Lecture 6: Ensemble of non-interacting spins

1 particle:

$\Psi\left(x, y, z, c_{\alpha}\right)$

28 particles:

$\Psi(x(\mathrm{O}), x(\mathrm{H} 1), x(\mathrm{H} 2), x(\mathrm{e} 1), x(\mathrm{e} 2), \ldots$

1000000000000000000000000000 particles:

廿 ???

$\Psi\left(x, y, z, c_{\alpha}\right)$

$\Psi=\sqrt{\frac{1}{h^{3}}} \cdot \mathrm{e}^{\frac{i}{\hbar} p_{x} x} \cdot \mathrm{e}^{\frac{\mathrm{i}}{\hbar} p_{y} y} \cdot \mathrm{e}^{\frac{\mathrm{i}}{\hbar} p_{z} z} \cdot\binom{1}{0}$

$\Psi=$
$\phi(x(\mathrm{O}), x(\mathrm{H} 1), x(\mathrm{e} 1), \ldots) \cdot \psi\left(c_{\alpha, 1}, c_{\alpha, 2}\right) ?$

- electron motions: $>10^{16} \mathrm{~s}^{-1}$
- molecular rotations: $10^{8} \mathrm{~s}^{-1}\left(20 \mathrm{kDa}\right.$ protein) to $10^{12} \mathrm{~s}^{-1}$ (water)
- magnetic moment precession: $\sim 10^{9} \mathrm{~s}^{-1}$

- electron motions: $>10^{16} \mathrm{~s}^{-1}$
- molecular rotations: $10^{8} \mathrm{~s}^{-1}\left(20 \mathrm{kDa}\right.$ protein) to $10^{12} \mathrm{~s}^{-1}$ (water)
- magnetic moment precession: $\sim 10^{9} \mathrm{~s}^{-1}$ at $B_{0}=24 \mathrm{~T}$
electrons as "blurred cloud of a given shape":

- electron motions: $10^{16} \mathrm{~s}^{-1}$
- molecular rotations: $10^{8} \mathrm{~s}^{-1}\left(20 \mathrm{kDa}\right.$ protein) to $10^{12} \mathrm{~s}^{-1}$ (water)
- magnetic moment precession: $\sim 10^{9} \mathrm{~s}^{-1}$ at $B_{0}=24 \mathrm{~T}$
molecular motions \leftarrow almost independent \rightarrow magnetic moment precession

$\Psi=\phi\left(x_{1}, x_{2}, x_{3}, \ldots\right) \cdot \psi\left(c_{1}, c_{2}, c_{3}, \ldots\right)$

$$
\psi\left(c_{1}, c_{2}, c_{3}, \ldots\right)=\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4} \\
c_{5} \\
c_{6} \\
\vdots \\
\vdots \\
\vdots \\
c_{99999999999999999999999998 ~}^{c} \\
c_{99999999999999999999999999 ~}^{c} \\
c_{100000000000000000000000000}
\end{array}\right)
$$

$$
\psi\left(c_{1}, c_{2}, c_{3}, \ldots\right)=\psi_{1}\left(c_{1}\right) \cdot \psi_{2}\left(c_{2}\right) \cdot \psi_{3}\left(c_{3}\right) \ldots ?
$$

Is it possible to separate ψ of individual magnetic moments?
Yes, if interactions of magnetic moments

- depend only on external fields
\Rightarrow interactions change energy eigenvalues, not eigenfunctions
- the external fields are homogeneous (same in the whole sample) not true in MRI.

Then, $\binom{1}{0}$ and $\binom{0}{1}$ form basis for all ψ 's
\Rightarrow operators are represented by 2×2 matrices.

