
# Extragalactic star clusters

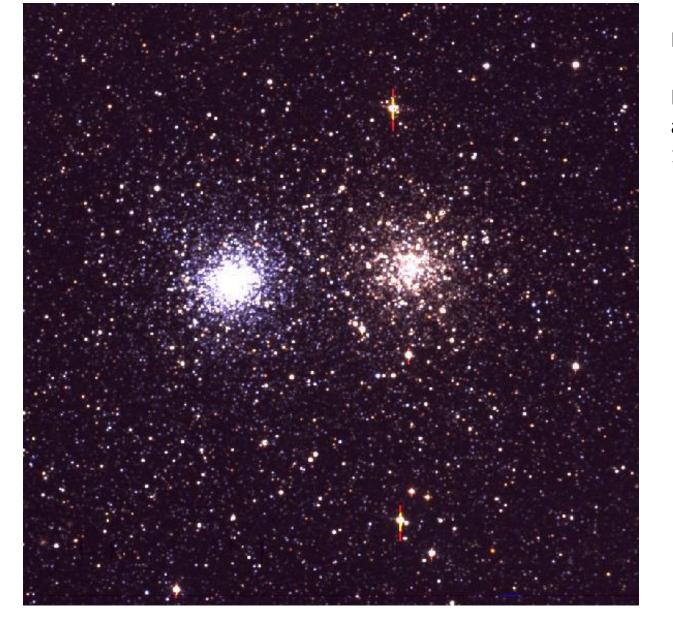
- Star clusters are found for almost all galaxy types
- Either "Globulars" (far away from the disk/center) or star forming regions (bright) observed
- Examples:
  - NGC 5128 (elliptical), about 1600 GCLs; Harris et al., 2006, AJ, 132, 2187
  - 2. NGC 628 (spiral), complete Young Cluster Population; Adamo et al., 2017, ApJ, 841, 131
  - M31 (Andromeda Galaxy), 1200 GCLs; Galleti et al., 2004, A&A, 416, 917
- Review: Brodie & Strader, 2006, ARA&A, 44, 193







### 30 Dor:


Star cluster in the LMC

4850 listed star clusters of the LMC in Bitsakis et al., 2017, ApJ, 845, 56

2741 listed star clusters in the SMC and the Magellanic Bridge in Bica et al., 2020, AJ, 159, 82

NGC 1866

LMC, age about 100 Myr



NGC 2298

Milky Way, age about 15 Gyr

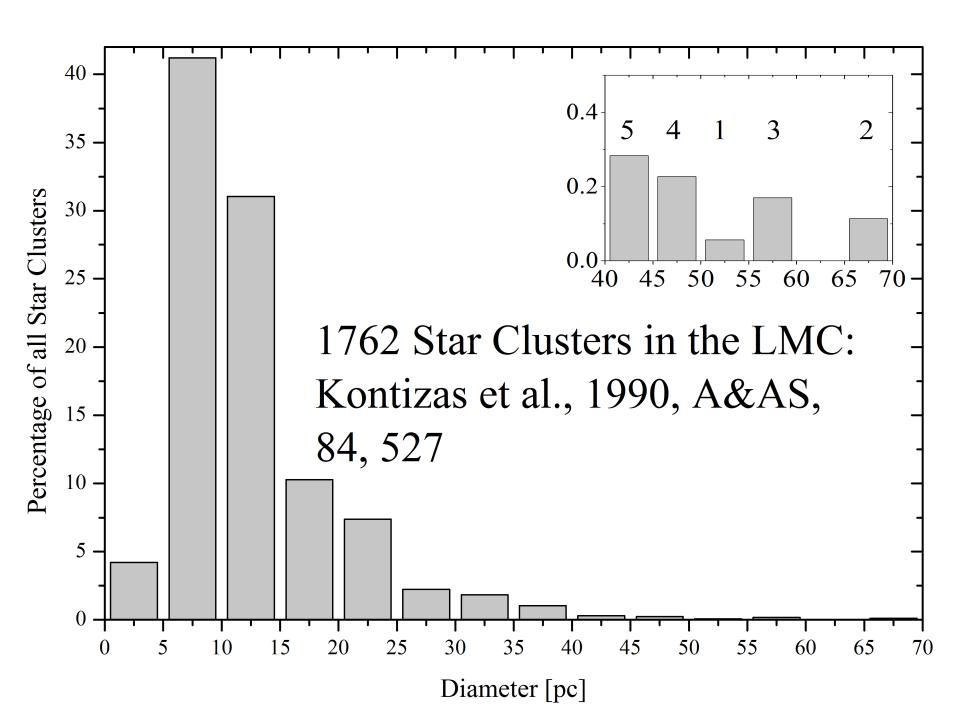
Open clusters in the MCs have the same morphology as GCs in the Milky Way (MW)

