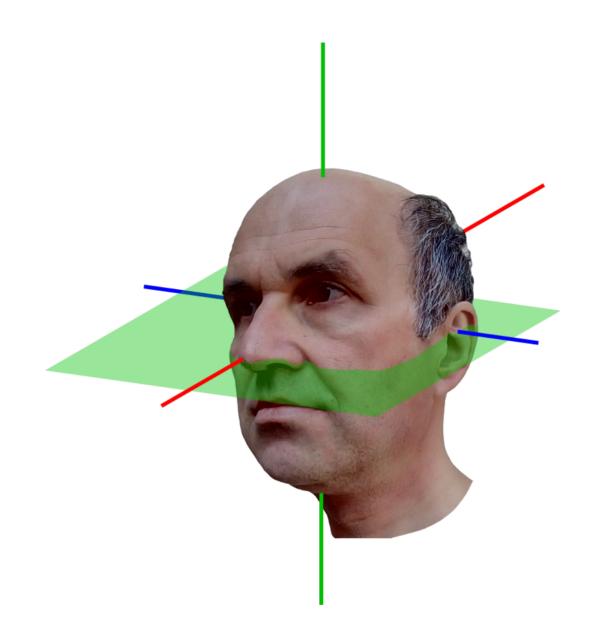
$$\langle M_{+} \rangle = \frac{\frac{K}{\gamma^{2}\hbar^{2}B_{0}}}{4k_{B}T} e^{-R_{2}t} \langle \mathcal{N}(z)e^{i\Omega t}e^{-i\frac{\varphi}{k_{z}}} \rangle$$
$$= K e^{i\Omega t - R_{2}t} \langle \mathcal{N}(z)e^{-ik_{z}z} \rangle$$

Slice selection



$$\gamma G_{z} z = \Omega : \qquad \langle M_{+} \rangle = K \left\langle e^{-R_{2}t} \right\rangle \mathcal{N}(z) \left\langle e^{i(0)t} \right\rangle$$
$$\gamma G_{z} z \neq \Omega : \qquad \langle M_{+} \rangle = K \left\langle e^{-R_{2}t} \right\rangle \mathcal{N}(z) \left\langle e^{i(\Omega - \gamma G_{z}z)t} \right\rangle$$

Axial slice selection by G_z



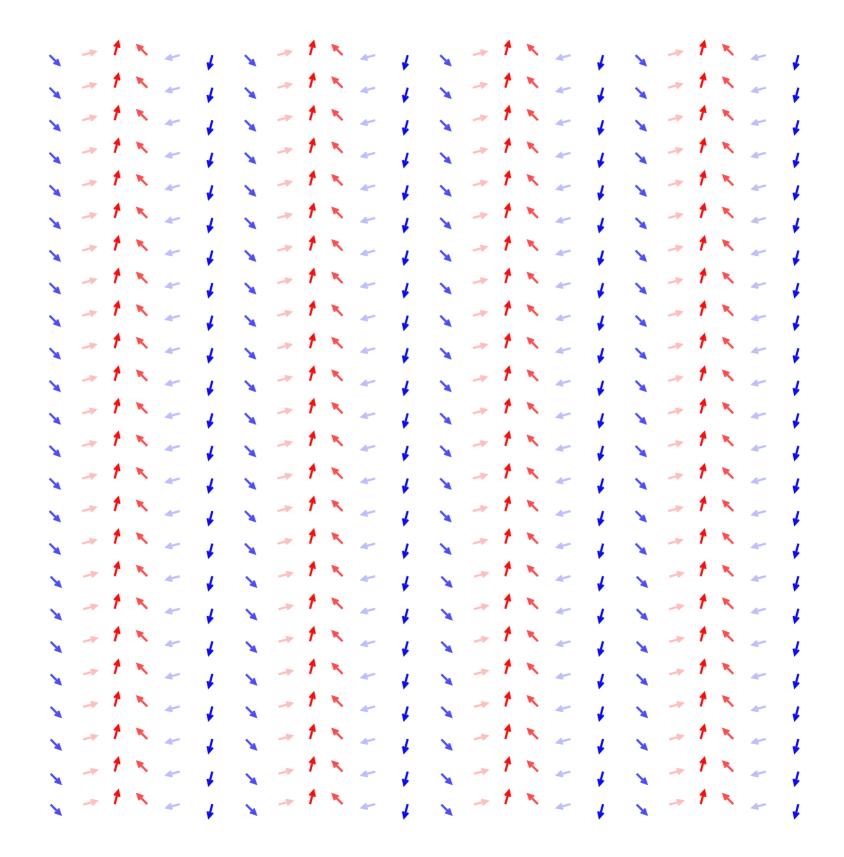
$$\gamma G_{z} z = \Omega : \qquad \langle M_{+} \rangle = K \left\langle e^{-R_{2}t} \right\rangle \mathcal{N}(z) \left\langle \overline{\left\langle e^{i(0)t} \right\rangle} \right\rangle$$
$$\gamma G_{z} z \neq \Omega : \qquad \langle M_{+} \rangle = K \left\langle e^{-R_{2}t} \right\rangle \mathcal{N}(z) \left\langle e^{i(\Omega - \gamma G_{z}z)t} \right\rangle$$