Pure state:

Expected value $\langle A\rangle$ of a quantity A for single nucleus:

$$
\langle A\rangle=\operatorname{Tr}\left\{\left(\begin{array}{cc}
c_{\alpha} c_{\alpha}^{*} & c_{\alpha} c_{\beta}^{*} \\
c_{\beta} c_{\alpha}^{*} & c_{\beta} c_{\beta}^{*}
\end{array}\right)\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\right\}
$$

Mixed state:

Expected value $\langle A\rangle$ for multiple nuclei with the same basis:

$$
\begin{aligned}
& \langle A\rangle=\operatorname{Tr}\left\{\left(\begin{array}{ll}
c_{\alpha, 1} c_{\alpha, 1}^{*} & c_{\alpha, 1} c_{\beta, 1}^{*} \\
c_{\beta, 1} c_{\alpha, 1}^{*} & c_{\beta, 1} c_{\beta, 1}^{*}
\end{array}\right)\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)+\left(\begin{array}{cc}
c_{\alpha, 2} c_{\alpha, 2}^{*} & c_{\alpha, 2} c_{\beta, 2}^{*} \\
c_{\beta, 2} c_{\alpha, 2}^{*} & c_{\beta, 2} c_{\beta, 2}^{*}
\end{array}\right)\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)+\cdot \cdot\right. \\
& =\operatorname{Tr}\left\{\left(\left(\begin{array}{cc}
c_{\alpha, 1} c_{\alpha, 1}^{*} & c_{\alpha, 1} c_{\beta, 1}^{*} \\
c_{\beta, 1} c_{\alpha, 1}^{*} & c_{\beta, 1} c_{\beta, 1}^{*}
\end{array}\right)+\left(\begin{array}{cc}
c_{\alpha, 2} c_{\alpha, 2}^{*} & c_{\alpha, 2} c_{\beta, 2}^{*} \\
c_{\beta, 2} c_{\alpha, 2}^{*} & c_{\beta, 2} c_{\beta, 2}^{*}
\end{array}\right)+\cdots\right)\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\right\} \\
& =\mathcal{N} \operatorname{Tr}\{\underbrace{\left(\begin{array}{ll}
\left(\begin{array}{c}
c_{\alpha} c_{\alpha}^{*} \\
c_{\beta} c_{\alpha}^{*}
\end{array} \overline{c_{\alpha} c_{\beta}^{*}}\right. & c_{\beta} c_{\beta}^{*}
\end{array}\right)}_{\tilde{\rho}} \underbrace{\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)}_{\overparen{A}}\}=\mathcal{N} \operatorname{Tr}\{\hat{\rho} \widehat{A}\} .
\end{aligned}
$$

$\hat{\rho}$ is the (probability) density matrix

- Two-dimensional basis for \mathcal{N} uncoupled nuclei.
- Statistical approach: macroscopic result - mixed state no insight into microscopic states.
- Choice of the basis of ψ is encoded in definition of $\hat{\rho}$ (eigenfunctions of \hat{I}_{z})
- The state is described not by a vector, but by a matrix $\hat{\rho}$ is a matrix like matrices representing the operators.

Populations

- Diagonal elements of $\hat{\rho}$ or matrices with diagonal elements only.
- describe longitudinal polarization of $\vec{\mu}$ (distribution along \vec{B}_{0})
- real numbers, $\overline{c_{\alpha} c_{\alpha}^{*}}+\overline{c_{\beta} c_{\beta}^{*}}=1$
- $\overrightarrow{c_{\alpha} c_{\alpha}^{*}}=1 / 2$: no net polarization along \vec{B}_{0} equal populations of the α and β states
It does not indicate that all spins must be either in α or β state!
Any combination of superposition states,
$\vec{\mu}$ pointing in all possible directions as long as $M_{z}=0$
Probability of 50% spins in α state, 50% spins in β state negligible

