Problems Week 9

1. The spacetime position of a particle is given by $\overline{R}(\tau)$ where τ is the proper time. It is observed by an observer with four-velocity \hat{u} . The particle's four-velocity is

$$\hat{v} = \gamma(\hat{u} + \bar{v}) \,.$$

Give corresponding expressions for the four-acceleration \bar{A} and \bar{A}^2 .

2. A particle moves so that

$$\frac{dA}{d\tau} = \alpha^2 \hat{v} \,,$$

where \bar{A} is the four-acceleration and \hat{v} the four-velocity. Show that $\bar{A}^2 = \alpha^2$. Also show that α is constant along the particle's worldline. What is the physical interpretation of this fact?

3. Assume that for a particle moving in a 2-plane in spacetime

$$\bar{A}^2 = \alpha^2 = \text{constant}$$
.

Show that

$$\frac{d\bar{A}}{d\tau} = \alpha^2 \hat{v} \,.$$

This is the converse of the previous problem.