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Surface properties affects interaction of material (metals, plastic,
powder, etc.) with the environment (water, polymers, in vivo...) and
specific chemical composition and morphology is required for
particular application.

Surface Chemistry influences cell adhesion, fouling of bioorganisms,
adhesion between different phases of composite materials.

Often the application of material with noble bulk properties (hardness,
flexibility, chemical stability) is not possible due to low surface free
energy, or too reactive surface instead.

Deposition of thin film can tune surface properties without degradation
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Interface
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Substrate * Substrate properies * Diffussion barriers
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Technique Probe Depth | Lateral Informa- Advantage (+) and
In/Out resolu- | resolu- tion drawback (-)
tion, tion, nm
nm
Contact angle | Liquid 0.1 1000 Surface + Fast acquisition
sl energy - No molecular
el information
X-Ray X-Ray/ 5 3000 Elemental + Quantitative
photoelectron | electrons composition + Information about the
spectroscopy (except H), :
XPS binding neighbours of the atoms
state - Limited Molecular
information
- sensitivity >0.1 at%
Scanning Electrons/ | 3 2 Surface - No direct information
electron electrons image regarding the
microscopy topography.
SEM

Technique Probe | Depth | Lateral Informa- Advantage (+) and
In/Out | resolu- | resolu- tion drawback (-)
tion, tion, nm
nm
Energy Electrons/ | 2000 100 Elemental - Low precision of
Dispersive X-Ray information | quantification
analysis
IR attenuated | IRIR | ~2000 | 2000 Surface | ¥ Festacquisition
total reflection composition | +Information regarding
ATR-FTIR binding the molecular functions
SEUD - Overlap of some
chemical domains
-Quantification is not
possible
Time of Flight | lons/lons | 1 100 Surface + Highly Sensitive (>1
Secondary lon composition | ppm)

Mass
Spectrometry
(ToF-SIMS)

+Molecular information
is possible

+ 3D reconstruction of
the layer

- non quantitative




Methods based on the radiation of
material by photons :
XPS
XRD
UPS
UV-Vis spectrophotomentry
IR spectroscopy



Interaction of photons with matter

The interaction §

of radiation with [*rays
matter.
| Photoionization |

lonizati

wnergy | Utraviole
Large numberof [N o
available energy
states, strongly
absorbed.

Small number of
available states,
almost transparent.




X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy
for Chemical Analysis (ESCA) is a widely used technique to investigate the
chemical composition of surfaces. X-ray Photoelectron spectroscopy, based on
the photoelectric effect, was developed in the mid-1960’s by Kai Siegbahn and
his research group at the University of Uppsala
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Incident X-ray

\

The Photoelectric Process

@ Ejected Photoelectron

/ Free @ XPS spectral lines are

Electron
Level
Fermi

Level

about the sample surface

Conduction Band
2p L2,L3
2 LI
Is @=L K

identified by the shell from
which the electron was
gjected (1s, 2s, 2p, eflc.).

The ejected photoelectron has
kinetic energy:

KE=hv-BE-®
Following this process, the
atom will release energy by

the emission of an Auger
Electron.

XPS involves irradiating a sample with X-rays of a characteristic energy and measuring the flux of electrons
leaving the surface. The energy spectrum for the ejected electrons is a combination of an overall trend due to
transmission characteristics of the spectrometer, energy loss processes within the sample and resonance
structures that derive form electronic states of the material under analysis. The instrumental contribution is
an unwelcome fact of the measurement process, but the background and resonance peaks offer information




Auger Relation of Core Hole

@ Enmitted Auger Electron

/ Free & L electron falls to fill core level
E"‘fﬂl}r on vacancy (step 1).
Conduction Ban 1 Leve, & KLL Auger electron emitted to
Fermi conserve energy released in
Level step 1.
& The kinetic energy of the
emitted Auger electron is:
L2 L3 KE=E(K)-E(L2)-E(L3).
o0 L
K
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Sample/Spectrometer Energy Level Diagram-
Conducting Sample
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Sample | Spectrometer
Free Electron Energy

Vacuum Level, E,

Fermi Level, E;

E 1
Because the Fermi levels of the sample and spectrometer are aligned, we only need

to know the spectrometer work function, @, to calculate BE(1s).




Chemical Shifts

O

Chemical Shifts - Electronegativity Effects
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Chemical Shifts
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Chemical Shifts- Electronegativity Effects

Functional Binding Energy

Group (eV)
hydrocarbon C-H, C-C 285.0
amine C-N 286.0
alcohol, ether  C-O-H, C-O-C 286.5
Cl bound to C C-Cl 286.5
F bound to C C-F 287.8
carbonyl/ C=0 288.0




Final Effects - Coupling
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Electronic Effects - Spin-Orbit Coupling
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Angular Momentum Coupling

L-S coupling
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Final Effects — shake-up

Final State Effects —Qhake—up/ Shake-oft

Results from energy made available in the relaxation of the final state
configuration (due to a loss of the screening effect of the core level electron which

underwent photoemission).
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Electron Scattering Effects
Energy Loss Peaks
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Electron Scattering Effects
Plasmon Loss Peak
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constrained to move within energy
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Figure 5: Clean Aluminium Spectrum showing plasmon resonance structures
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Depth of analysis and Mean Free Path
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Quantification

Iy ~ QA cAdh NT'LL f(0.0). (7.25)

where @ is the photon flux [em™s™!], A effective are of the sample, ¢y concentration of A,
o'’y is the partial ionization cross section, A\’ mean free path, 7" the transmission, L’ angular
asymmetry coefficient and f(¢, /) function, depending on the geometry of the experiment.

Iy, cad\ NT'Ly

I, cgobNTILYy,  cpoh L




Survey Spectra

CPS
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Intensity
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Narrow Scan -> Environments




Chemical derivatization CD-XPS

(CH3)4C—N=C=N-C(CHa)3
‘}—COOH+ CFs—CHOH — & I—COO—CHz—CFS
pyridine




PECVD of C2H4+NH3
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Loss of Thickness (%)

More nitrogen — more amines but higher
thickness loss.

J.-C. Ruiz, A. St-Georges-Robillard, C. Thérésy, S. Lerouge, M. R. Wertheimer

Plasma Process. Polym. 2010, 7, 737-753
© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Loss of thickness (%)

Stability of amine films prepared from NH3 / C2H2 mixture
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More nitrogen — more amines but
higher thickness loss.

Angel Contreras-Garcia » Michael R. Wertheimer Plasma
Chem Plasma Process (2013) 33:147-163
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Effects of amide and amine plasma-treated ePTFE vascular
grafts on endothelial cell lining in an artificial
circulatory system

David Y. Tseng,' Elazer R. Edelman'”

"Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139

zﬂepmimmt of Medicine, Cardiovascular Division, Brigham and Women's Hopsital, Harvard Medical School,

Boston, Massachusetis 02115
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Figure 6. Bar graph showing the percentages of endothe-
lial cell adhesion on plasma coated (open bar) and uncoated
500 (solid bar) PTFE disks, respectively. Statistical analysis
showed a significant difference of endothelial cell adhesion
o between uncoated and coated PTFE disks (p < 0,003, n = 8).
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The data are presented as mean + SE.
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Amine concentration (nmol/'cm?)

Surface properties of and cell adhesion onto allylamine-plasma-

coated polyethylenterephtalat membranes
P. Hamerh, Th. Weigel*, Th. Groth, D. Paul
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Fig. 4. Amine concentration of deposited allylamine films.
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