Fyzika biopolymerů

Solvatace

Robert Vácha

Kamenice 5, A4 2.13
robert.vacha@mail.muni.cz

IIUNI CEITEC (

Solvatace

IUPAC definition: solvation is an interaction of a solute with the solvent, which leads to stabilization of the solute species in the solution. In the solvated state, a solute in a solution is surrounded or complexed by solvent molecules. Solvated species can solution is surrounded or complexed by solvent molecules. Solvated species can
often be described by coordination number, and the complex stability constants.
první solvatační vrstva - je v kontaktu s rozpuštěnou látkou a je nejvíce ovlivněna druhá solvatační vrstva - je v kontaktu s prvni solvatační vrstvou a je ovlivněna přítomností rozpuštěné látky méně

Solvatace

- solvent je nezbytný pro funkci biologických systémů, které ovlivňuje:
- přímo = aktivní účast v biologických procesech např. enzymatická reakce - neprímo = stabilizace biologicky aktivních konformací biomolekul
- interakce rozpuštěná látka-voda silně ovlivňuje konformace biopolymerů
- hydrofobní efekt u protein foldingu
- solvent hraje kličcovou roli při tvorbě komplexů, rozpoznávání ligandů, interakcí mezi DNA a proteiny
- stíní elektrostatické interakce

Parametry solvatace

- solvatační číslo
- počet molekul rozpouštědla (vod) ovlivněných rozpuštěnou molekulou (obvykle první a druhá solvatační vrstva)
- relativní rezidenční časy
-je-li rezidenční čas u rozpuštěné látky/ rezidenční čas v roztoku
>1 zvýšení strukturního stupně
< 1 narušení struktury
- Stokesův poloměr
- efektivní hydrodynamický poloměr pohybujicí se sféry se stejnou difuzní
konstantou (obvykle zahrnuje i silněji interagující vody)
- výpočet ze Stokesova zákona.

$$
\vec{F}=6 \pi \eta r \vec{v}
$$

- porovnává se s poloměrem otáčení (gyration)
- Slip plane
- hypotetická vzdálenost do které se solvent hýbe s rozpuštěnou látkou - používá se při měření elektrostatického potenciálu a odhadu náboje

Radiální distribuční funkce RDF,g(r)

representuje pravdépodobnost vyskytu ćastice B ve vzdálenosti r od částice A

- je to párová korelační funkce
- je normalizovaná na hustotu ideálního plynu ($1 \mathrm{v} \infty$)
- Ize i pro stejné částice gaA (r)
- Ize v 3D i 2D
- charakterizuje dané skupenství
- není dobře definovaná v nehomogennim systému
- jde porovnat s rozptylovými experimenty
- může zachytit fázové strukturní změny
- Ize z ní spočítat vazebnou konstantu
- Ize spočítat jako histogram
- v periodických okrajových podmínkách omezena polovinou boxu

Skupenství a RDF,g(r)

Příklady RDF,g(r)

Strukturní faktor a RDF,g(r)

strukturní faktor (měřitelný experimentálně, např gama rozptylem) je Fourieriva transformace radiální distribuční funkce
$S(k)=1+\frac{4 \pi\langle\rho\rangle}{k} \int_{0}^{r} r[g(r)-1] \sin (k r) d r$

Vazebná konstanta a RDF,g(r)

vazebné konstanta

$$
K \equiv\left(\frac{\gamma_{\mathrm{RL}} C_{\mathrm{RL}} C^{\circ}}{\gamma_{\mathrm{R}} C_{\mathrm{R}} \gamma_{\mathrm{L}} C_{\mathrm{L}}}\right)_{\mathrm{eq}}
$$

z RDF $\quad g(r)=\exp (-d W(r) / k T)$, kde $W(r)$ je PMF... profil dG

$$
\begin{aligned}
& \left.K_{\text {Mayer }}=C^{\circ} \int\left(e^{-\beta \mathrm{W}}-1\right) d \mathbf{r} \begin{array}{l}
\text { integral přes Mayerovu f-funkci } \\
\begin{array}{l}
\text { souvisis s druhým } \\
\text { viriálním koeficientem }
\end{array} \\
B_{2}=-2 \pi \int_{0}^{\infty}\left(e^{-W / k T}-1\right) r^{2} d r \\
K_{\text {Boltzmann }}=C^{\circ} \int e^{-\beta \mathrm{W}} d \mathbf{r} \\
K_{\text {Andersen }}=C^{\circ} \int e^{-\beta \mathrm{W}_{\mathrm{R}}}\left(e^{-\beta \mathrm{W}_{\mathrm{A}}}-1\right) d \mathbf{r}
\end{array}, \$ 1 e^{-\beta \mathrm{W}}-1\right)
\end{aligned}
$$

