General strategy

1. Define $\hat{\rho}$ at $t=0$
2. Describe evolution of $\hat{\rho}$ using the relevant Hamiltonians usually several steps
3. Calculate the expectation value of the measured quantity (magnetization components in the x, y plane) as $\left\langle M_{+}\right\rangle=\left\langle M_{x}+\right.$ $\left.\mathfrak{i} M_{y}\right\rangle=\mathcal{N} \operatorname{Tr}\left\{\hat{\rho} \hat{M}_{+}\right\}$

The procedure requires knowledge of

1. relation(s) describing the initial state of the system ($\widehat{\rho}(0)$)
2. all Hamiltonians (\mathscr{H})
3. the operator representing the measurable quantity (\hat{M}_{+})

The procedure requires knowledge of

1. the operator representing the measurable quantity $\left(\hat{M}_{+}\right)$
2. all Hamiltonians (\mathscr{H})
3. relation(s) describing the initial state of the system ($\widehat{\rho}(0)$)

The procedure requires knowledge of

1. the operator representing the measurable quantity $\left(\hat{M}_{+}\right)$
2. all Hamiltonians (\mathscr{H})
3. relation(s) describing the initial state of the system ($\widehat{\rho}(0)$)

Operator of measured quantity

$$
M_{+}=M_{x}+\mathrm{i} M_{y}
$$

$$
\hat{M}_{+}=\mathcal{N} \gamma\left(\widehat{I}_{x}+\mathrm{i} \hat{I}_{y}\right)=\mathcal{N} \gamma \widehat{I}_{+}
$$

$$
\hat{M}_{+}=\mathcal{N} \gamma\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

The procedure requires knowledge of

1. the operator representing the measurable quantity $\left(\hat{M}_{+}\right)$
2. all Hamiltonians (\mathscr{H})
3. relation(s) describing the initial state of the system ($\widehat{\rho}(0)$)

Hamiltonian of static field \vec{B}_{0}

$$
\hat{H}_{0, \text { lab }}=-\gamma B_{0} \hat{I}_{z}
$$

Hamiltonian of the radio-frequency field \vec{B}_{1} Phase $=0(x)$:

$$
\hat{H}_{1, \mathrm{rot}}=\left(-\gamma B_{0}-\omega_{\mathrm{rot}}\right) \hat{I}_{z}-\gamma B_{1} \hat{I}_{x}=\Omega \hat{I}_{z}+\omega_{1} \hat{I}_{x}
$$

Phase $=\pi / 2(y)$:

$$
\hat{H}_{1, \mathrm{rot}}=\left(-\gamma B_{0}-\omega_{\mathrm{rot}}\right) \hat{I}_{z}-\gamma B_{1} \hat{I}_{y}=\Omega \hat{I}_{z}+\omega_{1} \hat{I}_{y}
$$

Chemical shift Hamiltonian

$$
\left.\begin{array}{rl}
\hat{H}_{\delta} & =-\gamma\left(\hat{I}_{x} B_{\mathrm{e}, x}+\hat{I}_{y} B_{\mathrm{e}, y}+\hat{I}_{z} B_{\mathrm{e}, z}\right)=-\gamma\left(\hat{I}_{x}\right. \\
\hat{I}_{y} & \hat{I}_{z}
\end{array}\right)\left(\begin{array}{l}
B_{\mathrm{e}, x} \\
B_{\mathrm{e}, y} \\
B_{\mathrm{e}, z}
\end{array}\right)
$$

$$
\widehat{H}=\hat{H}_{0, \mathrm{lab}}+\hat{H}_{\delta, \mathrm{i}}+\hat{H}_{\delta, \mathrm{a}}+\hat{H}_{\delta, \mathrm{r}}
$$

Chemical shift Hamiltonian

Isotropic component (independent of orientation):

$$
\hat{H}_{\delta, \mathrm{i}}=-\gamma B_{0} \delta_{\mathrm{i}}\left(\hat{I}_{z}\right)
$$