# Distance and Reddening

#### • LMC:

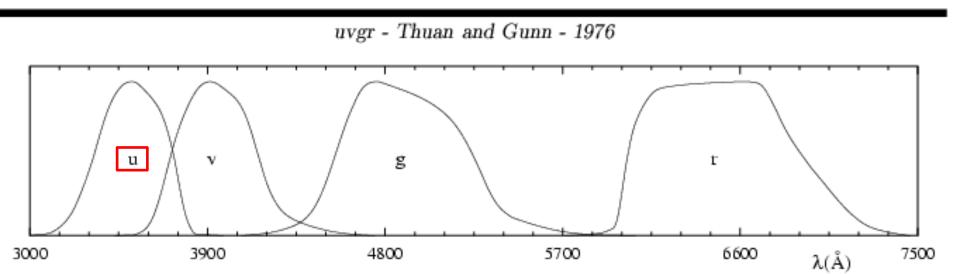
- $V M_V = 18.5 \text{ mag}$
- E(B V) = 0.05 to 0.1 mag
- Distance about 50 kpc

#### • SMC:


- $V M_V = 19.0 \text{ mag}$
- E(B V) = 0.05 to 0.1 mag
- Distance about 60 kpc
- Intrinsic reddening up to 0.2 mag for "normal" regions in the bulge

## Characteristics

- Irregular Galaxies
- Disintegrate because of gravitational interaction with the Milky Way (MW)
- Global elemental abundance is lower than in the MW: -2 < [Fe/H] < -0.3 dex</li>
- Total masses about 20 times lower than in the MW
- Global magnetic field lower than in the MW