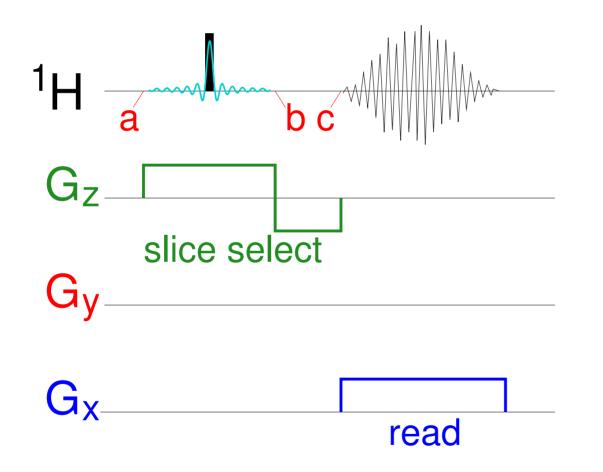
Magnetization in the slice

* **XXXXX** **************** * * * * * * * * * * * * * * * * * *

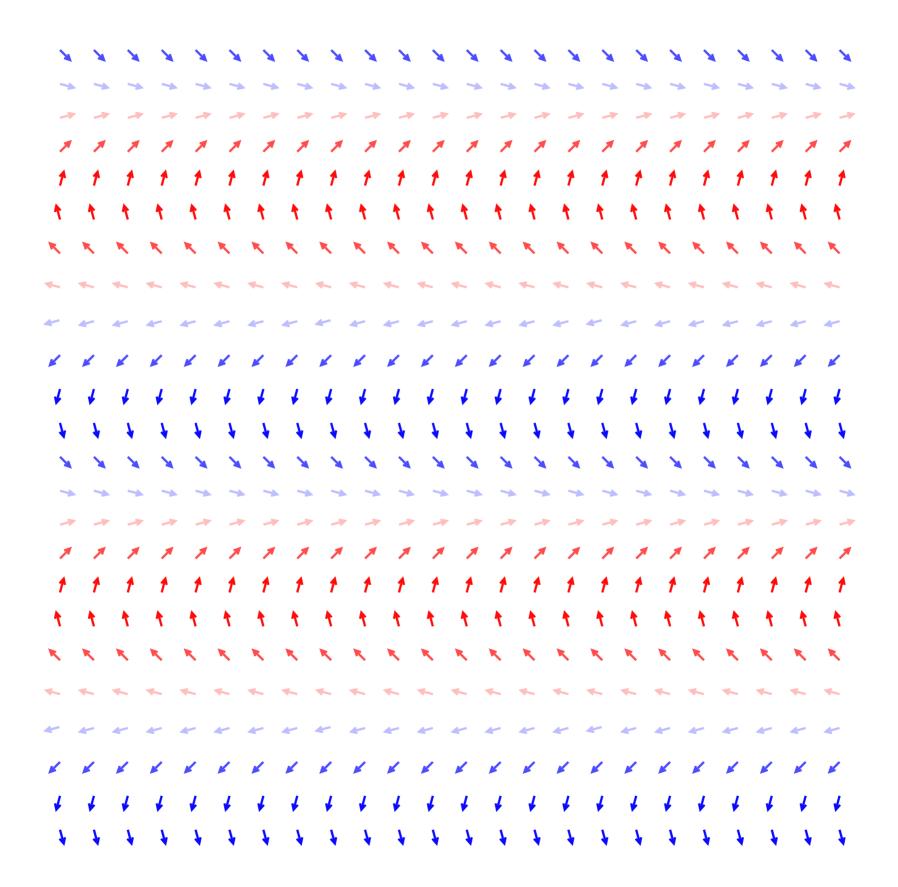
*********** ----------~ * * * * * * * * * * * * * * * * x # # # # # # # # # # # ~ 1 × × > ~ L L L L Z **** * 7 X X > × ∠ ∠ ↓ ↓ ↓ ----X X > ----X X > ----**N N** * 1 X X > 1 1 1 1 1 **** * * × × × 4 4 4 4 4 ¥ × × ----X X > ¥ ¥ * 1 X X > 4 4 4 4 **** * * X X > * * * * * X X > ----¥ ¥ > **** * * ¥ ¥ > ******** X X > 4 4 7 7 *** * * X X > * * * * * * * -------X X > * * * ~~ / / / / / / X X X × × × *** * 1 * * * * * * * * * X X >

s = = x + t + x = = x + t + x = = x + y s = = # t t t t = = # t t t t = = # i s s = = x t t t t = x i s = = x t t t t = x i s s = = # t t t t = = # t t t t = = # t t





1 1 1 1 1 1 1 1 1 1 R R R R R R R × . K K K . 1 1 1 1 1 1 1 1 _____ _ **** _____



* * * * * * * * * * RRRRR KK 1 1 KK * * • • • 1 • 1 1 1 • • * * * * * * *

Combination of gradients G_x and G_y

AND PREESTATIC PREESTAN - ----------************* tttttt externe and the same and t tere explosion explosion ne explosed and explored there and the second of the

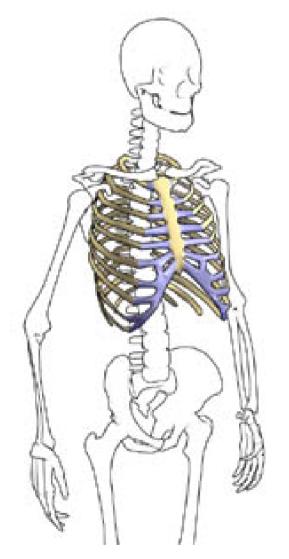
Combination of gradients G_x and G_y

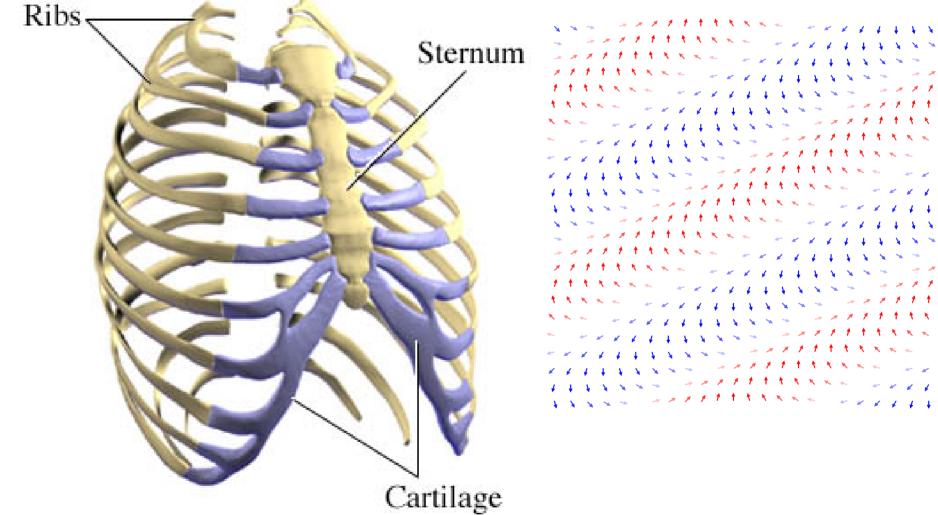
NAN PRATITY AND PRAFFE -----**************************** ANNA - FRATTATAA - FRATI AND PREESE PREESE - ---------AFTITARE FRAJAVAN tttttt externe anti the construction and the there and the second of

Combination of gradients G_x and G_y

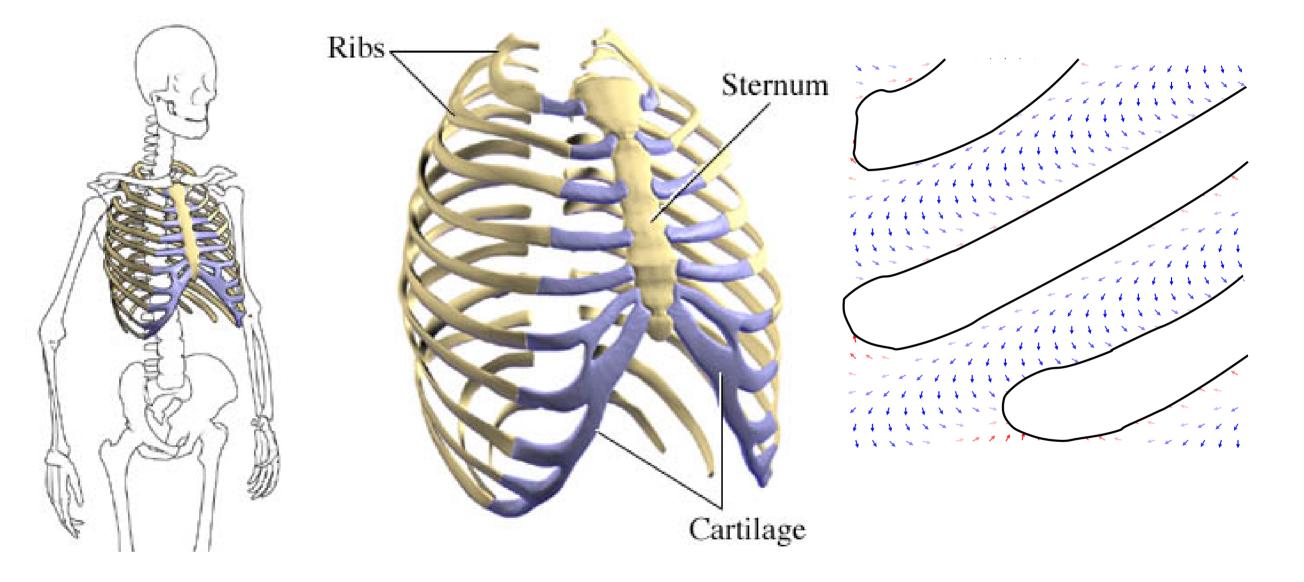
NAN PRATITY NE PRAFILLY -----tttttt exxxx axxxx axxx axxx -----REE EEEEEEEEEE = = = = = = + + + + + + +