Anisotropic (axially symmetric) component (depends on ϑ, φ):
$\hat{H}_{\delta, \mathrm{a}}=-\gamma B_{0} \delta_{\mathrm{a}}\left(3 \sin \vartheta \cos \vartheta \cos \varphi \hat{I}_{x}+3 \sin \vartheta \cos \vartheta \sin \varphi \hat{I}_{y}+\left(3 \cos ^{2} \vartheta-1\right) \hat{I}_{z}\right)$

Rhombic (asymmetric) component (depends on ϑ, φ, χ):

$$
\begin{aligned}
\hat{H}_{\delta, r}=-\gamma B_{0} \delta_{r}(& (-\cos 2 \chi \sin \vartheta \cos \vartheta \cos \varphi+\sin 2 \chi \sin \vartheta \cos \vartheta \sin \varphi) \hat{I}_{x}+ \\
& (-\cos 2 \chi \sin \vartheta \cos \vartheta \sin \varphi-\sin 2 \chi \sin \vartheta \cos \vartheta \cos \varphi) \hat{I}_{y}+ \\
& \left(\left(\cos 2 \chi \sin ^{2} \vartheta\right) \hat{I}_{z}\right)
\end{aligned}
$$

Secular approximation

Molecular motions do not resonate with the precession frequency $-\gamma B_{0}$ $\Rightarrow B \mathrm{e}, x \widehat{I}_{x}$ and $B \mathrm{e}, y \widehat{I}_{y}$ oscillate rapidly with frequency close to $-\gamma B_{0}$ $\vec{B}_{0} \gg \vec{B}_{\mathrm{e}} \Rightarrow$ much faster oscillations than precession about $B \mathrm{e}, x, B \mathrm{e}, y$ effectively average to zero on timescale longer than $1 /\left(\gamma B_{0}\right)(\sim \mathrm{ns})$
\Rightarrow Terms with $B \mathrm{e}, x \hat{I}_{x}$ and $B \mathrm{e}, y \hat{I}_{y}$ can be neglected on timescales $>\mathrm{ns}$

$$
\widehat{H}=-\gamma \hbar \frac{1}{2}\left(\begin{array}{cc}
B_{0}+B_{\mathrm{e}, z} & B_{\mathrm{e}, x}-\mathrm{i} B_{\mathrm{e}, y} \\
B_{\mathrm{e}, x}+\mathrm{i} B_{\mathrm{e}, y} & -\left(B_{0}+B_{\mathrm{e}, z}\right)
\end{array}\right)
$$

Averaging in isotropic solvent

No orientation of the molecule is preferred
\Rightarrow all values of χ are equally probable and independent of ϑ $\Rightarrow \overline{\cos 2 \chi}=0$

$$
\begin{aligned}
& a_{x}=\sin \vartheta \cos \varphi \\
& a_{y}=\sin \vartheta \sin \varphi \\
& a_{z}=\cos \vartheta
\end{aligned}
$$

$$
a_{x}^{2}+a_{y}^{2}+a_{z}^{2}=1 \Rightarrow \overline{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}=1 \Rightarrow \overline{3 a_{z}^{2}-1}=\overline{\left(3 \cos ^{2} \vartheta-1\right)}=0
$$

Isotropic component:

$$
\hat{H}_{\delta, \mathrm{i}}=-\gamma B_{0} \delta_{\mathrm{i}}\left(\hat{I}_{z}\right)
$$

Anisotropic (axially symmetric) component:
$\hat{H}_{\delta, \mathrm{a}}=-\gamma B_{0} \delta_{\mathrm{a}}\left(3 \sin \vartheta \cos \vartheta \cos \varphi \hat{I}_{x}+3 \sin \vartheta \cos \vartheta \sin \varphi \hat{I}_{y}+\left(3 \cos ^{2} \vartheta-1\right) \hat{I}_{z}\right)$

