Problems Week 9

1. The spacetime position of a particle is given by $\bar{R}(\tau)$ where τ is the proper time. It is observed by an observer with four-velocity \hat{u}. The particle's four-velocity is

$$
\hat{v}=\gamma(\hat{u}+\bar{v}) .
$$

Give corresponding expressions for the four-acceleration \bar{A} and \bar{A}^{2}.
2. A particle moves so that

$$
\frac{d \bar{A}}{d \tau}=\alpha^{2} \hat{v}
$$

where \bar{A} is the four-acceleration and \hat{v} the four-velocity. Show that $\bar{A}^{2}=\alpha^{2}$. Also show that α is constant along the the particle's worldline. What is the physical interpretation of this fact?
3. Assume that for a particle moving in a 2-plane in spacetime

$$
\bar{A}^{2}=\alpha^{2}=\text { constant } .
$$

Show that

$$
\frac{d \bar{A}}{d \tau}=\alpha^{2} \hat{v}
$$

This is the converse of the previous problem.