Coherences

- Off-diagonal elements or matrices with diagonal elements only
- Pure state: $c_{\beta} c_{\alpha}^{*}=\left|c_{\alpha}\right|\left|c_{\beta}\right| \mathrm{e}^{-\mathrm{i}\left(\phi_{\alpha}-\phi_{\beta}\right)}$
- Mixed state: $\overline{c_{\beta} c_{\alpha}^{*}}$ is complex number $\overline{\left|c_{\alpha}\right|\left|c_{\beta}\right|} \cdot \overline{\mathrm{e}^{-\mathrm{i}\left(\phi_{\alpha}-\phi_{\beta}\right)}}$ amplitude $\overline{\left|c_{\alpha}\right|\left|c_{\beta}\right|}$, phase given by $\overline{\mathrm{e}^{-\mathrm{i}\left(\phi_{\alpha}-\phi_{\beta}\right)}}$
- $\overline{c_{\beta} c_{\alpha}^{*}} \cdot \overline{c_{\alpha} c_{\beta}^{*}}=1$
- Describe transverse polarization of $\vec{\mu}$ in the plane $\perp \vec{B}_{0}$ with magnitude $\overline{\left|c_{\alpha} \| c_{\beta}\right|}$ and in direction given by the phase.
- Incoherent superposition of states $\alpha, \beta: \overline{\mathrm{e}^{-\mathrm{i}\left(\phi_{\alpha}-\phi_{\beta}\right)}}=0 \Rightarrow \overline{c_{\beta} c_{\alpha}^{*}}=0$
- Coherent superposition of states $\alpha, \beta: \overline{c_{\beta} c_{\alpha}^{*}} \neq 0$
- Coherent evolution: $\phi_{\alpha, j}$ and $\phi_{\beta, j}$ vary, but with identical frequency ω_{0} for all $j: \overline{\mathrm{e}^{-\mathrm{i}\left(\phi_{\alpha}-\phi_{\beta}\right)}}=\overline{\mathrm{e}^{-\mathrm{i}\left(\phi_{\alpha}(0)-\phi_{\beta}(0)\right)}} \cdot \mathrm{e}^{\mathrm{i} \omega_{0} t}$

Phases and coherences

$$
\begin{aligned}
& \left|\vartheta_{j}, \varphi_{j}\right\rangle=\left(\begin{array}{l}
\cos \frac{\vartheta_{j}}{2} \mathrm{e}^{-\mathrm{i} \frac{\varphi_{j}}{2}} \\
\sin \frac{\vartheta_{j}}{2} \\
\mathrm{e}
\end{array}\right)=\binom{c_{\alpha, j}}{c_{\beta, j}}=c_{\alpha, j}|\alpha\rangle+c_{\beta, j}|\beta\rangle \\
& \frac{c_{\beta} c_{\alpha}^{*}}{2}=\frac{\cos \frac{\vartheta}{2} \sin \frac{\vartheta}{2} \mathrm{e}+\mathrm{i} \varphi}{2}=\frac{1}{2} \frac{1}{\sin \vartheta \mathrm{e}^{+\mathrm{i} \varphi}} \quad 2 \sin a \cos a=\sin (2 a)
\end{aligned}
$$

Phases and coherences

Independent distribution of ϑ and φ :

$$
\overline{c_{\beta} c_{\alpha}^{*}}=\overline{\cos \frac{\vartheta}{2} \sin \frac{\vartheta}{2} \mathrm{e}^{+\mathrm{i} \varphi}}=\frac{1}{2} \overline{\sin \vartheta \mathrm{e}^{+\mathrm{i} \varphi}}=\frac{1}{2} \overline{\sin \vartheta} \cdot \overline{\mathrm{e}^{+\mathrm{i} \varphi}}
$$

Evolution in \vec{B}_{0} : Hamiltonian $\hat{H}=-\gamma B_{0} \widehat{I}_{z}=\omega_{0} \widehat{I}_{z}$

$$
\begin{gathered}
c_{\alpha}(t)= \\
c_{\alpha}(t=0) \mathrm{e}^{-\mathrm{i} \frac{\gamma B_{0}}{2} t}=\cos \frac{\vartheta}{2} \mathrm{e}^{-\mathrm{i} \frac{\varphi(t=0)}{2}} \mathrm{e}^{-\mathrm{i} \frac{\omega_{0}}{2} t} \\
c_{\beta}(t)= \\
c_{\beta}(t=0) \mathrm{e}^{-\mathrm{i} \frac{\gamma B_{0}}{2} t}=\sin \frac{\vartheta}{2} \mathrm{e}^{+\mathrm{i} \frac{\varphi(t=0)}{2}} \mathrm{e}^{+\mathrm{i} \frac{\omega_{0}}{2} t} \\
\overline{c_{\beta} c_{\alpha}^{*}}(t)=\frac{1}{2} \overline{\sin \vartheta} \overline{\mathrm{e}^{\mathrm{i} \varphi(t=0)}} \mathrm{e}^{\mathrm{i} \omega_{0} t}
\end{gathered}
$$