Experimentální metody

- rentgenová difrakce
- rozptyl na elektronech (el. obal atomu) = citlovější na těžší atomy
- elektron. hustota se průměruje přes čas a velké množství struktur
- v krystalu přímá evidence přítomnosti vody vinterakci s biomolekulou
- neutronová difrakce
- rozptyl na jádrech = citlivá na vodíky, vhodná ke studiu vody
- SAXS, SANS
- distrubuce velikostí
- NMR
- strukturní i dynamické informace o vodě v blízkosti biomolekuly
- NOE: sledování solventu v přímé interakci s danou biomolekulou, omezené časové rozlišení

Experimentální metody

- optická spektroskopie
- femtosekundová fluorescenční spektroskopie - pík je citlivý na dipól. moment sondy, který závisí na polarizaci solventu (množství vod a jejich reorientace) možnost vysokého časového rozlišení s prostorovým rozlišením
- nelineární spektroskopie (VSFG, HFG) - citlivá na nehomogení prostědí = signál z rozhraní
- infračervená spektroskopie - citlivá na tvorbu H -vazeb, umožňuje studovat specifické interakce solut-solvent, kvalitativní informace
- frekvenční závislost permitivity - síla interakce (omezení reorientace)

Příklad

Na obrázku je radiální distribuční funkce kapaliny o průměrné hustotě $\rho, 0,0213 \mathrm{~A}^{-3}$

1. Jaká je fyzikální interpretace $\rho g(r)$?
2. Je více částic v první nebo ve druhé solvatační vrstvě?
3. Odhadněte poloměr u atomů/molekul kapaliny.
4. Odhadněte počet nejbližších sousedů.

Příklad 2

Uvažujme kapalinu, která se skládá z částic, které interagují pouze odpudivou částí Lennard-Jonesova (LJ) potenciálu, $u(r)=A / r^{12}$. Levá strana obrázku ukazuje, $g(r)$, mezi dvěma částicemi v takové kapalině

1. Která křivka odpovídá nejvyšší hustotě částic?
2. Pro kompletní křivku na levém grafu načrtněte odpovídající potenciál střední síly $\mathrm{w}(\mathrm{r})$.
3. Vysvětlete, proč se částice v kapalině navzájem přitahují navzdory skutečnosti, že parovy potenciál u(r) je vždy odpudivý
4. Pravá strana obrázku ukazuje $g(r)$ při teplotě T_{0}, kde částice interagují s plným Lennard-Jonesovým potenciálem. Načrtněte hodnotu $g(r)$ při mírně nižší teplotě, $\mathrm{T}<\mathrm{TO}$.
5. Načrtněte $g(r)$, když $T \gg T 0$

Implicitní solvatace

- molekuly rozpouštědla jsou nahrazeny spojitým médiem o vlastnostech odpovídající rozpouštědlu

umožňuje rychlé a jednoduché výpočty - interakce biopolymerů, jejich konformace nebo určení solvatační energie/rozpustnosti
- SASA (solvent accessible
surface area) hlavně se
používá pro odhad
hydrofobní interakce

Solvatační energie

Bornova solvatační energie (1920)

- volná energie na vložení náboje do dané kavity v roztoku (elektrostatická energie/ práce potřebná na přenesení náboje z vakua do daného média)

$$
\Delta G_{e l e c}=-\frac{q^{2}}{2 a}\left(1-\frac{1}{\varepsilon}\right) \quad \mathbf{q} \mathbf{a}^{\varepsilon}
$$

