





The ability of a solid material to exist in multiple forms or crystal structures known as polymorphs; Polymorphs have different energy of their crystal lattices, and consequently different melting points, solubilities etc.

Do not mix up polymorphism with **crystal morphology** – a compound under different conditions crystallizes in different shapes – **habits**, but a polymorph is still the same;

**Pseudopolymorphs** – the crystal lattice contains some amount of solvent (solvates, hydrates)





Some polymorphs of ice

Kurt Vonnegut – Cat's Cradle -New water modification - Ice Nine supposedly inspired by Irving Langmuir (General Electric Co.)

**Ice IX** really exists, it is stable at T below 140 K and pressure between 200 – 400 MPa; Ice IX fortunately does not have properties described in the novel!



McCrone criterion – Polymorphs differ in crystalline structure, but molecules are identical in liquid and gaseous states;

**McCrone's statement** – every compound has different polymorphs, and that, in general, the number of forms known for a given compound is proportional to the **time** and **money** spent in research on that compound.

Polymorphs of cocoa butter

| Crystal form | Formation conditions                                                | т. р. [°C] |   |
|--------------|---------------------------------------------------------------------|------------|---|
| 1            | rapid cooling of the melt                                           | 17.3       |   |
| н            | rapid cooling of the melt at 2 °C/min                               | 23.3       |   |
| ш            | crystallization of the melt at 5~10 °C, converts into II at 5~10 °C | 25.5       | 0 |
| IV           | crystallization at 16-21 °C                                         | 27.3       |   |
| V            | slow crystallization of the melt                                    | 33.8       | C |
| VI           | from form V after several months at RT                              | 36.3       |   |
|              |                                                                     | 0          |   |



Enantiotropic polymorphs – more stable form depends on temperature



Transition temperature for enantiotropic polymorphs is **independent** on a solvent;



Metastable zone width is however strongly influenced by selected solvent;
Ostwald's step rule – for several possible polymorphs (in metastable zone)
less stable polymorph is formed preferentially;
Possible formation of different polymorphs in different solvents;

**Concomitant polymorphism** 







## Burger (Ramberg) rules

Heat of Transition rule

- Polymorphs are enantiotropically related if endothermic heat of transition from a lower melting form to a higher melting form is observed;

Heat of Fusion rule

- Polymorphic pairs are enantiotropically related if the low melting form has the higher heat of fusion, otherwise they are monotropically related;

### Entropy of Fusion rule

- Polymorphs are enantiotropically related if the high melting form has the lower entropy of fusion, otherwise they are monotropes;

It is recommended to confirm DSC results with experimental microscopic observations, solubility determination or slyrrying.

# POLYMORPHISM Burger (Ramberg) rules Heat of Transition rule





(2000)

#### Protease inhibitor for HIV (Abbott, Norvir)

Chemburkar, S.R. et al Org. Process Res. Qey 4, 413

# **Disappearing polymorph**

## **Ritonavir Case**

NDA (New Drug Application) filed in December 1995; Two years after some lots of the product (semisolid capsules with Form I) failed a dissolution specification; The new crystal form (Form II) was found; Form II is thermodynamically more stable than Form I Samples of Form II brought to a laboratory to study – within a few days all of the lots of ritonavir turned to Form II; Form I manufacturing failed from this point and "disappeared"

# **Disappearing polymorph**

## **Ritonavir Case**

Causes:

- Small amounts of impurity
- Residual solvent

Solutions:

- Develop new manufacturing process for the preparation of Form I and also Form II;
- Develop new formulations with either Form.



### Dunitz, J.D. et al Acc. Chem. Res. 28, 193 (1995)

## Bučar, D.-K. et al Angew. Chem. Int. Ed. Engl. 54, 6972 (2015)