Regular patterns enhance signal





Regular patterns enhance signal



Unique shape as superposition of patterns

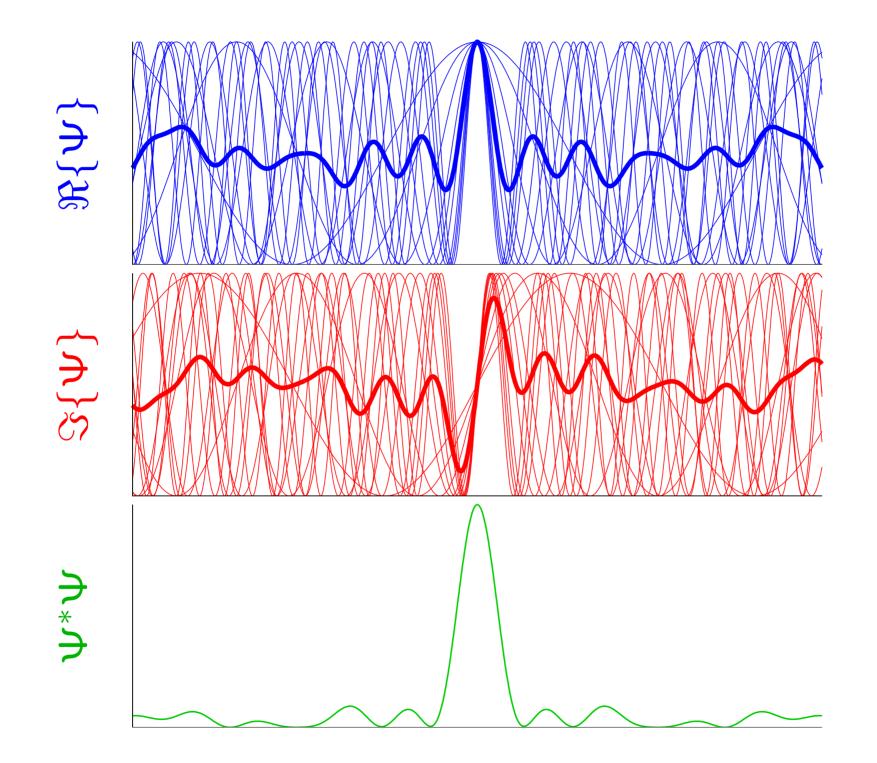


Image reconstruction

• resembles diffraction methods (crystallography)

wavelength of the phase patterns generated by gradients

 wavelength of the radio waves is irrelevant (but starts to interfere at high field, where it approaches the body dimensions)

 Ω assumed to be identical differences must be corrected to avoid artifacts

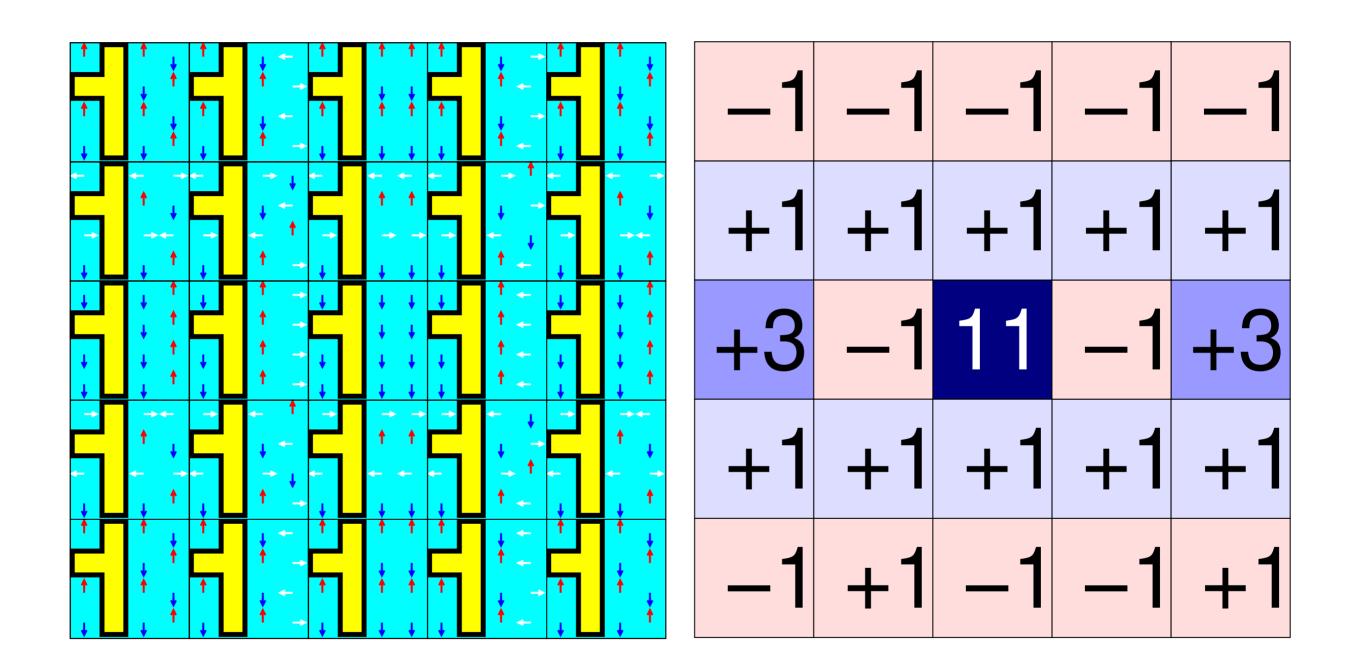
NAN PRATITATAR PRAT ********************** **** 1 1 1 1 1 KKK KK 1 1 1 X X X ~ ~ 1 1 * * * * * * * * * * * * + + + + + + + *************** × 1 1 ATTAK KKK - - + + + + 1112222 1 x x x = = = = = = + + + + + + K K K K K <u>\</u> ~ T 7 7 5 -

AAAAA - FREETAAAAAA - FREEFE

| $ \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$ | 0 | 0 | 0 | 0 | 0 |
|--|---|---|----|---|---|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0 | 0 | 0 | 0 | 0 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 0 | 0 | 16 | 0 | 0 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 0 | 0 | 0 | 0 | 0 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 0 | 0 | 0 | 0 | 0 |

