M11, NGC 6705: Total Mass About 10000 M(Sun), 200 Myr

Orion Nebula, Distance about 450 pc, Total Mass about 5000 M(Sun), Diameter about 3 pc

Cluster formation

- Observations versus Models
- Important parameters

1. Time scale
2. Total mass
3. Initial Mass Function (IMF)
4. Velocity distribution
5. Binary fraction
6. Diameter
7. Density distribution

Heuristic Approach

- We know of 14 Open Clusters which are younger than 10 Myrs within 1000 pc around the Sun (Source: WEBDA)
- There are also five star forming regions
- Open Clusters still have to form within the solar vicinity
- Total masses: up to $40000 \mathrm{M}($ Sun $)$
- Stable for some Gyrs
- Evolutionary theory has to explain these facts

Clusters selected

Cluster_name	RA_2000_Dec		1	b	Dist	Mod	EB-V	Age	ST	Z	Diam	Fe/H	MRV	pm RA	pm Dec
Mamajek 1	084206	-790138	292.482	-21.654	97	4.93	0.00	6.9		-35.8	40.0		+16.1	-30.00	$+27.80$
Collinder 70	053531	-010600	205.03	-17.35	391	8.09	0.04	6.71		-116.6	180.0		19.49	0.36	-0.68
ASCC 24	062844	-070111	216.64	-8.23	400	8.44	0.14	6.96		-57.3	42.0		16.35	-5.55	-4.05
ASCC 16	052435	+014759	200.98	-18.35	460	8.59	0.09	6.93		-144.8	74.4		0.75	$+0.75$	-0.18
NGC 1980	053524	-05 5435	209.51	-19.60	550	8.86	0.05	6.67	B1	-184.5	25.2		25.34	0.83	-0.36
Bochum 14	180200	-234100	6.388	-0.499	578	13.48	1.508	6.996		-5.0	2.0				
NGC 2264	064058	+095342	202.936	2.196	667	9.28	0.051	6.954	07	25.6	39.0	-0.15	+25.5	-1.13	-3.80
ASCC 122	223314	$+393636$	95.91	-15.90	700	9.53	0.10	6.98		-191.8	86.4		-8.17	-0.29	-4.19
Collinder 419	201759	+40 4312	78.07	2.79	740	10.40	0.34	6.85	B2	36.0	30.0		-8.19	-2.56	-6.99
ASCC 79	151911	-604347	320,04	-2.86	800	10.01	0.16	6.86		-39.9	62.4		4.03	-2.67	-4,10
IC 5146	215324	+471600	94.383	-5.495	852	11.49	0.593	6.00	B1	-81.6	20.0			-1.77	-1.70
Lynga 14	165504	-45 1400	340.919	-1.089	881	14.15	1.428	6.712		-16.7	3.0				
Ruprecht 119	162815	-513000	333.276	-1.879	956	11.67	0.570	6.853		-31.3	8.0			-1.15	-1.80
NGC 6383	173448	-323400	355.690	0.041	985	10.89	0.298	6.962	07	0.7	20.0		$+7.00$	$+1.58$	-2.00

Several spurious entries like the "ASCC clusters"

Distribution of young open clusters and star forming regions from Alfaro et al., 2009, Ap\&SS, 324, 141

Massive stars hotter than B0
(filled circles) and B0 to B2 (open circles)

This means they are formed in the last few Myrs

Star formation in the solar
neighborhood is still ongoing

Distribution of star forming regions from Preibisch \& Mamajek, 2008, Handbook of Star Forming Regions, Volume II

Giant Molecular Clouds

- Star Clusters can only form within „Giant Molecular Clouds" (GMC) with a high enough initial mass
- The stellar formation rate in the solar neighborhood is very low but not zero
- But still there have to exist several GMCs to form Star Clusters
- Is the formation process the same for all observed Galaxy types?

Giant Molecular Clouds

Stark \& Lee, 2006, ApJ, 641, L113

Recent investigation of the ${ }^{13} \mathrm{CO}$ Gas within 2000 pc around the Sun

The number of young OCLs can be very well explained

Formation rate of 0.45 OCLs per $\mathrm{kpc}^{-2} \mathrm{Myr}^{-1}$ in the Galactic disk within 2 kpc around the Sun

Battinelli \&
Capuzzo-Dolcetta, 1991, MNRAS, 249, 76

NGC 6611 (M16)

$$
\begin{aligned}
& d=1750 \mathrm{pc} \\
& \mathrm{t}=8 \mathrm{Myr}
\end{aligned}
$$