Zobecněný Bornův model - zahrnující zjednodušené řešení Poisson-Boltzmanovy rovnice ($\mathrm{a}=\alpha=$ poloměr atomů..problematická definice)

$$
\begin{gathered}
G_{\mathrm{P}}=-\left(\frac{\varepsilon-1}{\varepsilon}\right) \sum_{i, j=1} \frac{q_{i} q_{j}}{2 f_{\mathrm{GB}}} \\
f_{\mathrm{GB}}=\sqrt{r_{i j}^{2}+\alpha_{i j}^{2} e^{-D_{i j}}} \quad \alpha_{\mathrm{ij}}=\left(\alpha_{i} \alpha_{j}\right)^{0.5} \quad D_{i j}=\frac{r_{i j}^{2}}{\left(2 \alpha_{i j}\right)^{2}}
\end{gathered}
$$

Kavitační energie - energie potřebná na vytvoření kavity v roztoku

implicitní model = není první solvatační vrstva

Typy solventů

Příklad

Jakou velikost má přirozeně nestrukturovaný protein/polymer o délce 2000 residuí ve špatném, theta a dobrém rozpouštědle? V závislosti na sekvenci je persistentní délka až 4 A , to je zároveň průměrná délka mezi $\mathrm{C} \alpha$ atomy.

Solventy a fázový diagram

Mayerova funkce

 （nenormalizovaná）Potenciál
$\mathrm{U}(\mathrm{r})$

Mayerova f－funkce
$f(r)=\exp \left[-\frac{U(r)}{k T}\right]-1$
aproximace vyloučeneho objemu （excluded volume）

$$
\mathrm{v}=-\int f(\vec{r}) d^{3} r
$$

Dobrý a špatný solvent

excluded volume	Mayerova f f－unkce
$\mathrm{v}=-\int f(\vec{r}) d^{3} r$	

| Athermal solvents high T limit | $f \uparrow ⿱ ⺊ 口 一$ |
| :--- | :--- | :--- |

Theta solvents attraction balances repulsion $\quad \stackrel{\sim}{\sim} \mathrm{v}=0$
Poor solvents attraction dominates $f \curvearrowleft \sim \quad \mathrm{v}<0$

Protein folding／sbalování proteinů

folding funnel－sbalování proteinů do přirozeného stavu

Hydrofobní kolaps

Molten globule

Helix formation and hydrophobic collapse begins

- univerzální intermediát při popisu sbalování a rozbalování proteinu
- hydrofobní residua hlavně uvnitř a hydrofilní residua venku
- některá residua již v přirozeném kontaktu, "skoro" natinví konformace, sekundární struktura často blizká nativní formě proteinu
- malé uspořádání bočních řetězců, méně kompaktní než nativní protein

Více modelů

Levinthalův paradox

pokud by pro každé reziduum existovaly 2 možné konformace, pak pro řetězec se 100 rezidui existuje 2^{100} alternativních struktur, a protože přechod z jedne konformace do druhé nemůže být rychlejší než 1 ps, prohledávání prostoru potenciální energie by trvalo nejméně $\sim 2^{100} \mathrm{ps}$ ($\sim 10^{10}$ let)

Otázka: Jak se dokáže protein sbalit do nativní formy během krátké doby (s-min)?

- Nativní forma proteinu je určena kineticky spíše než termodynamicky a jde cestou hledání snadno dosažitelného lokálního minima, než hledání globálního minima volné energie.

Kinetika : sbalování nesmí obsahovat přiliš vysoké energetické bariéry a nemít mnoho mezikroku

Termodynamika : za normálních podmínek je přirozený stav jen o několik kcal/mol stabilnejsi než nesbaleny

Požadavky kinetiky i termodynamiky mohou být splněny současně: předpokládá se, že v biologických procesech našly uplatnění právě ty proteiny, které se takto formovat dokáží.

Amyloidy - nesprávné sbalování

Chaperons

Sbalování proteinů - modelování

Denaturace

Fázový diagram konformačních stavů v lysozymu. Čárkovaně přechodové zóny.