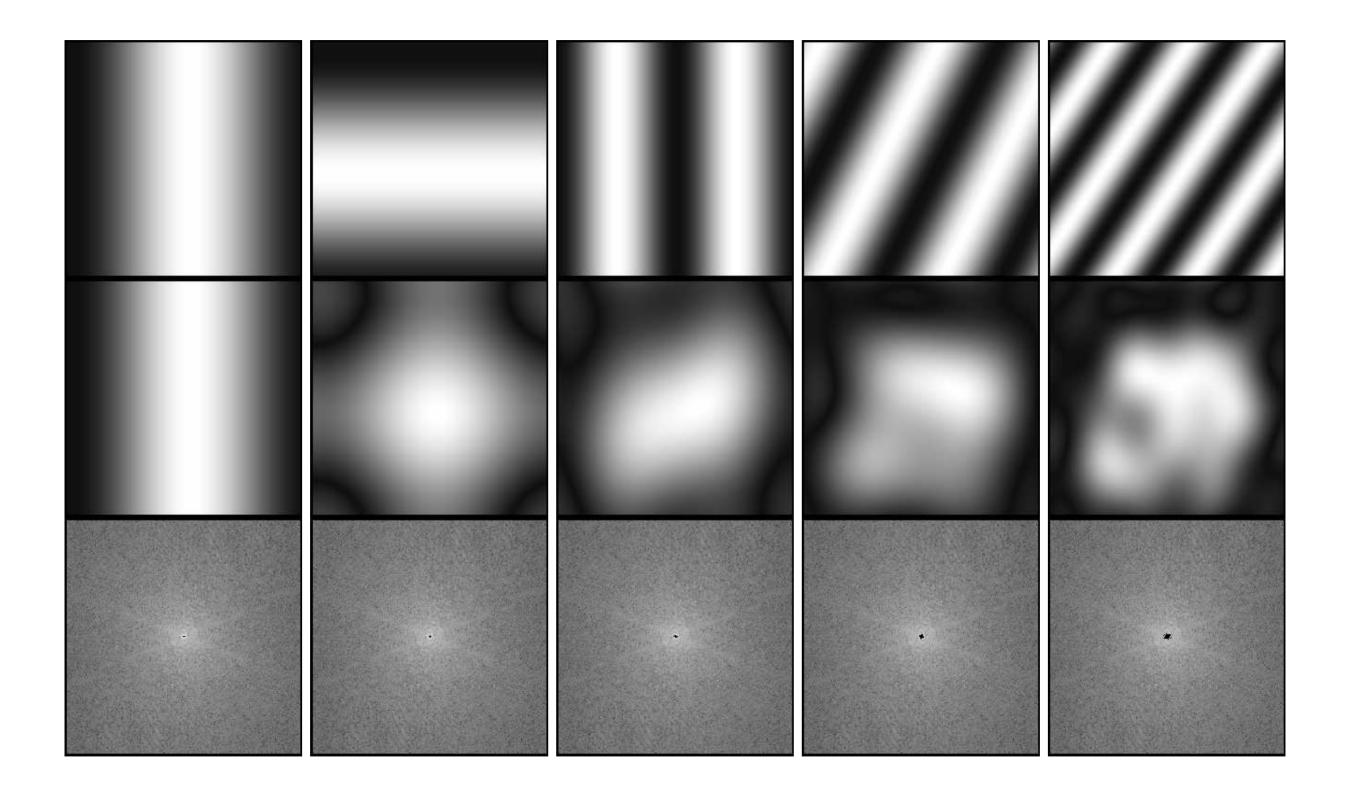
| | | * *
* * | 0 | 0 | 0 | 0 | 0 |
|--|--------------------------|--|---|----|---|----|---|
| | | | 0 | 0 | 0 | 0 | 0 |
| | ↑ ←
↑ ←
↑ ←
↑ ← | | 0 | -4 | 8 | -4 | 0 |
| | - +
+
t
t | ·
† · · · · · · · · · · · · · · · · · · · | 0 | 0 | 0 | 0 | 0 |
| | | | 0 | 0 | 0 | 0 | 0 |

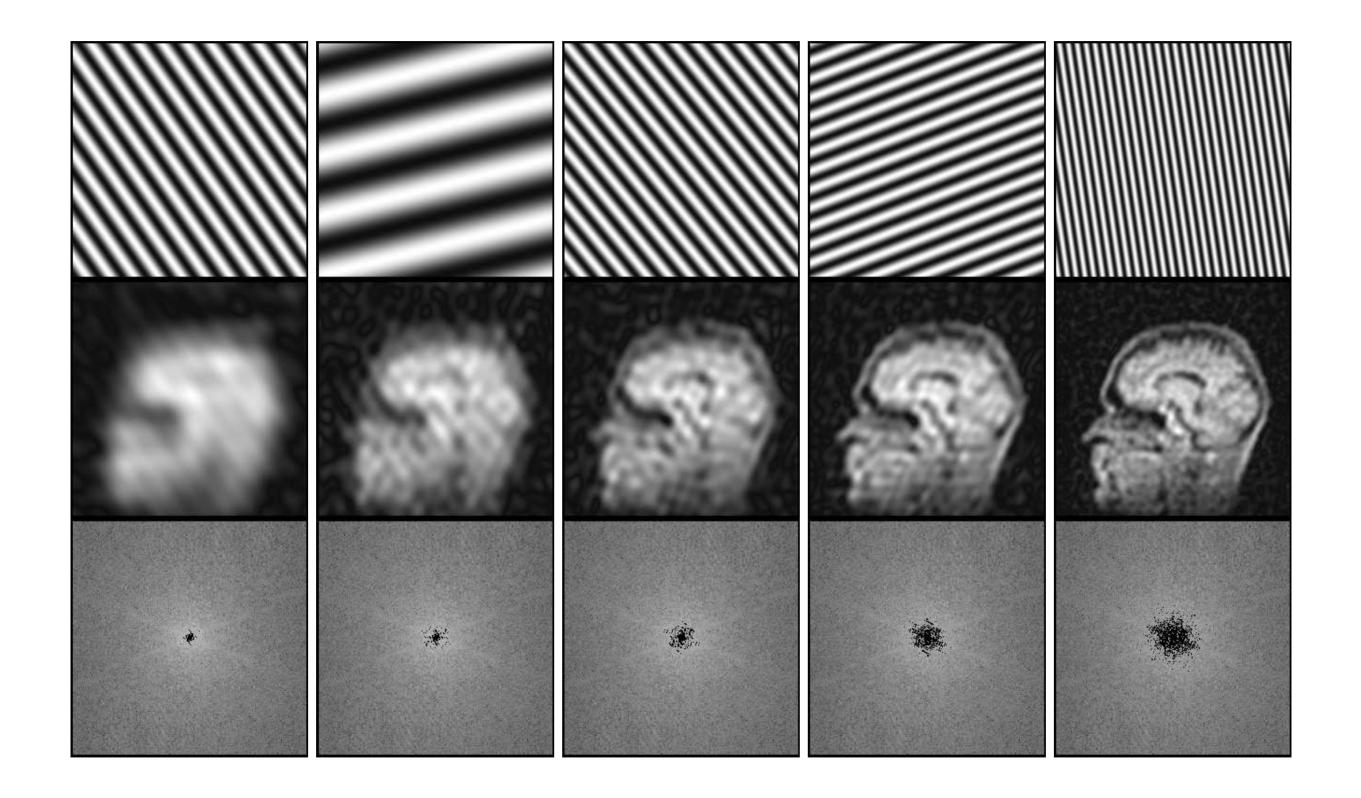




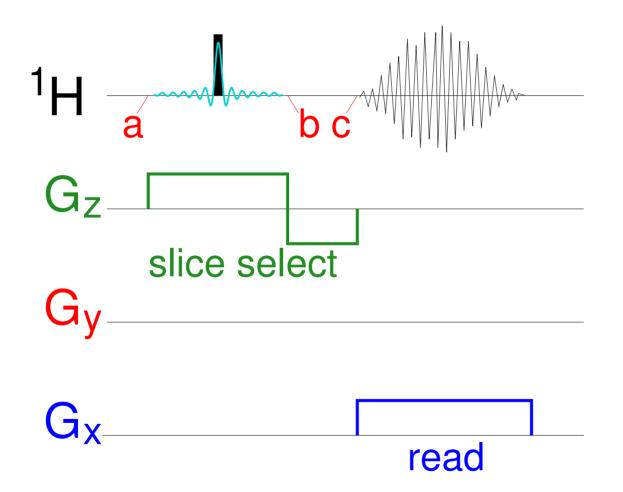
See Figure 15 in

http://eprints.drcmr.dk/37/1/MRI_English_a4.pdf





1D imaging in the slice



Frequency encoding gradient

$$\langle M_{+} \rangle (k_{x}) = \int_{0}^{L} K e^{i\Omega t - R_{2}t} \mathcal{N}(x) e^{-ik_{x}x} dx$$
$$\approx \int_{-\infty}^{\infty} \underbrace{K e^{i\Omega t - R_{2}t}}_{K'} \mathcal{N}(x) e^{-ik_{x}x} dx$$

Signal $\langle M_+ \rangle (k_x)$ is Fourier transform of spin density $\mathcal{N}(x)$ \Rightarrow Spin density $\mathcal{N}(x)$ can be reconstructed by Fourier transformation of the signal $\langle M_+ \rangle (k_x)$

Frequency encoding gradients

$$\langle M_{+} \rangle (k_{x}) \approx K' \int_{-\infty}^{\infty} \mathcal{N}(x) \mathrm{e}^{-\mathrm{i}k_{x}x} \mathrm{d}x$$