Rhombic (asymmetric) component:

$$
\begin{aligned}
\hat{H}_{\delta, r}=-\gamma B_{0} \delta_{r}(& (-\cos 2 \chi \sin \vartheta \cos \vartheta \cos \varphi+\sin 2 \chi \sin \vartheta \cos \vartheta \sin \varphi) \hat{I}_{x}+ \\
& (-\cos 2 \chi \sin \vartheta \cos \vartheta \sin \varphi-\sin 2 \chi \sin \vartheta \cos \vartheta \cos \varphi) \hat{I}_{y}+ \\
& \left(\left(\cos 2 \chi \sin ^{2} \vartheta\right) \hat{I}_{z}\right)
\end{aligned}
$$

Averaging in isotropic solvent

Isotropic component:

$$
\hat{H}_{\delta, \mathrm{i}}=-\gamma B_{0} \delta_{\mathrm{i}}\left(\hat{I}_{z}\right)
$$

Anisotropic (axially symmetric) component:
$\hat{H}_{\delta, \mathrm{a}}=-\gamma B_{0} \delta_{\mathrm{a}}\left(3 \sin \vartheta \cos \vartheta \cos \varphi \hat{I}_{x}+3 \sin \vartheta \cos \vartheta \sin \varphi \hat{I}_{y}+\left(3 \cos ^{2} \vartheta-1\right) \hat{I}_{z}\right)$

Rhombic (asymmetric) component:

$$
\begin{aligned}
\hat{H}_{\delta, r}=-\gamma B_{0} \delta_{r}(& (-\cos 2 \chi \sin \vartheta \cos \vartheta \cos \varphi+\sin 2 \chi \sin \vartheta \cos \vartheta \sin \varphi) \hat{I}_{x}+ \\
& (-\cos 2 \chi \sin \vartheta \cos \vartheta \sin \varphi-\sin 2 \chi \sin \vartheta \cos \vartheta \cos \varphi) \hat{I}_{y}+ \\
& \left(\left(\cos 2 \chi \sin ^{2} \vartheta\right) \hat{I}_{z}\right)
\end{aligned}
$$

Isotropic component:

$$
\hat{H}_{\delta, \mathrm{i}}=-\gamma B_{0} \delta_{\mathrm{i}}\left(\hat{I}_{z}\right)
$$

Anisotropic (axially symmetric) component:
$\hat{H}_{\delta, \mathrm{a}}=-\gamma B_{0} \delta_{\mathrm{a}}\left(3 \sin \vartheta \cos \vartheta \cos \varphi \hat{I}_{x}+3 \sin \vartheta \cos \vartheta \sin \varphi \hat{I}_{y}+\left(3 \cos ^{2} \vartheta-1\right) \hat{I}_{z}\right)$

Rhombic (asymmetric) component:

$$
\begin{aligned}
\hat{H}_{\delta, r}=-\gamma B_{0} \delta_{r}(& (-\cos 2 \chi \sin \vartheta \cos \vartheta \cos \varphi+\sin 2 \chi \sin \vartheta \cos \vartheta \sin \varphi) \hat{I}_{x}+ \\
& (-\cos 2 \chi \sin \vartheta \cos \vartheta \sin \varphi-\sin 2 \chi \sin \vartheta \cos \vartheta \cos \varphi) \widehat{I}_{y}+ \\
& \left(\left(\cos 2 \chi \sin ^{2} \vartheta\right) \hat{I}_{z}\right)
\end{aligned}
$$

Hamiltonian without radio waves $\left(\vec{B}_{0}, \delta_{\mathrm{i}}\right)$

$$
\begin{aligned}
& \hat{H}_{0, \text { lab }}=-\gamma B_{0}\left(1+\delta_{\mathrm{i}}\right) \widehat{I}_{z}=\omega_{0} \widehat{I}_{z} \\
& \hat{H}_{0, \mathrm{rot}}=\left(\omega_{0}-\omega_{\mathrm{rot}}\right) I_{z}=\Omega \widehat{I}_{z}
\end{aligned}
$$