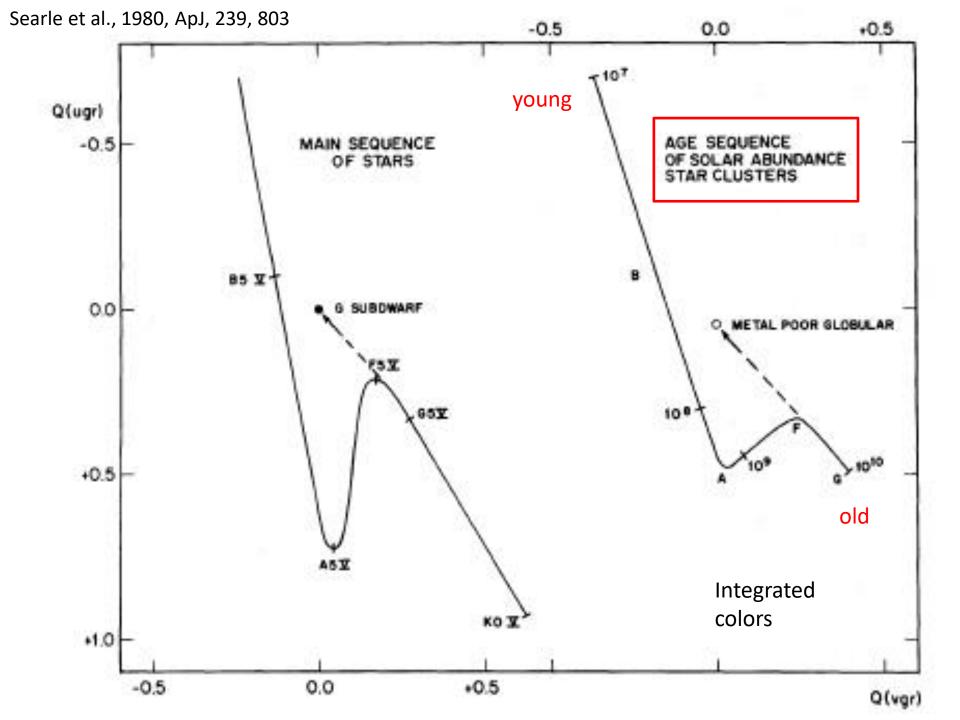

|     | Cluster    | SWB class | R (arcsec)   | $N_{ m star}$ | $V_{\text{TO}} \text{ (mag)}$ | age (Myr)        |
|-----|------------|-----------|--------------|---------------|-------------------------------|------------------|
| LMC | KMHK265    | 3335      | 30           | 303           | 16.5                          | 50 ÷ 100         |
|     | NGC 1902   | II        | 40           | 440           | 17                            | $100 \div 150$   |
|     | KMHK264    |           | 30 7 pc      | 241           | 17.5                          | $150 \div 200$   |
|     | NGC 1777   | IV B      | $25 \div 70$ | 804           | 19.5                          | $700 \div 800$   |
|     | $IC\ 2146$ | V         | 60           | 2023          | 20.25                         | $1200 \div 1500$ |
|     | NGC 2155   | VI        | $16 \div 50$ | 1085          | 20.5                          | $1500 \div 2000$ |
| SMC | NGC 299    |           | 25           | 271           | 14.5                          | $15 \div 20$     |
|     | NGC 220    | III       | 30           | 511           | 16.5                          | $70 \div 100$    |
|     | NGC 222    | II-III    | 25           | 361           | 16.5                          | $70 \div 100$    |
|     | NGC 231    |           | 30           | 449           | 16.5                          | $70 \div 100$    |
|     | NGC 458    | III       | 65           | 1288          | 17.0                          | $100 \div 150$   |
|     | L45        | ***       | 30           | 334           | 17.0                          | $100 \div 150$   |
|     | L13        |           | 35           | 300           | 19.25                         | $450 \div 550$   |
|     | NGC 643    |           | 70 20 pc     | 1127          | 19.5                          | $600 \div 700$   |
|     | L9         | ***       | 35           | 374           | $20.25 \div 20.5$             | $1000 \div 1300$ |
|     | NGC 152    | IV B      | 60           | 1862          | $20.25 \div 20.5$             | $1000 \div 1300$ |