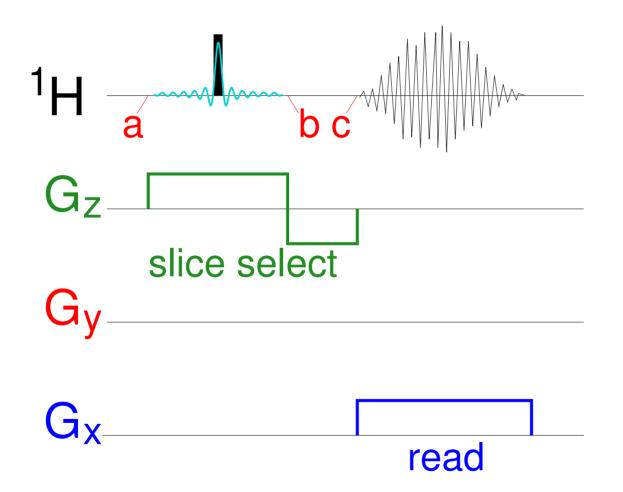
 $\Delta t \Delta f = \frac{1}{N}$

$$k_x = \gamma G_x t = n \cdot \Delta k_x \quad x = j \Delta x$$
$$\Delta k_x = \gamma G_x \Delta t = \frac{\gamma G_x}{N \Delta f}$$

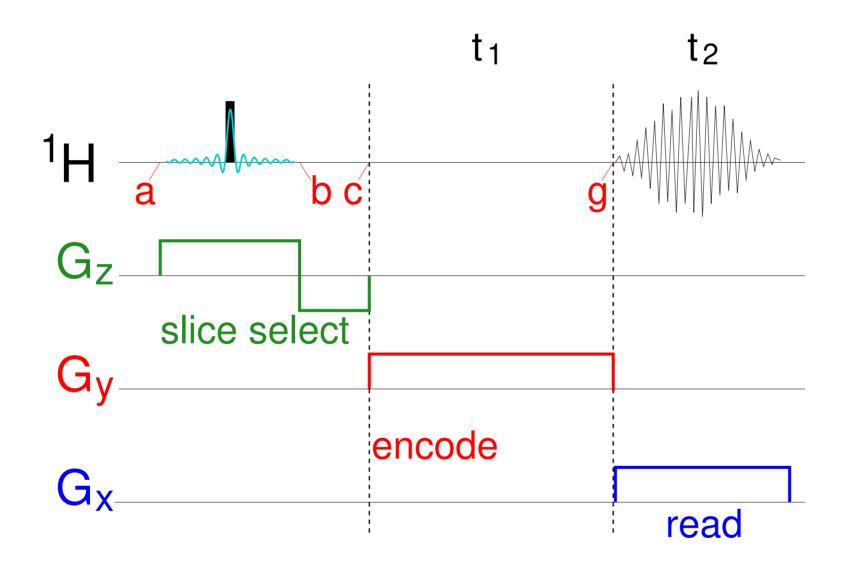
$$\mathcal{N}(\mathbf{x}) = \frac{\Delta k_x}{K'} \sum_{n=0}^{N-1} \langle M_+ \rangle (k_x) \mathrm{e}^{\mathrm{i} 2\pi} \frac{\mathbf{j} \cdot n}{N}$$

Better resolution than slice thickness

1D imaging in the slice



2D imaging in the slice



2D frequency encoding possible

Two frequency encoding gradients

$$\langle M_{+} \rangle (k_{x}, k_{y}) \approx K' \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathcal{N}(x, y) \mathrm{e}^{-\mathrm{i}(k_{x}x + k_{y}y)} \mathrm{d}x \mathrm{d}y$$

 $\Delta t_{2} \Delta f_{2} = \frac{1}{N_{x}} \Delta t_{1} \Delta f_{1} = \frac{1}{N_{y}}$

$$k_{x} = \gamma G_{x}t_{2} = n_{x} \cdot \Delta k_{x} \quad x = j_{x}\Delta x$$

$$k_{y} = \gamma G_{y}t_{1} = n_{y} \cdot \Delta k_{y} \quad y = j_{y}\Delta y$$

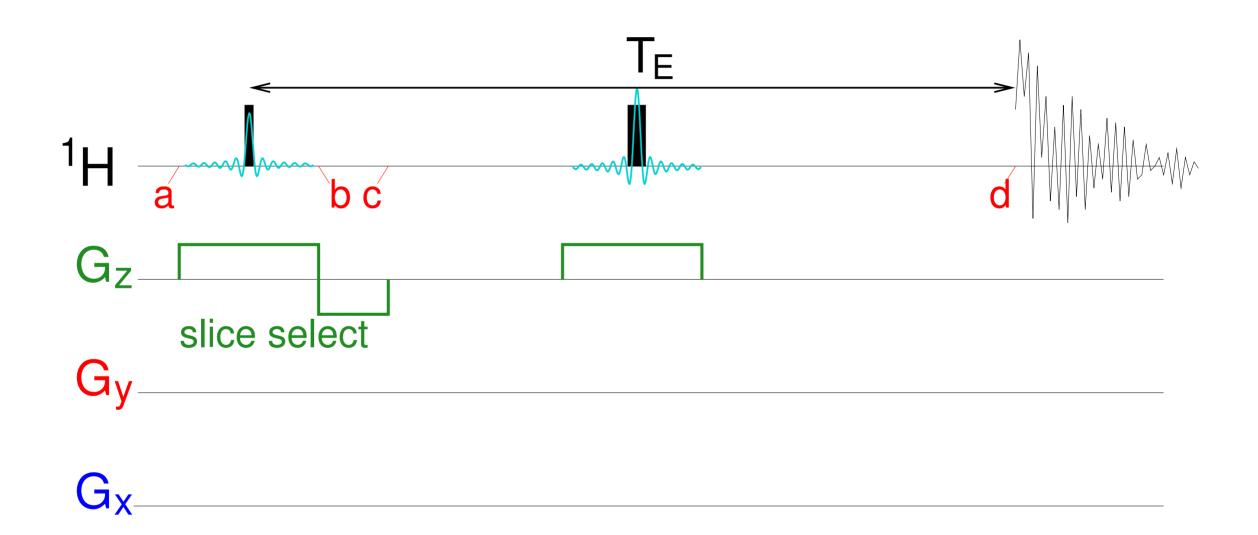
$$\Delta k_{x} = \gamma G_{x}\Delta t_{2} = \frac{\gamma G_{x}}{N_{x}\Delta f_{2}}$$

$$\Delta k_{y} = \gamma G_{y}\Delta t_{1} = \frac{\gamma G_{y}}{N_{y}\Delta f_{1}}$$