Hamiltonian with radio waves $\left(\vec{B}_{0}, \delta_{\mathrm{i}}, \vec{B}_{1}\right)$ Phase $=0(x)$:

$$
\hat{H}_{1, \mathrm{rot}}=\left(-\gamma B_{0}-\omega_{\mathrm{rot}}\right) \hat{I}_{z}-\gamma B_{1} \hat{I}_{x}=\Omega \hat{I}_{z}+\omega_{1} \hat{I}_{x}
$$

Phase $=\pi / 2(y)$:

$$
\hat{H}_{1, \mathrm{rot}}=\left(-\gamma B_{0}-\omega_{\mathrm{rot}}\right) \hat{I}_{z}-\gamma B_{1} \hat{I}_{y}=\Omega \hat{I}_{z}+\omega_{1} \hat{I}_{y}
$$

Hamiltonian without radio waves $\left(\vec{B}_{0}, \delta_{\mathrm{i}}\right)$

$$
\begin{aligned}
& \hat{H}_{0, \mathrm{lab}}=-\gamma B_{0}\left(1+\delta_{\mathrm{i}}\right) \widehat{I}_{z}=\omega_{0} \widehat{I}_{z} \\
& \widehat{H}_{0, \mathrm{rot}}=\left(\omega_{0}-\omega_{\mathrm{rot}}\right) I_{z}=\Omega \widehat{I}_{z}
\end{aligned}
$$

Hamiltonian with radio waves $\left(\vec{B}_{0}, \delta_{\mathrm{i}}, \vec{B}_{1}\right)$ Phase $=0(x)$, close to resonance $\Omega \ll \omega_{1}$:

$$
\hat{H}_{1, \text { rot }}=\Omega \hat{I}_{z}+\omega_{1} \hat{I}_{x} \approx \omega_{1} \hat{I}_{x}
$$

Phase $=\pi / 2(y)$, close to resonance $\Omega \ll \omega_{1}$:

$$
\hat{H}_{1, \text { rot }}=\Omega \hat{I}_{z}+\omega_{1} \widehat{I}_{x} \approx \omega_{1} \hat{I}_{y}
$$

The procedure requires knowledge of

1. the operator representing the measurable quantity $\left(\hat{M}_{+}\right)$
2. all Hamiltonians (\mathscr{H})
3. relation(s) describing the initial state of the system ($\widehat{\rho}(0)$)

Thermal equilibrium as the initial state

Classically, $\mathcal{E}_{j}=-\vec{\mu}_{j} \cdot \vec{B}_{0}=-\mu B_{0} \cos \vartheta_{j}=-\mu_{z, j} B_{0}$
Boltzmann: $P(\vartheta)=\mathrm{e}^{-\mathcal{E}(\vartheta) / k_{\mathrm{B}} T} \approx 1-\mathcal{E}(\vartheta) / k_{\mathrm{B}} T$ for $\mathcal{E}(\vartheta) \ll k_{\mathrm{B}} T$

Quantum mechanically, \mathcal{E} is eigenvalue of $\hat{H}=-\gamma B_{0}\left(1+\delta_{\mathrm{i}}\right) \hat{I}_{z} \approx-\gamma B_{0} \widehat{I}_{z}$

$$
\hat{\rho}^{\mathrm{eq}}=\left(\begin{array}{cc}
\frac{1}{2}+\frac{\gamma B_{0} \hbar}{4 k_{\mathrm{B}} T} & 0 \\
0 & \frac{1}{2}-\frac{\gamma B_{0} \hbar}{4 k_{\mathrm{B}} T}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\frac{\gamma B_{0} \hbar}{4 k_{\mathrm{B}} T}\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)=\mathscr{I}_{t}+\kappa \mathscr{I}_{z}
$$

Mixed state: The two-dimensional density matrix does not imply that all magnetic moments are in one of two eigenstates!

