Problems Week 7

1. Consider the sum of two light waves

$$
\psi=\cos ((\bar{K}-\bar{L}) \cdot R)+\cos ((\bar{K}+\bar{L}) \cdot R),
$$

with \bar{K}, \bar{L} linearly independent. Write this as a wave $A \cos (\bar{K} \cdot \bar{R})$ with modulated amplitude. Show that

$$
\bar{K}^{2}+\bar{L}^{2}=\bar{K} \cdot \bar{L}=0
$$

Show also that one of \bar{K}, \bar{L} must be timelike and the other spacelike. Let \bar{K} be timelike and pick an observer with four-velocity \hat{K}. What does the wave look like as measured by him?
2. Show that a photon (massless particle) cannot decay into an electron and a positron (both with mass $m>0$). Show that the reverse process is also impossible. Show also that an electron cannot go into an electron and a photon.
3. A particle of mass M decays into two particles with masses m_{1}, m_{2}. What are the energies of the three particles as measured by an observer at rest with respect to the decaying particle?

