THERMAL SAFETY

Molar enthalpy of a reaction – is the heat released (or absorbed) in a chemical reaction at constant pressure when simple substances combine into complex product;

Δ H_R [kJ mol⁻¹];

Specific heat of a reaction – the amount of heat energy required to raise the temperature of a body per unit of mass (standard – in J by 1 K for 1 g; e.g. water has 4.18 J); Q_{R}' [kJ kg⁻¹]; Heat capacity – the amount of energy required to raise the energy of the system by 1 K; C_{p} [J K⁻¹];

THERMAL SAFETY

Time to Maximum Rate (under Adiabatic Conditions) (TMR_{ad}) – the higher the temperature the faster the reaction and the shorter TMR_{ad}, can be determined by the DSC measurement;

Time of No Return (TNR)

MTSR ... Maximum Temperature of the Synthesis Reaction

COOLING FAILURE SCENARIO

- 1. Can the proces temperature be controlled by the cooling system?
- Sufficient cooling of the system depends on e.g. viscosity of the mixture, power of a cooling system, possible fouling of the reactor walls, an area for heat exchange, efficient stirring;
- Heat release rate of the reaction is relatively easily obtained from reaction calorimetry measurement.

- 2. What temperature can be attained after runaway of the desired reaction?
- After the cooling failure unconverted reactants will react in an uncontrolled way and it leads to an adiabatic temperature increase;
- The available energy is proportional to the accumulated fraction;
- At higher temperature even (desired) products can further react providing additional heat increase.

- 2. What temperature can be attained after runaway of the desired reaction?
- The Concept of Maximum Temperature of the Synthesis Reaction (MTSR)

$$MTSR = T_p + X_{ac} \times \Delta T_{ad}$$

 $T_p \ldots$ desired reaction temperature $X_{ac} \ldots$ degree of accumulation of unconverted reactants $\Delta T_{ad} \ldots$ the adiabatic temperature raise

- 3. What temperature can be attained after runaway of the secondary reaction?
- At higher temperature the secondary reactions might be triggered – it leads to further runaway;
- At higher temperature even (desired) products can further react providing additional heat increase;
- Data can be obtained from the DSC and adiabatic calorimetry measurement.

- 4. At which moment does the cooling failure have the worst consequences?
- The time where the accumulation is at a maximum and/or the thermal stability of the reaction mixture is critical;
- In order to answer this question both the synthesis reaction and secondary reactions must be known;
- Data obtained from the reaction and adiabatic calorimetry, and the DSC measurements can help to answer this question.

5. How fast is the runaway of the desired reaction?

- Usually, the industrial reactors are operated at temperature where the desired reaction is relatively fast;
- A temperature increase above the normal proces temperature thus will cause a significant acceleration of the reaction rate (the van't Hoff criterion);
- Duration of the main reaction runaway may be estimated using the initial heat release rate of the reaction and the concept of the Time to Maximum Rate (TMR).

6. How fast is the runaway of the decomposition reaction starting at MTSR?

- The dynamics of the secondary reactions plays an important role in the determination of the probability of an incident;
- Again, the concept of the Time to Maximum Rate (TMR) is useful.

The answers to all six questions represent a systematic way of analysing the thermal safety of a proces and building the cooling failure scenario.

Thermal risk assessment based on **severity** and **probability** of the event.

SEVERITY OF COOLING FAILURE SCENARIO

$$\Delta T_{ad} = \frac{Q'}{c_{p'}}$$

 ΔT_{ad} ... increase of temperature under adiabatic conditions Q' ... specific energy of the reaction

c_p' ... specific heat capacity (water 4.2 kJ kg⁻¹ K⁻¹; organic solvents around 1.8 kJ kg⁻¹ K⁻¹; inorganic acids around 1.3 kJ kg⁻¹ K⁻¹)

Simplified	Extended	ΔT_{ad} (K)	Order of magnitude of Q' kJ kg ⁻¹
High	Catastrophic	>400	>800
	Critical	200-400	400-800
Medium	Medium	50-100	100-400
Low	Negligible	<50 and no pressure	<100

PROBABILITY OF COOLING FAILURE SCENARIO

The probability can be evaluated using the time scale.

If, after the cooling failure, there is enough time left to take emergency measures before the runaway becomes too fast, the probability of the runaway will remain low.

Simplified	Extended	TMR _{ad} (h)
High	Frequent	<1
	Probable	1–8
Medium	Occasional	8–24
Low	Seldom	24–50
	Remote	50-100
	Almost impossible	>100

T_p ... proces temperature; MTSR ... Maximum Temperature of the Synthesis Reaction; T_{D24} ... temperature at which the Time to Maximum Rate is 24 h; MTT ... Maximum Technical Temperature (e.g. boiling point)

Mettler Toledo

Criticality Class 1

- MTSR < MTT
- Very safe
- Evaporative cooling serves as an additional safety barrier
- Reaction mass should not be held for a very long time under heat accumulation conditions

Criticality Class 2

- MTSR < MTT;
- but MTT > T_{D24} , the decomposition reaction can be triggered if the reaction mass is maintained for a long time under heat accumulation conditions;
- Still low risk scenario

Criticality Class 3

- MTSR > MTT;
- Safety of the process depends on the heat release rate of the synthesis reaction at MTT;
- Get ready to do pressure release;
- Decomposition reaction should not be triggered in 24 hours

MTSR

3

Criticality Class 4

- MTSR > MTT;
- Moreover, MTSR > T_{D24} ;
- Safety of the proces depends on the heat release rate of both the synthesis reaction and the decomposition reaction;

4

Criticality Class 5

- MTSR > T_{D24}; after loss of control of the reaction the decomposition will be triggered;
- It is very unlikely that evaporative cooling or the pressure relief can serve as a safety barrier;
- This is very dangerous and unacceptable scenario;

5