Problems Week 11

1. Photons can scatter against each other even though it happens rarely. An observer sees two photons going towards each other, in his orthogonal space, with energies E_1 and E_2 . One of them is scattered an angle θ . The orthogonal space picture is

Calculate its energy as measured by the observer.

- 2. Consider two parallel null lines and a vector \bar{r} connecting them which is orthogonal to them. Show that *all* vectors connecting the lines are orthogonal to them. Show also that all such vectors have the same length.
- **3.** Protons (p^+) and anti-protons (p^-) have the same mass, m. Protons are accelerated to energy E and then collide with a proton at rest, all with respect to the laboratory. What energy E is needed to form an anti-proton through the process

$$p^+ + p^+ \to p^+ + p^+ + p^+ + p^-?$$

4. A particle travels along a worldline given by $\overline{R} = \overline{R}(\tau)$ where τ is the proper time. Along the whole worldline we have

$$\hat{u} \cdot A = 0,$$

with \hat{u} a constant four-velocity and A the four-acceleration of the particle. Express this in a simple way in terms of the particle's velocity relative to \hat{u} .

5. Four spaceships with travel times τ_1 , τ_1 , τ_2 , τ_2 part and meet according to the planar spacetime diagram

Show that opposite worldlines are parallel. [Hint: Calculate $(\bar{A} + \bar{B}) \cdot (\bar{A} - \bar{B})$ and $(\bar{C} + \bar{D}) \cdot (\bar{A} - \bar{B})$.]

- 6. A rocket is propelled by some of its mass being ejected backwards with velocity v relative to the rocket. It moves in a straight line, i.e. the motion is in a 2-plane in spacetime. It is driven until its velocity with respect to the initial state is u. Calculate the ratio of final mass to initial mass of the rocket.
- 7. Let \bar{n} be a null vector. Show that if $\bar{k} \cdot \bar{n} = 0$ then \bar{k} is either space-like or proportional to \bar{n} .
- 8. A light source is moving away from an observer U with velocity v. Another observer V is also moving away with velocity v but perpendicular to the direction of motion of the light source. When the source emits a light signal it is as far from the origin as V is when he receives it.

Calculate the Doppler shift ω_V/ω_0 where ω_0 is the frequency measured by an observer traveling with the light source.

9. Two observers currently at the same location observe a small distant object in their direction of travel. One observes the object to be twice as big as the other. What is their relative velocity.