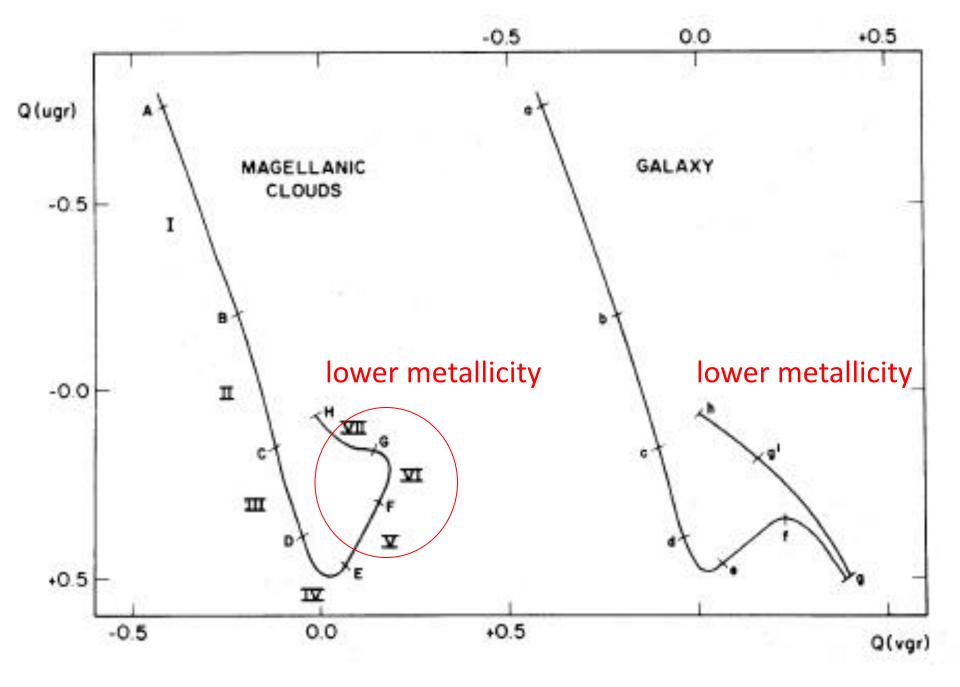
Matteucci et al., 2002, A&A, 387, 861



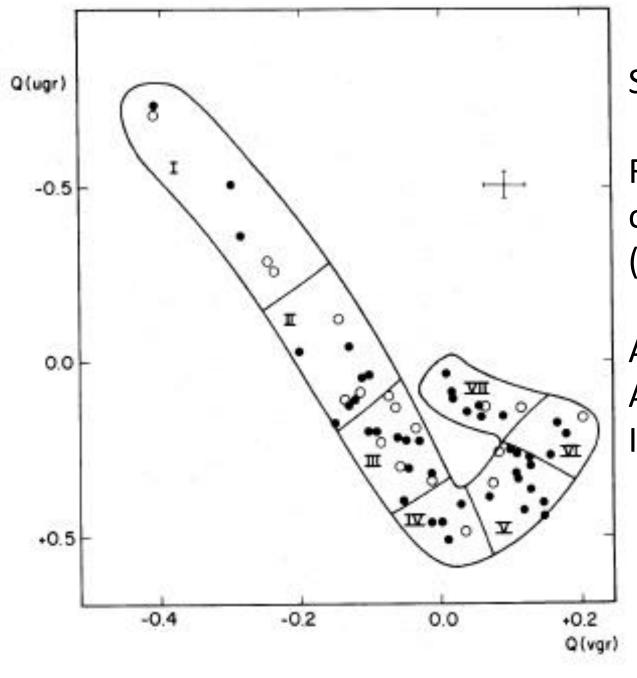
- Impact for the study of star clusters in the Magellanic Clouds
  - 1. The diameters of star clusters are normally below 1'
  - 2. The core regions are difficult to resolve
  - 3. The distance is no free parameter any more
  - There are almost no "foreground objects"
  - 5. The membership determination on a kinematical basis is almost impossible, Gaia should get better data
  - 6. Star clusters are most suitable to perform "statistical investigations"

### Classification of Star Clusters





Reddening free indices

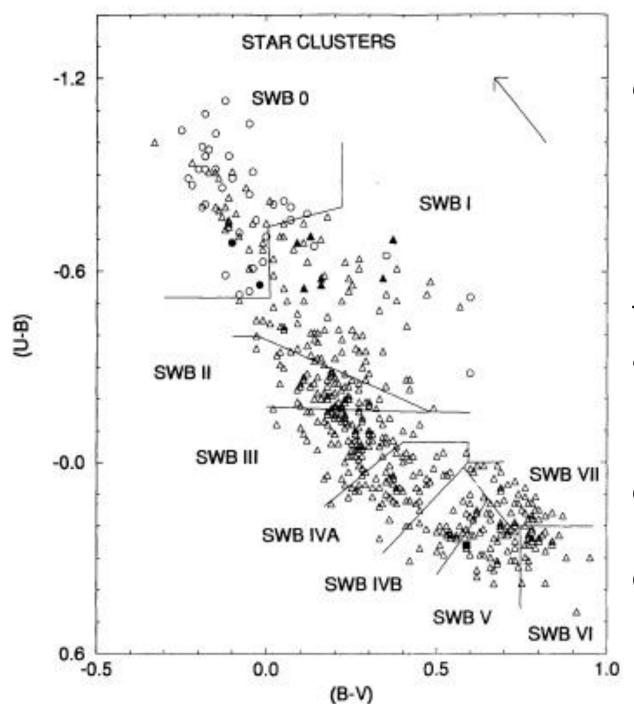
$$Q(ugr) = (u - g) - 1.08(g - r)$$


$$Q(vgr) = (v - g) - 0.68(g - r)$$

You need integrated photometric observations with these four filters to classify star clusters in the MCs. Also works with other photometric systems, but you need a filter in the U region.






Searle et al., 1980, ApJ, 239, 803



Seven "regions"

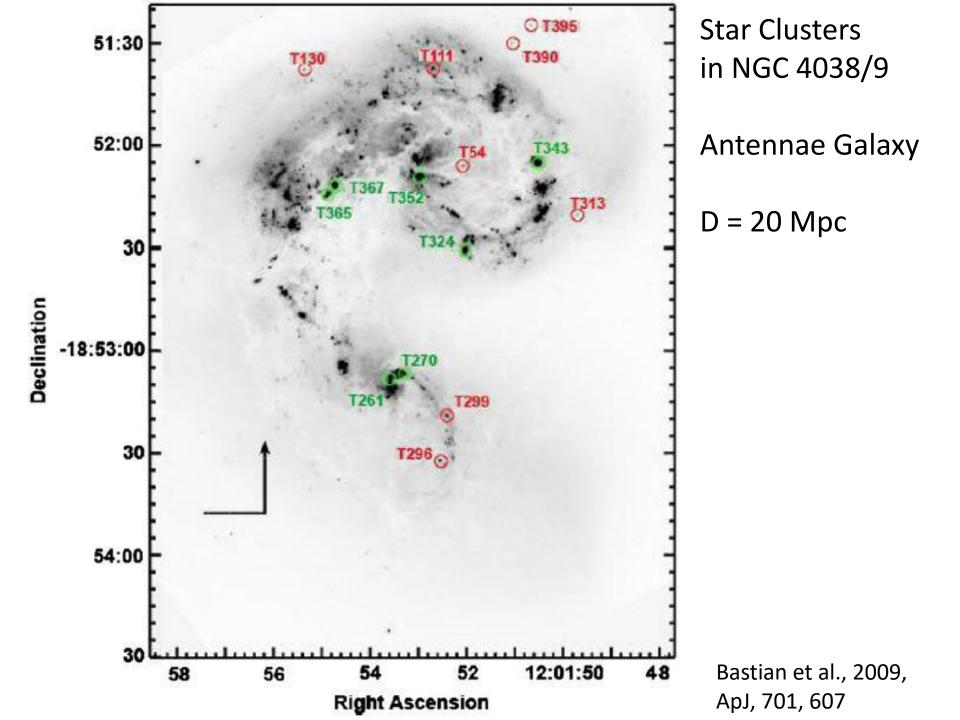
For LMC (full circles) and SMC (open circles)

