Exam Problems: Non-linear waves and solitons, Spring 2020

1. Two-soliton solution. Construct the two-soliton solution of the nonlinear Schrödinger equation

$$
i \dot{u}+u^{\prime \prime}+u|u|^{2}=0 .
$$

2. Zero curvature representation and conservation laws. Consider the linear system of equations

$$
V^{\prime}=L V, \quad \dot{V}=M V,
$$

where

$$
L=\frac{i}{2}\left(\begin{array}{cc}
\lambda & u^{*} \\
2 u & -\lambda
\end{array}\right), \quad M=\frac{i}{2}\left(\begin{array}{cc}
\lambda^{2}-|u|^{2} & -i u^{\prime *}+\lambda u^{*} \\
2 i u^{\prime}+2 \lambda u & -\lambda^{2}+|u|^{2}
\end{array}\right)
$$

and V is a two-component vector $V=\binom{V_{1}}{V_{2}}$. Here L, M, V all depend on x, t as well as the auxiliary spectral parameter λ. Show that the compatibility condition for the linear problem leads to the non-linear Schrödinger equation for u.
Define the functions ρ_{k} recursively as

$$
\rho_{k}=-\frac{u^{\prime}}{u} \rho_{k-1}+\rho_{k-1}^{\prime}+\frac{1}{2} \sum_{j=0}^{k-2} \rho_{j} \rho_{k-2-j}, \quad \rho_{0}=|u|^{2} .
$$

It turns out that the charges

$$
Q_{k}=\int_{-\infty}^{\infty} \rho_{k} d x
$$

are conserved. Show this for $k=0,1,2$.
3. Sine-Gordon equation. Show that the Sine-Gordon (SG) equation

$$
u^{\prime \prime}-\ddot{u}=\sin u
$$

can be cast in the ZS scheme by taking the 4×4 matrix operators

$$
\Delta_{0}^{(1)}=\alpha I \frac{\partial}{\partial t}+\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right) \frac{\partial}{\partial x}, \quad \Delta_{0}^{(2)}=\left(\begin{array}{cc}
i \sigma_{2} & 0 \\
0 & 0
\end{array}\right) \frac{\partial}{\partial x},
$$

where I denotes the 4×4 and 2×2 unit matrices (in the block matrices 0 denotes the 2×2 zero matrix) and $\sigma_{2}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$ is one of the Pauli matrices. You can assume that

$$
\widehat{K}=\left(\begin{array}{ll}
\widehat{A} & \widehat{B} \\
\widehat{C} & \widehat{D}
\end{array}\right)
$$

satisfies $\left[\sigma_{2}, \widehat{A}\right]=w \sigma_{1}, \widehat{B}=-i \sigma_{2} \tilde{D}$ and $\widehat{C}=i \tilde{D} \sigma_{2}$ where

$$
\tilde{D}=\frac{1}{4}\left(\begin{array}{cc}
e^{i u / 2} & 0 \\
0 & e^{-i u / 2}
\end{array}\right)
$$

and u, w are functions of x, t.