Relaxation due to chemical shift anisotropy

Bloch - Wangsness - Redfield semiclassical theory
(spin magnetic moments classically, molecular environment classically)

$$
\begin{gathered}
R_{1}=\frac{3}{4} b^{2}\left(\frac{1}{2} J\left(\omega_{0}\right)+\frac{1}{2} J\left(-\omega_{0}\right)\right) \approx \frac{3}{4} b^{2} J\left(\omega_{0}\right) \\
R_{2}=b^{2}\left(\frac{1}{2} J(0)+\frac{3}{8} J\left(\omega_{0}\right)\right) \approx R_{0}+\frac{1}{2} R_{1}
\end{gathered}
$$

One pulse experiment

HOMEWORK: Section 7.8

Conclusions

Density matrix evolves as

$$
\hat{\rho}(t) \propto\left(\mathscr{I}_{x} \cos (\Omega t+\phi)+\mathscr{I}_{y} \sin (\Omega t+\phi)+\text { terms orthogonal to } \mathscr{I}_{+},\right.
$$

Magnetization rotates during signal acquisition as

$$
\left\langle M_{+}\right\rangle=\left|M_{+}\right| \mathrm{e}^{-R_{2} t} \mathrm{e}^{\mathrm{i} \Omega t}=\left|M_{+}\right| \mathrm{e}^{-R_{2} t} \mathrm{e}^{\mathrm{i} \phi}(\cos (\Omega t)+\mathrm{i} \sin (\Omega t))
$$

unimportant phase shift which is empirically corrected

Fourier transform gives a complex signal proportional to

$$
\frac{\mathcal{N} \gamma^{2} \hbar^{2} B_{0}}{4 k_{\mathrm{B}} T}\left(\frac{R_{2}}{R_{2}^{2}+(\omega-\Omega)^{2}}-\mathrm{i} \frac{\omega-\Omega}{R_{2}^{2}+(\omega-\Omega)^{2}}\right)
$$

Signal

$$
\hat{\rho}(t) \propto\left(\mathscr{I}_{x} \cos (\Omega t+\phi)+\mathscr{I}_{y} \sin (\Omega t+\phi)+\text { terms orthogonal to } \mathscr{I}_{+},\right.
$$

cosine modulation of $\mathscr{I}_{x}=$ real component of signal
sine modulation of $\mathscr{I}_{y}=$ imaginary component of signal

$$
\left|M_{+}\right| \mathrm{e}^{-R_{2} t} \mathrm{e}^{\mathrm{i} \phi}(\cos (\Omega t)+\mathrm{i} \sin (\Omega t))
$$

Spectrum

After Fourier transformation:

$$
\frac{\mathcal{N} \gamma^{2} \hbar^{2} B_{0}}{4 k_{\mathrm{B}} T}\left(\frac{R_{2}}{R_{2}^{2}+(\omega-\Omega)^{2}}-\mathrm{i} \frac{\omega-\Omega}{R_{2}^{2}+(\omega-\Omega)^{2}}\right)
$$

Signal-to-noise ratio

$$
\text { Signal/noise }=K \frac{\hbar^{2} N|\gamma|^{5 / 2} B_{0}^{3 / 2}}{k_{\mathrm{B}}^{3 / 2} T_{\text {sample }}^{3 / 2}} \cdot \underbrace{\frac{1-\mathrm{e}^{-R_{2} t_{2, \max }}}{R_{2} t_{2}^{1 / 2}}}_{\text {Relaxation }}
$$

Relaxation: $\sim 1 / R_{2}$ for long acquisition time $t_{2, \max }$
$1 / R_{2} \approx 6 D^{\mathrm{rot}} / b^{2}$ for large rigid spherical molecules

$$
6 D^{\mathrm{rot}}=\frac{3 k_{\mathrm{B}} T}{4 \pi r^{3} \eta(T)},
$$

$1 / b^{2}=\gamma^{-2} B_{0}^{-2} \delta_{\mathrm{a}}^{-2}$ for chemical shift anisotropy,
but chemical shift anisotropy is usually not dominant
\Rightarrow High field/high γ usually advantageous (exception: ${ }^{13} \mathrm{C}=$)