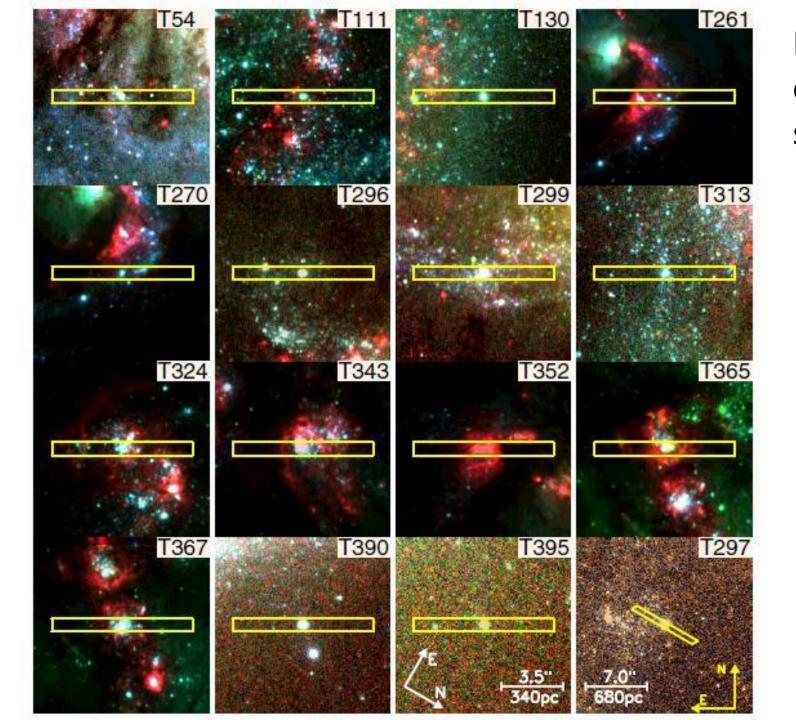
Age: I, II and III
Age and Metallicity:
IV - VII



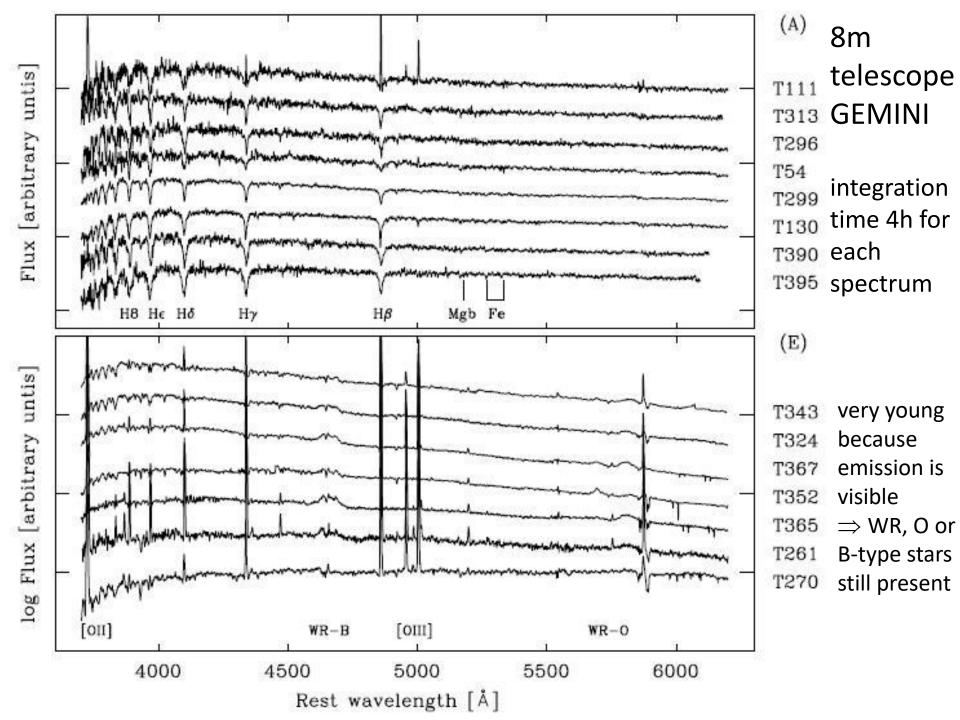
Integrated colors of 624 Star Clusters in the LMC

