Problems Week 6

1. The timelike unit vectors \hat{u}, \hat{v} and \hat{w} lie in a 2 -plane in spacetime. Assume $\hat{u} \cdot \hat{v}$ and $\hat{v} \cdot \hat{w}$ are known.
a) Calculate $\hat{u} \cdot \hat{w}$.
b) Write $-\hat{u} \cdot \hat{v}=\cosh \zeta,-\hat{v} \cdot \hat{w}=\cosh \eta$ and $-\hat{u} \cdot \hat{w}=\cosh \xi$. Express ξ in terms of ζ, η.
2. Two galaxies have four-velocities \hat{u} and \hat{v} respectively. A light signal is emitted from one of them (event R_{1}) which is absorbed by the other (event R_{2}). Calculate the Doppler shift.
3. Two unaccelerated spaceships are about to meet. A light signal is sent from ship A to ship B and the Doppler shift is given by $\omega_{B} / \omega_{A}=d$. Ship A measures proper time τ_{A} from emission to meeting and B measures time τ_{B} from receiving the signal to meeting. Calculate τ_{A} / τ_{B}.