Helix-coil transition

- peptidy, proteiny, DNA, RNA
- je to modelový zjednodušený systém pro sbalovaní proteinů
dvou stavový model, každé residuum je bud' v helixu nebo coilu (ising model)
- nukleace a propagace sbalovani
kooperativní process
dva popisy: Zimm-Bragg a Lifson-Roig (první bere vliv okolních residuí a druhy zahrnuje trojici residuí)

(180)

Crowding

efekt makromolekulárního zaplnění popisující změnu vlastností molekul v roztoku, pokud jsou prítomny ve vysoké koncentrace (koncentrace proteinů v cytosolu 300 $400 \mathrm{mg} / \mathrm{ml}$, v čočce až $500 \mathrm{mg} / \mathrm{ml}$)

- vliv na sbalování a konformace proteinů
- mění associační/dissociační konstanty = afinity
- větší molekuly ovlivněny více než malé

Fickovy zákony

1. zákon

$$
j=-D \frac{\partial c}{\partial x}
$$

zákon zachováni hmotnosti $\frac{\partial j}{\partial x}=-\frac{\partial c}{\partial t}$
2. zákon

$$
\begin{aligned}
& \frac{\partial c}{\partial t}=D \frac{\partial^{2} c}{\partial x^{2}} \\
& c(x, t)=\frac{N}{\sqrt{4 \pi D t}} \exp \left(-\frac{x^{2}}{4 D t}\right) \\
& <x^{2}>=2 D t
\end{aligned}
$$

Difuzní koeficient

Green-Kubo

$$
D=\int_{0}^{\infty}<v\left(t-t^{\prime \prime}\right) v(0)>d\left(t-t^{\prime \prime}\right)
$$

Einstein-Stokesův zákon

$$
D=\frac{k T}{\gamma}=\frac{k T}{6 \pi \eta R}
$$

Stokesův zákon

$$
F_{f}=-6 \pi \eta R v_{s}
$$

Molecule	Medium	Diffusion coefficient $\mu \mathrm{m}^{2} / \mathrm{s}$
H^{+}	water	7000
$\mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{2}, \mathrm{CO}_{2}$	water	2000
Protein $(30 \mathrm{kDa})$, tRNA $(20 \mathrm{kDa})$	water	100
Protein $(30 \mathrm{kDa})$	cytoplasm	$10-30$
Protein $(70-250 \mathrm{kDa})$	cytoplasm	$0.4-2$
Protein $(70-140 \mathrm{kDa})$	membrane	$0.03-0.2$

Příklad

Vypočítejte, jak dlouho bude trvat 30 kDa proteinu difundovat přes E. Coli a HeLa buňku. Protein může být aproximován koulí s poloměrem 2 nm . E. Coli má průměr 1 $\mu \mathrm{m}$, zatímco HeLa buňka má průměr asi $20 \mu \mathrm{~m}$. Předpokládejme, že buněčné stěny nemají žádný vliv na difuzi.(Viskozita vody je $\eta=10^{-3} \mathrm{~N} \mathrm{~s} \mathrm{~m}{ }^{-2}$)

Příklad 2

Jak dlouho (v řádu) trvá, aby protein s poloměrem 1 nm dodifundoval z mozku do paže? Předpokládejme, že celý pohyb je uvnitř jedné osy s viskozitou vody $10^{-3} \mathrm{~Pa} \mathrm{~s}$ a ze celková délka je asi 1 m .

Příklad - Proteinové interakce

Obrázek ukazuje volnou energii interakce, w(r) mezi dvěma nabitými identickými proteiny ve dvou různých koncentracích soli. Když je protein-proteinová separace, r větsí než 50 A , Ize předpokládat, že $\mathrm{w}(\mathrm{r})$ bude následovat potenciál Debye-Huckel potenciál pro interakci dvou nábojů v soli.

1. Vypočtěte délku Debyeho screeningu, $D=1 / \kappa$, pro $0,016 \mathrm{M}$ roztok NaCl .
2. Použijte $\mathrm{w}(\mathrm{r})$ při koncentraci $0,016 \mathrm{M}$ soli (plná křivka) pro stanovení celkového náboje Z proteinu
3. Je čárkovaná čára na obrázku pro vyšší nebo nižší koncentraci soli než plná čára?
4. Proč jsou $w(r)$ strmé a odpuzující při krátkých separacích protein-protein?
5. Odhadněte poloměr proteinu.