Each "region" can be calibrated in terms of the age and the metallicity


Here is an example of Johnson UBV photometry and not Gunn uvgr


| Group<br>(SWB) | Age<br>(Myr) | Clusters <sup>a</sup> | Associations* | Total | M               | m                            | M/m               | PA                      | $x_c$                  | $y_c$           |
|----------------|--------------|-----------------------|---------------|-------|-----------------|------------------------------|-------------------|-------------------------|------------------------|-----------------|
| 0              | 0-10         | 61                    | 77            | 138   | 6:3             | 6.3                          | 1.00              | 140°                    | -0°11                  | 1:14            |
| I              | 10-30        | 89                    | 41            | 130   | 6.7             | 6.3                          | 1.00              | 150                     | -0.13                  | 1.08            |
| II             | 30-70        | 64                    | 1             | 65    | 8.6             | 6.7                          | 1.28              | 80                      | 0.01                   | 0.64            |
| III            | 70-200       | 86                    | 1             | 87    | 9.3             | 7.0                          | 1.33              | 40                      | -0.40                  | 0.48            |
| IVA            | 200-400      | 62                    | 0             | 62    | 11.6            | 8.0                          | 1.45              | 10                      | -0.29                  | 1.00            |
| IVB            | 400-800      | 33                    | 0             | 33    | 12.4            | 8.0                          | 1.55              | 40                      | -0.76                  | -0.28           |
| V              | 800-2000     | 41                    | 0             | 41    | 13.3            | 10.5                         | 1.27              | 40                      | -0.66                  | -0.55           |
| VI             | 2000-5000    | 30                    | 0             | 30    | 12.4            | 9.7                          | 1.28              | 0                       | -0.47                  | -0.98           |
| VII            | 5000-16000   | 38                    | 0             | 38    | 17.0<br>(25.5°) | 10.7<br>(15.6 <sup>b</sup> ) | 1.59<br>(1.63b)   | 40<br>(0 <sup>b</sup> ) | -0.86<br>$(-0.64^{b})$ | 1.34<br>(1.16b) |
| Total          | 0-16000      | 504                   | 120           | 624   | 25.5b           | 15.6b                        | 15.6 <sup>b</sup> | Ор,                     | -0.28                  | 0.68            |

M and m, semimajor and semiminor axis PA positional angle of M, North =  $0^{\circ}$ , East =  $90^{\circ}$ 


#### **Conclusions:**

- 1. Age: continuous up to 16 Gyr
- 2. Star clusters do not dissipate because of the local rotation





Positions of the slit



| ID   | $H + H\epsilon^a$ | Ka              | H8 <sup>a</sup> | H <sub>VA</sub> <sup>b</sup> | Mgb5177 <sup>b</sup> | Fe5270 <sup>b</sup><br>(Å) | Fe5335 <sup>b</sup> |
|------|-------------------|-----------------|-----------------|------------------------------|----------------------|----------------------------|---------------------|
|      | (Å)               | (Å)             | (Å)             | (Å)                          | (Å)                  |                            | (Å)                 |
| T54  | $5.18 \pm 0.19$   | $0.75 \pm 0.09$ | $3.26 \pm 0.19$ | $4.12 \pm 0.11$              | $0.42 \pm 0.07$      | $0.90 \pm 0.08$            | $1.21 \pm 0.12$     |
| T111 | $7.60 \pm 0.29$   | $0.91 \pm 0.17$ | $6.71 \pm 0.30$ | $7.02 \pm 0.21$              | $0.37 \pm 0.11$      | $1.02 \pm 0.14$            | $1.48 \pm 0.22$     |
| T130 | $9.83 \pm 0.31$   | $0.76 \pm 0.18$ | $8.73 \pm 0.31$ | $8.65 \pm 0.22$              | $0.64 \pm 0.12$      | $1.05 \pm 0.15$            | $1.46 \pm 0.22$     |
| T296 | $7.02 \pm 0.19$   | $0.77 \pm 0.01$ | $6.10 \pm 0.20$ | $6.57 \pm 0.14$              | $0.30 \pm 0.08$      | $0.96 \pm 0.00$            | $1.23 \pm 0.06$     |
| T297 |                   |                 | 121             | $9.07 \pm 0.41$              | $0.73 \pm 0.15$      | $1.00 \pm 0.07$            | $1.36 \pm 0.23$     |
| T299 | $5.88 \pm 0.11$   | $0.77 \pm 0.06$ | $4.70 \pm 0.11$ | $4.94 \pm 0.08$              | $0.20 \pm 0.04$      | $0.57 \pm 0.06$            | $0.67 \pm 0.09$     |
| T313 | $7.48 \pm 0.25$   | $0.71 \pm 0.04$ | $7.00 \pm 0.61$ | $7.47 \pm 0.40$              | $0.44 \pm 0.22$      | $1.02 \pm 0.27$            | $1.51 \pm 0.21$     |
| T390 | $9.43 \pm 0.43$   | $0.72 \pm 0.25$ | $8.35 \pm 0.45$ | $8.50 \pm 0.29$              | $0.45 \pm 0.15$      | $1.08 \pm 0.19$            | $1.46 \pm 0.28$     |
| T395 | $11.20 \pm 0.72$  | $2.97 \pm 0.41$ | $9.94 \pm 0.78$ | $9.16 \pm 0.51$              | $0.77 \pm 0.21$      | $1.58 \pm 0.26$            | $1.86 \pm 0.37$     |