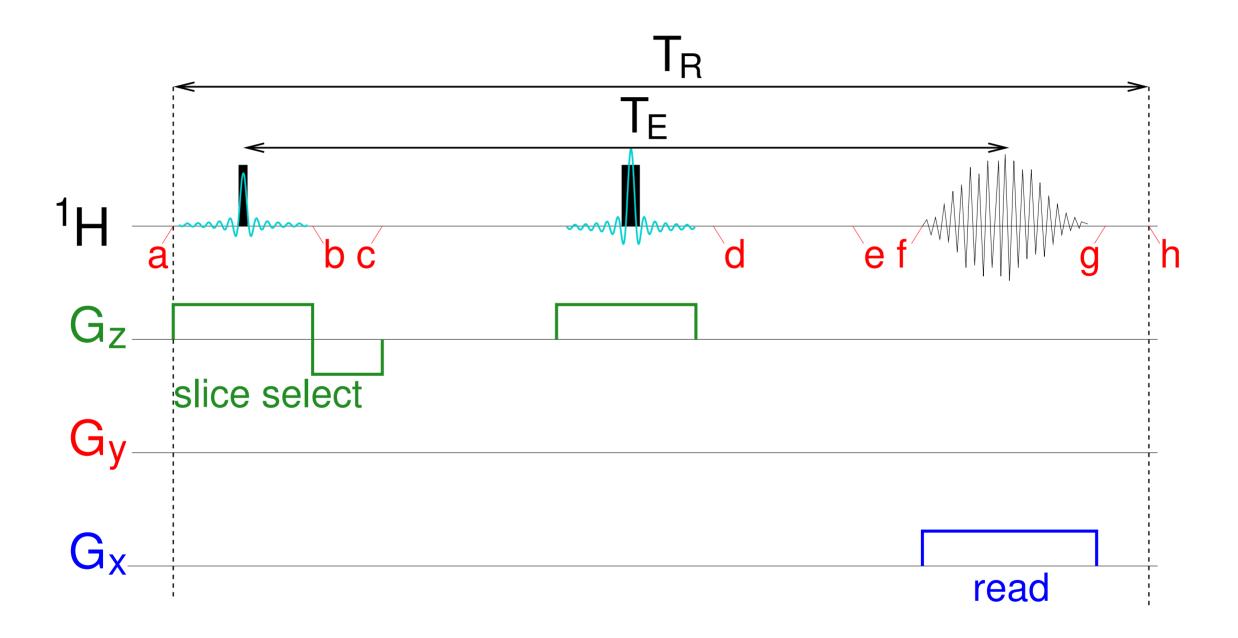
$$\mathcal{N}(\boldsymbol{x},\boldsymbol{y}) = \frac{\Delta k_x \Delta k_y}{K'} \sum_{n_x=0}^{N_x-1} \sum_{n_y=0}^{N_y-1} \langle M_+ \rangle (k_x,k_y) \mathrm{e}^{\mathrm{i}2\pi \left(\frac{j_x \cdot n_x}{N_x} + \frac{j_y \cdot n_y}{N_y}\right)}$$

Frequency and phase encoding gradients

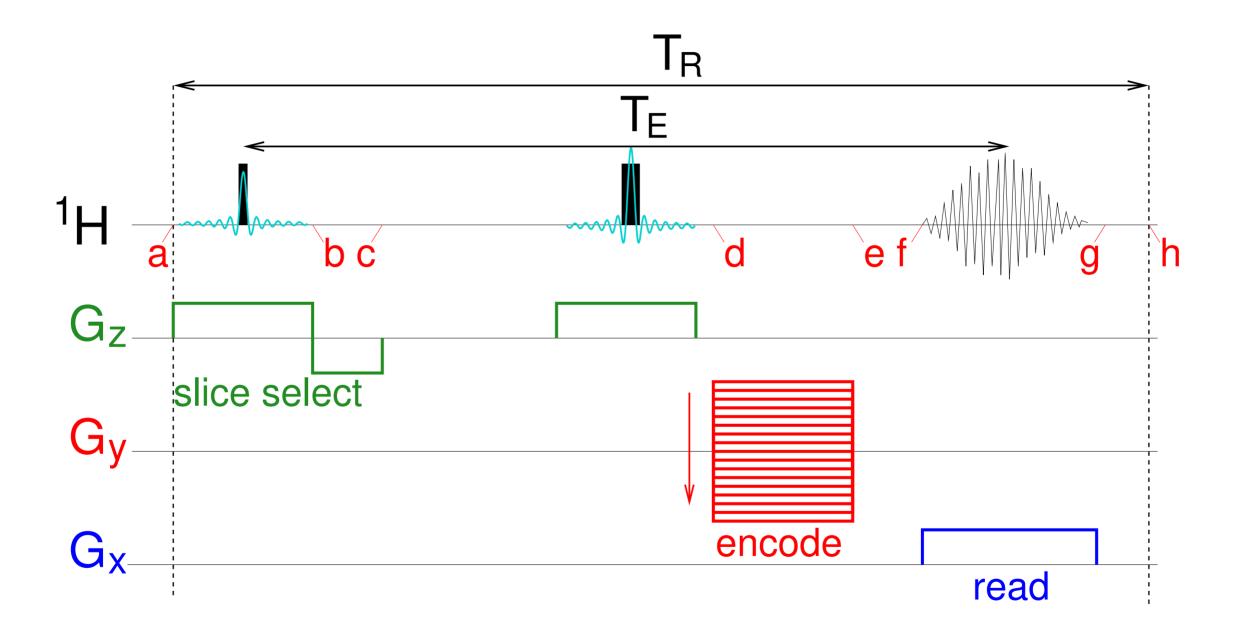
$$\Delta k_{y} = \begin{cases} \gamma G_{y} \Delta t_{1} = \frac{\gamma G_{y}}{N_{y} \Delta f_{1}} \\ \gamma t_{x} \Delta G_{y} \end{cases}$$



Phase encoding typical in MRI



Frequency encoding in x



Phase encoding in y

Frequency and phase encoding gradients

$$\langle M_{+} \rangle (k_{x}, k_{y}) \approx K' \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathcal{N}(x, y) e^{-i(k_{x}x + k_{y}y)} dx dy$$

 $\Delta t \Delta f = \frac{1}{N_{x}}$

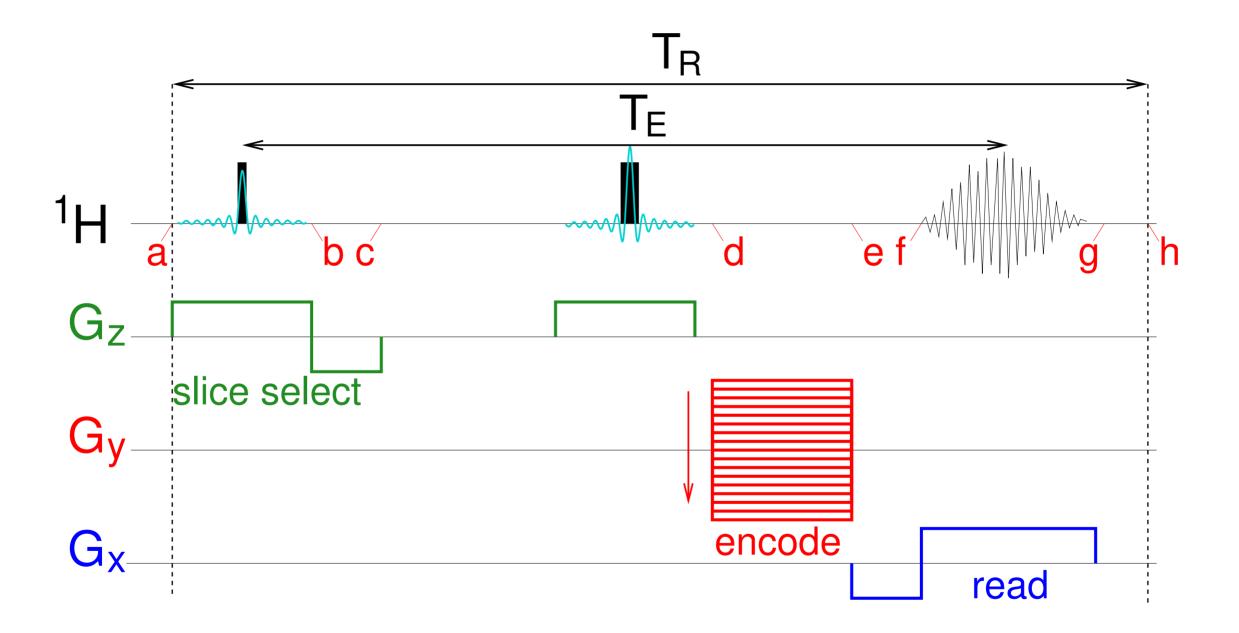
$$k_{x} = \gamma G_{x}t = n_{x} \cdot \Delta k_{x} \quad x = j_{x}\Delta x$$

$$k_{y} = \gamma G_{y}t_{y} = n_{y} \cdot \Delta k_{y} \quad y = j_{y}\Delta y$$

$$\Delta k_{x} = \gamma G_{x}\Delta t = \frac{\gamma G_{x}}{N_{x}\Delta f}$$

$$\Delta k_{y} = \gamma t_{y}\Delta G_{y}$$

$$\mathcal{N}(\boldsymbol{x},\boldsymbol{y}) = \frac{\Delta k_x \Delta k_y}{K'} \sum_{n_x=0}^{N_x-1} \sum_{n_y=-\frac{N_y}{2}}^{\frac{N_y}{2}-1} \langle M_+ \rangle \mathrm{e}^{\mathrm{i}2\pi \left(\frac{j_x \cdot n_x}{N_x} + \frac{j_y \cdot n_y}{N_y}\right)}$$



