Problems Week 5

1. A sech? potential. Verify that the solution to the associated Legendre
equation
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behaves asymptotically as

where
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The hypergeometric function is defined as
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It satisfies the following identity due to Euler
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2. The scattering coefficients. With u(z) = —U, sech®z show, by using the
properties of the gamma function, that a(k) and b(k) in the previous
problem satisfy the conditions
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3. Inverse scattering about —oo. Find the equation for L(zx, z) if
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V_(wyk) = e ™" +/ L(z,2)e ™ dz
is a solution of ¢" 4+ (A —u(z))y = 0. What boundary conditions must
L(z, z) satisfy?