In addition: integrated colors from HST photometry

| ID   | A/E <sup>a</sup> | ΔR.A.<br>(J2000) | ΔDecl.<br>(J2000)                                  | F336W<br>(mag) | F435W<br>(mag) | F550M<br>(mag) | F814W<br>(mag)     | F658N<br>(mag) | $A_V$ (mag) | $Z$ $(Z_{\odot})$ | Log(age)<br>(year)    |
|------|------------------|------------------|----------------------------------------------------|----------------|----------------|----------------|--------------------|----------------|-------------|-------------------|-----------------------|
| T54  | 0                | 12h01m52s119     | -18 <sup>d</sup> 52 <sup>m</sup> 07 <sup>s</sup> 3 | 21.10          | 21.53          | 21.15          | 20.30              | 20.65          | 1.0         | $0.9 \pm 0.1$     | $6.9 \pm 0.1$         |
| T111 | 0                | 12h01m53s379     | -18d51m3952                                        | 20.80          | 21.18          | 21.09          | 20.77              | 20.89          | 0.0         | $0.9 \pm 0.3$     | $7.9 \pm 0.1$         |
| T130 | 0                | 12h01m55s360     | $-18^{d}51^{m}38^{s}.9$                            | 20.33          | 20.82          | 20.72          | 20.37              | 20.43          | 0.0         | $1.0 \pm 0.1$     | $8.4 \pm 0.1$         |
| T261 | 1                | 12h01m53s561     | $-18^{d}53^{m}07^{s}9$                             | 18.90          | 20.17          | 20.29          | 20.14              | 18.76          | 0.3         | $1.1 \pm 0.2$     | < 6.8                 |
| T270 | 1                | 12h01m53s345     | $-18^{d}53^{m}07^{s}.6$                            | 19.61          | 20.14          | 19.70          | 18.91              | 19.38          | 1.7         | $1.1 \pm 0.2$     | < 6.8                 |
| T296 | 0                | 12h01m52s624     | $-18^{d}53^{m}33^{s}8$                             | 19.85          | 20.43          | 20.29          | 19.87              | 19.92          | 0.2         | $1.0 \pm 0.0$     | $7.9 \pm 0.1$         |
| T297 | 0                | 12h02m00s112     | $-18^{d}54^{m}33^{s}3$                             |                | ***            | 22.22b         | 21.60 <sup>b</sup> | ***            | 1.0         | $1.1 \pm 0.1^{c}$ | $8.5 \pm 0.2^{\circ}$ |
| T299 | 0                | 12h01m52s480     | $-18^{d}53^{m}20.2$                                | 19.43          | 20.26          | 20.14          | 19.69              | 19.86          | 0.2         | $0.9 \pm 0.1$     | $7.35 \pm 0.07$       |
| T313 | 0                | 12h01m49s744     | $-18^{d}52^{m}21^{s}9$                             | 21.29          | 21.88          | 21.80          | 21.35              | 21.59          | 0.2         | $1.0 \pm 0.1$     | $7.8 \pm 0.1$         |
| T324 | 2                | 12h01m52s085     | $-18^{d}52^{m}31.9$                                | 17.76          | 19.01          | 18.97          | 18.74              | 18.40          | 0.6         | $1.2 \pm 0.2$     | 6.5-6.8d              |
| T343 | 2                | 12h01m50s537     | $-18^{d}52^{m}06.6$                                | 17.23          | 18.43          | 18.44          | 18.30              | 17.73          | 0.4         | $1.3 \pm 0.2$     | 6.5-6.8d              |
| T352 | 1                | 12h01m53s022     | $-18^{d}52^{m}10^{s}6$                             | 16.33          | 17.69          | 17.54          | 17.57              | 17.01          | 0.3         | $1.3 \pm 0.2$     | < 6.8                 |
| T365 | 2                | 12h01m54s928     | $-18^{d}52^{m}15^{s}.4$                            | 17.78          | 19.04          | 18.92          | 18.66              | 18.48          | 0.7         | $1.1 \pm 0.2$     | 6.5-6.8d              |
| T367 | 2                | 12h01m54s749     | $-18^{d}52^{m}12^{s}9$                             | 16.78          | 18.27          | 18.45          | 18.51              | 17.78          | 0.0         | $1.3 \pm 0.2$     | 6.5-6.8d              |
| T390 | 0                | 12h01m51s076     | $-18^{d}51^{m}31^{s}.5$                            | 21.37          | 21.50          | 21.35          | 20.94              | 21.15          | 0.0         | $1.1 \pm 0.4$     | $8.3 \pm 0.1$         |
| T395 | 0                | 12h01m50s681     | $-18^{d}51^{m}26^{s}0$                             | 21.78          | 21.77          | 21.62          | 21.19              | 21.34          | 0.1         | $1.1 \pm 0.2$     | $8.8 \pm 0.1$         |