Pre-phase gradient in $x (-x \rightarrow x)$

Frequency and phase encoding gradients

$$\langle M_{+} \rangle (k_{x}, k_{y}) \approx K' \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathcal{N}(x, y) e^{-i(k_{x}x + k_{y}y)} dx dy$$

 $\Delta t \Delta f = \frac{1}{N_{x}}$

$$k_{x} = \gamma G_{x}t = n_{x} \cdot \Delta k_{x} \quad x = j_{x}\Delta x$$

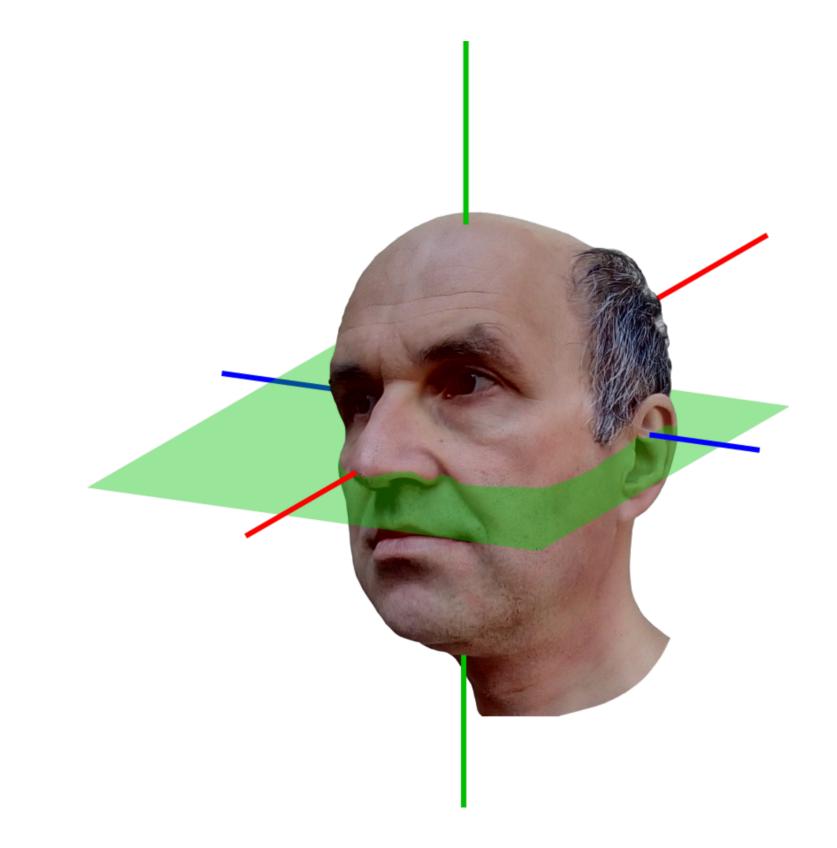
$$k_{y} = \gamma G_{y}t_{y} = n_{y} \cdot \Delta k_{y} \quad y = j_{y}\Delta y$$

$$\Delta k_{x} = \gamma G_{x}\Delta t = \frac{\gamma G_{x}}{N_{x}\Delta f}$$

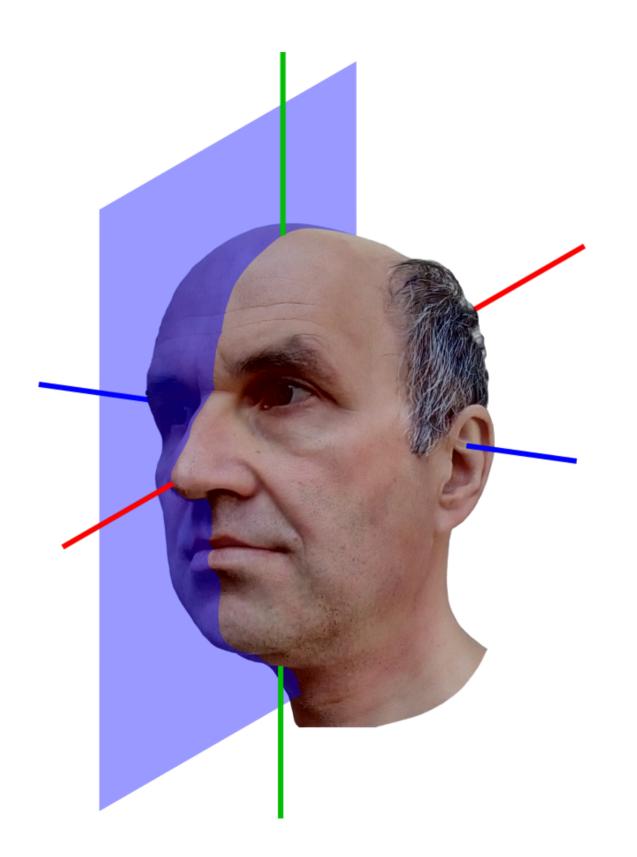
$$\Delta k_{y} = \gamma t_{y}\Delta G_{y}$$

$$\mathcal{N}(\boldsymbol{x},\boldsymbol{y}) = \frac{\Delta k_x \Delta k_y}{K'} \sum_{n_x = -\frac{N_x}{2}}^{\frac{N_x}{2} - 1} \sum_{n_y = -\frac{N_y}{2}}^{\frac{N_y}{2} - 1} \langle M_+ \rangle \mathrm{e}^{\mathrm{i} 2\pi \left(\frac{j_x \cdot n_x}{N_x} + \frac{j_y \cdot n_y}{N_y}\right)}$$

