C8953 NMR strukturní analýza seminář COSY,NOESY

Jan Novotný 176003@is.muni.cz

March 18, 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

NOESY - introduction

Nuclear Overhauser effect

- dipol-dipol interaction
- magnetisation transfer TROUGH SPACE as a consequence of cross-relaxation

NOESY

 correlates nuclei if their distance is smaller than 5 Å

NOE vs. size of a molecule

Correlation time τ_{c}

- $\omega_0 \tau_c < 1 \Leftrightarrow \omega_0 \frac{1}{f} < 1 \Leftrightarrow \omega_0 < f \text{ (small molecules } \ll 1 \text{ kDa})$
 - fast molecular motion, ββ → αα dominates ⇒ W₂ > W₀
 - positive NOE
 - crosspeaks have opposite phase relative to diagonal
- $\omega_0 \tau_c > 1$ (large molecules $\gg 1$ kDa)
 - Slow molecular motion, αβ → βα dominates ⇒ W₀ > W₂
 - negative NOE
 - crosspeaks have the same phase
- $\omega_0 \tau_c \approx 1$ (cca 1 kDa)
 - NOE≈0 no crosspeaks
 - ROESY

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Application of NOESY

Mixing time $\tau_{\rm mix}$

- small molecules $\tau_{\rm mix} \approx 500-800\,{\rm ms}$
- biomolecules $\tau_{\rm mix} \approx 50 300 \, {\rm ms}$

approximative determination of interatomic distatces (< 5 Å)

- ▶ at short \(\tau_{mix}\)
- ▶ r_{ij}≈A×I_{ij}

NOE differential experiment

PROBLEM 4

NOE-Difference Spectroscopy

Figure 4.1 shows the ¹H NMR and a ¹H NOE difference spectrum of a 3-indolylacetic acid derivative 13 bearing a methoxy group at the benzenoic ring.

What is the position of the methoxy group?

(400 MHz 1H)

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

= 900

Fig. 4.1. 400 MHz $^{1}\rm H$ NMR spectrum of 13 in a mixture of CDCl₃ and CD₃OD. a Full spectrum; b expanded section of the aromatic proton signals; c $^{1}\rm H$ NOE difference spectrum, same section as in b, irradiation position at δ = 3.64.

NOE differential experiment

PROBLEM 4

NOE-Difference Spectroscopy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ(?)

NOESY - Palmatine

▲母▶▲臣▶▲臣▶ 臣 のへで

NOESY - Palmatine

Eserine ¹H

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

æ Ξ. æ

Colchicine 1D-1H

Colchicine - DQF-COSY

Colchicine - DQF-COSY

900

Colchicine - NOESY

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ(?)

Colchicine - NOESY

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Next session:

? Heteronuclear correlation

