Exam Problems: Non-linear waves and soli-
tons, Spring 2020

1. Two-soliton solution. Construct the two-soliton solution of the non-
linear Schrodinger equation

it +u” 4+ ulul* = 0.

2. Zero curvature representation and conservation laws. Consider the lin-
ear system of equations

Vi=LV, V=MV,

where
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depend on z,t as well as the auxiliary spectral parameter A\. Show
that the compatibility condition for the linear problem leads to the
non-linear Schrodinger equation for .

Define the functions p; recursively as
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It turns out that the charges

Qk:/ prdx
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are conserved. Show this for k£ = 0,1, 2.

3. Sine-Gordon equation. Show that the Sine-Gordon (SG) equation
u' — i =sinu

can be cast in the ZS scheme by taking the 4 x 4 matrix operators
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where I denotes the 4 x 4 and 2 x 2 unit matrices (in the block matrices
0 i ) is one of the Pauli

0 denotes the 2 X 2 zero matrix) and oy = ( 0

matrices. You can assume that
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satisfies [0, fAl] = woy, B = —igyD and C = iDay where
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and u,w are functions of x,t.