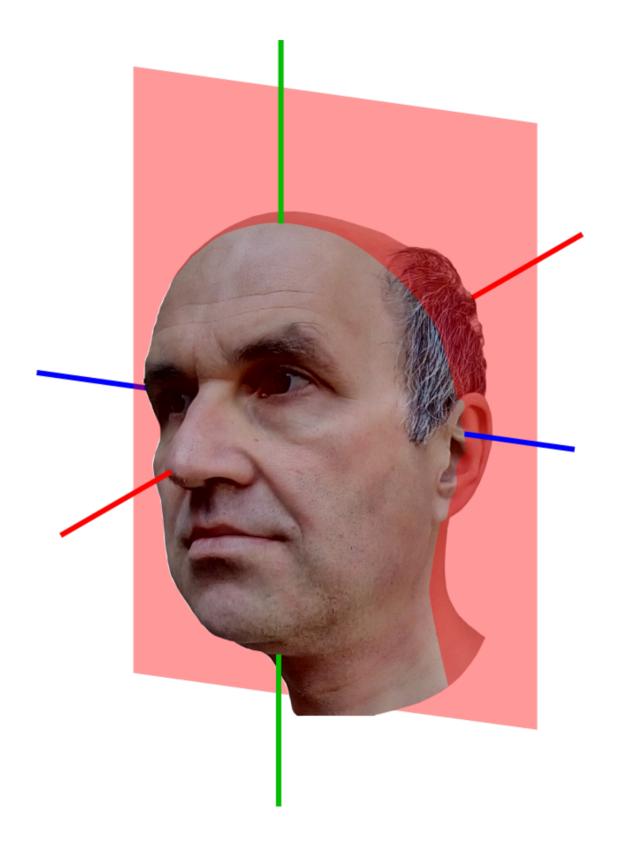
Axial slice selection by G_z



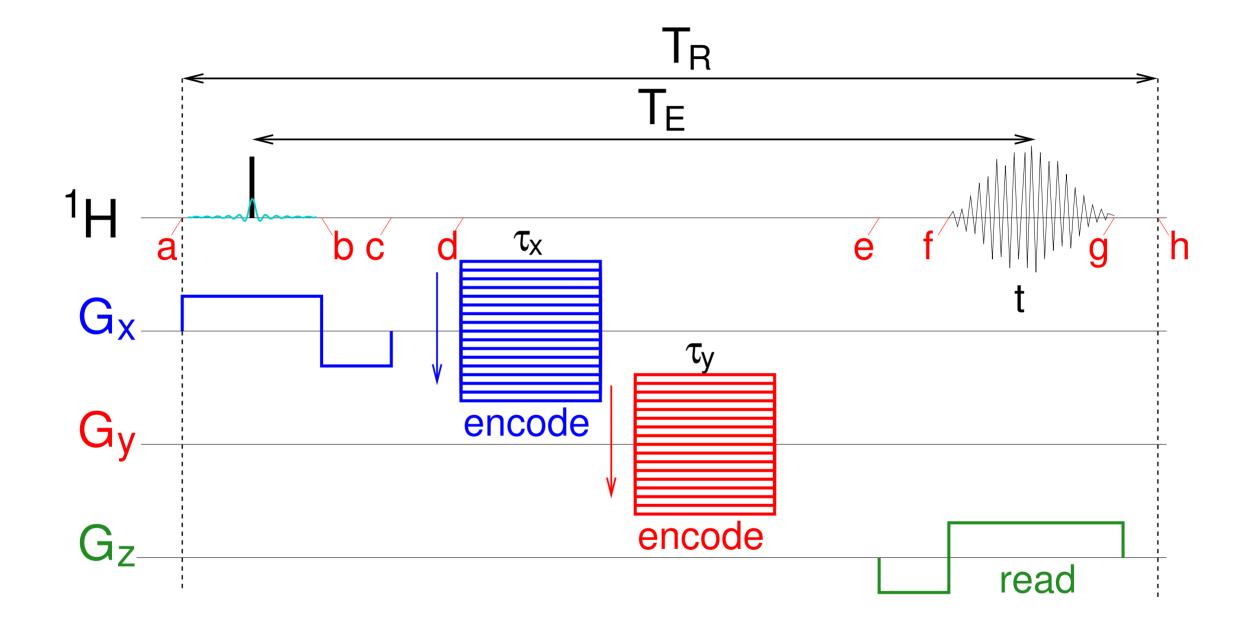
Sagittal slice selection by G_x



Coronal slice selection by G_y

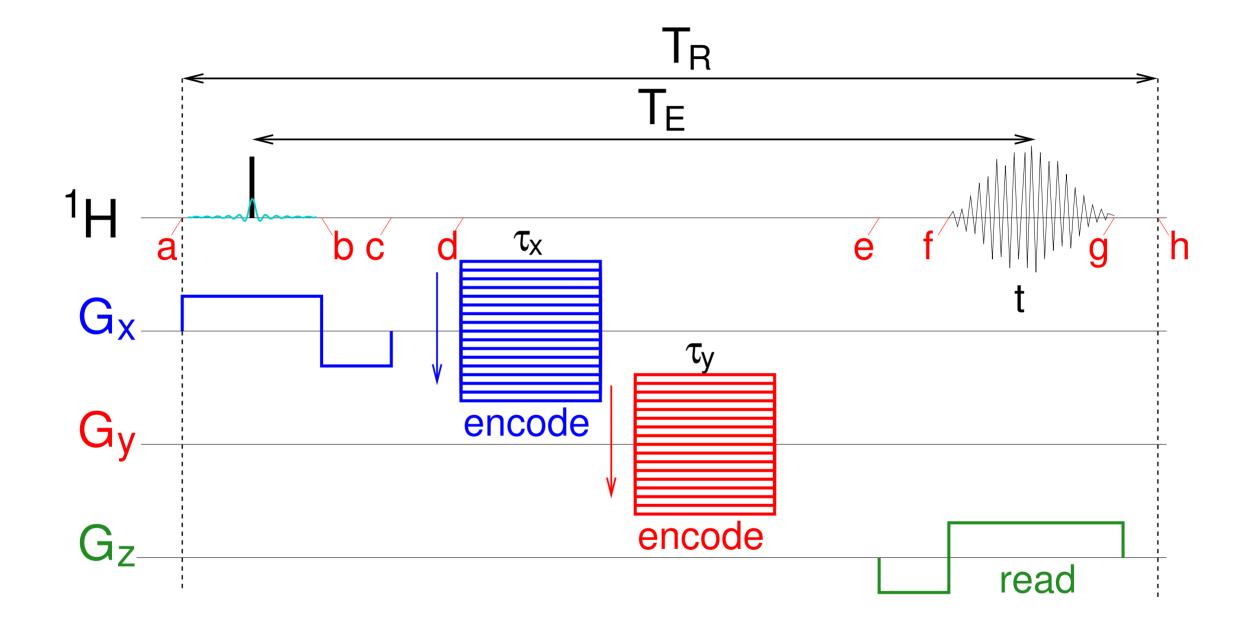


3D gradient echo imaging



High resolution in all dimensions More time consuming

3D gradient echo imaging



Short ($\sim 10^{\circ}$) pulse to save time

 \Rightarrow several measurements before return to equilibrium

Two phase encoding gradients

$$\mathcal{N}(\boldsymbol{x},\boldsymbol{y},z) = \frac{\Delta k_x \Delta k_y \Delta k_z}{K'} \sum_{n_x} \sum_{n_y} \sum_{n_z} \langle M_+ \rangle e^{i2\pi \left(\frac{j\boldsymbol{x} \cdot n_x}{N_x} + \frac{j\boldsymbol{y} \cdot n_y}{N_y} + \frac{jz \cdot n_z}{N_z}\right)}$$

Contrast and weighting

Contrast is more important than intensity

$$\langle M_{+}\rangle(k_{x}) = \frac{\gamma\hbar}{2} e^{i\Omega t} \frac{\gamma\hbar B_{0}}{2k_{B}T} e^{-R_{2}t} \mathcal{N}(x) e^{-i\widetilde{\gamma G_{x}tx}}$$
$$\langle M_{+}\rangle(k_{x}) = \frac{\gamma\hbar}{2} e^{i\Omega t} \frac{\gamma\hbar B_{0}}{2k_{B}T} (1 - e^{-R_{1}T_{R}}) e^{-R_{2}t} \mathcal{N}(x) e^{-i\widetilde{\gamma G_{x}tx}}$$

if not started from thermodynamic equilibrium

$$\langle M_{+} \rangle (\vec{k}) \propto \int_{V} \left(1 - \mathrm{e}^{-R_{1}T_{\mathsf{R}}} \right) \, \mathrm{e}^{-R_{2}T_{\mathsf{E}}} \, \mathcal{N}(\vec{r}) \, \mathrm{e}^{-\mathrm{i}\vec{k}\cdot\vec{r}} \mathrm{d}V$$

- T_1 weighting: difference in $R_1 \equiv 1/T_1$, short T_R and T_E
- T_2 weighting: difference in $R_2 \equiv 1/T_2$, long T_R and T_E
- spin density weighting: difference in \mathcal{N} , long T_{R} , short T_{E}