Coherent evolution if $\omega_{0}=\gamma B_{0}$ is the same for all j

Phases and coherences

Random distribution of $\varphi(t=0) \Rightarrow \vartheta$ distributed on the whole sphere

$$
\overline{\mathrm{e}^{i \varphi(t=0)}}=0 \quad \Rightarrow \quad \overline{\cos \vartheta}=0 \quad \overline{\sin \vartheta}=0
$$

Incoherent superposition of $|\alpha\rangle$ and $|\beta\rangle$

Phases and coherences

Random distribution of $\varphi(t=0) \Rightarrow \vartheta$ distributed on a meridian

$$
\overline{\mathrm{e}^{\mathrm{i} \varphi(t=0)}}=1 \quad \Rightarrow \quad \overline{\cos \vartheta}=0 \quad \overline{\sin \vartheta}=\frac{1}{2}
$$

Coherent superposition of $|\alpha\rangle$ and $|\beta\rangle$

Basis:

- Any 2×2 matrix can be written as a linear combination of four 2×2 matrices. Such four matrices can be used as a basis

Example:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+d\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Basis:

- A good basis is a set of orthonormal matrices:

$$
\operatorname{Tr}\left\{\hat{A}_{j}^{\dagger} \widehat{A}_{k}\right\}=\delta_{j k}
$$

$j, k \in\{1,2,3,4\}$,
$\delta_{j k}=1$ for $j=k, \delta_{j k}=0$ for $j \neq k$,
$\widehat{A}_{j}^{\dagger}$ is an adjoint matrix of \widehat{A}_{j}
(adjoint matrix: matrix obtained from \widehat{A}_{j} by exchanging rows and columns and replacing all numbers with their complex conjugates.)
E.g., for $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $\left(\begin{array}{cc}e & f \\ g & h\end{array}\right)$:
calculate $\left(\begin{array}{cc}a^{*} & c^{*} \\ b^{*} & d^{*}\end{array}\right)\left(\begin{array}{ll}e & f \\ g & h\end{array}\right)=\left(\begin{array}{ll}a^{*} e+c^{*} g & a^{*} f+c^{*} h \\ b^{*} e+d^{*} g & b^{*} f+d^{*} h\end{array}\right)$
Trace: $a^{*} e+c^{*} g+b^{*} f+d^{*} h$

Example:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+d\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

The basis is orthonormal, e.g.:
$\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, trace: $0+0=0$
$\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$, trace: $0+0=1$

Basis sets: Cartesian

$$
\begin{align*}
& \sqrt{2} \mathscr{I}_{t}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \sqrt{2} \mathscr{I}_{z}=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \\
& \sqrt{2} \mathscr{I}_{x}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \tag{1}\\
& \sqrt{2} \mathscr{I}_{y}=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right) \\
& \mathscr{I}_{t}=\frac{1}{2} \widehat{1} \quad \mathscr{I}_{x}=\frac{1}{\hbar} \widehat{I}_{x} \quad \mathscr{I}_{y}=\frac{1}{\hbar} \widehat{I}_{y} \quad \mathscr{I}_{z}=\frac{1}{\hbar} \widehat{I}_{z} \tag{2}
\end{align*}
$$

Basis sets: Single-element

$$
\begin{array}{cc}
\mathscr{I}_{\alpha}=\mathscr{I}_{t}+\mathscr{I}_{z}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) & \mathscr{I}_{\beta}=\mathscr{I}_{t}-\mathscr{I}_{z}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
\mathscr{I}_{+}=\mathscr{I}_{x}+\mathrm{i} \mathscr{I}_{y}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) & \mathscr{I}_{-}=\mathscr{I}_{x}-\mathrm{i} \mathscr{I}_{y}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \tag{3}
\end{array}
$$

Basis sets: Mixed

$$
\begin{array}{cc}
\sqrt{2} \mathscr{I}_{t}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \sqrt{2} \mathscr{I}_{z}=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \\
\mathscr{I}_{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) & \mathscr{I}_{-}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \tag{4}
\end{array}
$$

