Problems Week 6

- 1. The timelike unit vectors \hat{u} , \hat{v} and \hat{w} lie in a 2-plane in spacetime. Assume $\hat{u} \cdot \hat{v}$ and $\hat{v} \cdot \hat{w}$ are known.
 - a) Calculate $\hat{u} \cdot \hat{w}$.
 - b) Write $-\hat{u}\cdot\hat{v} = \cosh\zeta$, $-\hat{v}\cdot\hat{w} = \cosh\eta$ and $-\hat{u}\cdot\hat{w} = \cosh\xi$. Express ξ in terms of ζ, η .
- 2. Two galaxies have four-velocities \hat{u} and \hat{v} respectively. A light signal is emitted from one of them (event R_1) which is absorbed by the other (event R_2). Calculate the Doppler shift.
- 3. Two unaccelerated spaceships are about to meet. A light signal is sent from ship A to ship B and the Doppler shift is given by $\omega_B/\omega_A = d$. Ship A measures proper time τ_A from emission to meeting and B measures time τ_B from receiving the signal to meeting. Calculate τ_A/τ_B .