Determination of the extinction, metallicity and age possible

| ID   | Agreement <sup>a</sup> | $cz(H i)^b$<br>$(km s^{-1})$ | czhel<br>(km s <sup>-1</sup> ) | deltcz<br>(km s <sup>-1</sup> ) | $log(Mass)$ $\mathcal{M}_{\odot}$ | Reff<br>(pc) |
|------|------------------------|------------------------------|--------------------------------|---------------------------------|-----------------------------------|--------------|
| T54  | 0                      | 1700                         | $1697 \pm 54$                  | -3                              | $4.8 \pm 0.3$                     | 3.7          |
| T111 | 0                      | 1560                         | $1595 \pm 115$                 | +35                             | $5.3 \pm 0.3$                     | 6.7          |
| T130 | 0                      | 1565                         | $1617 \pm 61$                  | +52                             | $5.7 \pm 0.3$                     | 6.0          |
| T261 | 0                      | 1670                         | $1621 \pm 13$                  | -49                             | $4.6 \pm 0.3$                     | ***          |
| T270 | 0                      | 1715                         | $1711 \pm 19$                  | -4                              | $5.4 \pm 0.3$                     | 9.3          |
| T296 | 0                      | 1755                         | $1733 \pm 35$                  | -22                             | $5.6 \pm 0.3$                     | 4.0          |
| T297 | 1                      | 1675                         | $1553 \pm 41$                  | -122                            | $5.2 \pm 0.3$                     | ***          |
| T299 | 0                      | 1795:c                       | $1810 \pm 38$                  | +15:                            | $5.4 \pm 0.3$                     | 8.4          |
| T313 | 0                      | 1695                         | $1657 \pm 33$                  | -38                             | $5.0 \pm 0.3$                     | 12.8         |
| T324 | 0                      | 1690                         | $1679 \pm 24$                  | -11                             | $5.2 \pm 0.3$                     | 7.7          |
| T343 | 0                      | 1630                         | $1613 \pm 16$                  | -17                             | $5.4 \pm 0.3$                     | 8.8          |
| T352 | 0                      | 1640                         | $1679 \pm 24$                  | +39                             | $5.7 \pm 0.3$                     |              |
| T365 | 0                      | 1630                         | $1572 \pm 15$                  | -58                             | $5.3 \pm 0.3$                     | 4.3          |
| T367 | 0                      | 1630                         | $1657 \pm 13$                  | +26                             | $5.2 \pm 0.3$                     | 6.6          |
| T390 | 1                      | 1530:                        | $1689 \pm 35$                  | +159:                           | $5.4 \pm 0.3$                     | 8.9          |
| T395 | 1                      | 1580:                        | $1727 \pm 42$                  | +147:                           | $5.3 \pm 0.3$                     | 7.5          |

 $czhel = R_V ... radial velocity$ 

With "deltcz" you can measure the kinematics of the host galaxy

Bastian et al., 2009, ApJ, 701, 607