Liouville - von Neumann equation

evolution in time

$$
\begin{equation*}
\frac{\mathrm{d} \hat{\rho}}{\mathrm{~d} t}=\frac{\mathrm{i}}{\hbar}(\widehat{\rho} \hat{H}-\hat{H} \hat{\rho})=\frac{\mathrm{i}}{\hbar}[\hat{\rho}, \widehat{H}]=-\frac{\mathrm{i}}{\hbar}[\hat{H}, \widehat{\rho}] \tag{5}
\end{equation*}
$$

or in the units of (angular) frequency

$$
\begin{align*}
\frac{\mathrm{d} \hat{\rho}}{\mathrm{~d} t}=\mathrm{i}(\hat{\rho} \mathscr{H}-\mathscr{H} \hat{\rho}) & =\mathrm{i}[\widehat{\rho}, \mathscr{H}]=-\mathrm{i}[\mathscr{H}, \hat{\rho}] . \tag{6}\\
\mathscr{H} & =\frac{1}{\hbar} \hat{H} \tag{7}
\end{align*}
$$

If $\hat{\rho}=c \mathscr{I}_{j}, \mathscr{H}=\omega \mathscr{\mathscr { l }}_{l}$, and $\left[\mathscr{I}_{j}, \mathscr{\mathscr { F }}_{k}\right]=\mathrm{i} \mathscr{H}_{l}$,
then the density matrix evolves as

$$
\hat{\rho}=c \mathscr{I}_{j} \quad \longrightarrow \quad c \mathscr{I}_{j} \cos (\omega t)+c \mathscr{I}_{l} \sin (\omega t)
$$

rotation about \mathscr{I}_{k} in abstract 3D space defined by the basis $\mathscr{I}_{j}, \mathscr{I}_{k}, \mathscr{I}_{l}$.

General strategy

1. Define $\hat{\rho}$ at $t=0$
2. Describe evolution of $\hat{\rho}$ using the relevant Hamiltonians usually several steps
3. Calculate the expectation value of the measured quantity (magnetization components in the x, y plane) according to Eq. 1 $\left\langle M_{+}\right\rangle=\left\langle M_{x}+\mathrm{i} M_{y}\right\rangle=\mathcal{N} \operatorname{Tr}\left\{\hat{\rho} \hat{M}_{+}\right\}$

The procedure requires knowledge of

1. relation(s) describing the initial state of the system ($\widehat{\rho}(0)$)
2. all Hamiltonians (\mathscr{H})
3. the operator representing the measurable quantity (\hat{M}_{+})

HOMEWORK:

$$
\begin{aligned}
& \hat{\rho}(0)=\mathscr{I}_{y} \\
& \mathscr{H}=\omega \mathscr{I}_{z} \\
& \omega=\pi \times 10^{5} \mathrm{rad} / \mathrm{s} \\
& t=2.5 \times 10^{-5} \mathrm{~s}
\end{aligned}
$$

$$
\begin{aligned}
\hat{\rho}(0) & =\mathscr{I}_{y} \\
\mathscr{H} & =\omega \mathscr{I}_{z} \\
\omega & =\pi \times 10^{5} \mathrm{rad} / \mathrm{s} \\
t & =2.5 \times 10^{-5} \mathrm{~s}
\end{aligned}
$$

$$
\begin{aligned}
& \widehat{\rho}(0)=\mathscr{I}_{y} \rightarrow \mathscr{I}_{y} \cos (\omega t)-\mathscr{I}_{x} \sin (\omega t) \\
& \omega t=2.5 \pi=2 \pi+\frac{\pi}{2} \\
& \cos (\omega t)=\cos \left(2 \pi+\frac{\pi}{2}\right)=\cos \left(\frac{\pi}{2}\right)=0 \\
& \sin (\omega t)=\sin \left(2 \pi+\frac{\pi}{2}\right)=\sin \left(\frac{\pi}{2}\right)=1
\end{aligned}
$$

$$
\widehat{\rho}(0)=\mathscr{I}_{y} \rightarrow-\mathscr{I}_{x}
$$