Gaseous Pillars • M16

Initial Mass Function

- The „Initial Mass Function" (IMF) describes the mass distribution for a population of stars when they are formed together
- Relevant astrophysics:

1. Size, total mass and metallicity of the initial GMC
2. Fragmentation of the GMC
3. Conservation of the angular momentum
4. Local and global magnetic fields
5. Accretion in the Pre-Main Sequence phase

- The only observational parameter for the test of stellar formation and evolution models
- We observe a luminosity function which has to be transformed to the IMF

Initial Mass Function

- Several most important questions are still not solved

1. Is the IMF homogeneous within the Milky Way?
2. Is the IMF constant throughout time?
3. What is the influence of the local and global magnetic field on the IMF?
4. What is the influence of the local and global metallicity on the IMF?

Initial Mass Function

The IMF $\theta(\mathrm{m})$, often called „Present-Day Mass Function" (PDMF), is defined as:

$$
\mathrm{dN}=\theta(\mathrm{m}) \mathrm{dm}
$$

$d N$ is the number of all stars per cubic parsec on the main sequence with a mass between M and ($M+d m$).

But we observe not the masses of stars but their magnitudes and colors (relative and absolute) or luminosities.

So we have to define the luminosity function and transform it into the IMF.

In each row $\left(M_{V}+d M\right)$ there is a mixture of main sequence and evolved objects. For the IMF, we need the main sequence only.

Luminosity function

The luminosity function $\Psi\left(\mathrm{M}_{\mathrm{V}}\right)$, is defined as:

$$
d N=-\Psi\left(M_{v}\right) d M_{v}
$$

$d N$ is the number of all stars per cubic parsec on the main sequence with an absolute magnitude between M_{V} and $\left(M_{V}+d M_{V}\right)$. The transformation to the IMF is given as:

$$
\theta(m)=-\Psi\left(M_{v}\right)\left[d m\left(M_{v}\right) / d M_{v}\right]^{-1}
$$

The second term is the derivation of the Mass-Luminosity function $\mathrm{m}\left(\mathrm{M}_{\mathrm{V}}\right)$. It is also depending on the age (t), metallicity (Z) and rotation ($\mathrm{v}_{\mathrm{rot}}$)

$$
m\left(M_{v}\right)=m\left(M_{v}, Z, t, v_{r o t}\right)
$$

Correction of the observations

We have to correct the complete observations for the evolved objects. There are three possibilities:

1. Take a statistical sample with a well known luminosity function (star clusters)
2. Take a statistical sample with well known photometric magnitudes and distances
3. Take isochrones $=$ theoretical star evolution $=$ models based on observations = circular argument
All these methods are not self consistent and always introduce an unknown error to the analysis

Salpeter, 1955, ApJ, 121, 161
Results of classical spectral classification, only 10% of stars with $M_{V}=-4.5$ mag are on the main sequence!

These values are depending on the chosen sample for the spectral classification and which classification scheme is applied.

The errors are rather large.

All observations have to be normalized to one "standard system" which means essentially to one "time scale".

The observations show, that this heuristic law describes them very well

$$
\theta(\mathrm{m}) \approx \mathrm{m}^{-\Gamma} \quad \text { Salpeter law (1955) }
$$

Star cluster are one of the most important observational test for the IMF because they, normally, have well defined ages, distances and metallicities. However, the errors are still quiet large.

But there is still no homogeneous IMF determination for open clusters taking into account the available data.

The observations show that the IMF cannot be described with a simple law for all masses

Bastian et al., 2010, Annual Review of Astronomy and Astrophysics, 48, 339

TYCHO2 data

cluster	$\begin{gathered} (m-M)_{0} \\ {[\mathrm{mag}]} \\ \hline \end{gathered}$	$\begin{aligned} & \hline E_{B-V} \\ & {[\mathrm{mag}} \end{aligned}$	$\begin{gathered} t \\ \mathrm{Myr} \\ \hline \end{gathered}$	$\frac{d}{\left[^{\prime}\right]}$
Blanco 1*	6.8	0.03	50	105
Stock 2	7.5	...	100	260
α Per*	6.3	0.09	20	255
Pleiades*	5.6	0.05	75	300
NGC 2451 A*	6.4	0.00	20	140
IC 2391*	5.8	0.00	20	110
Praesepe*	6.0	0.00	650	195
IC 2602*	5.8	0.03	10	185
NGC 7092	7.6	0.12	70	170

cluster	$\#$ stars	Γ	mass range $\left[M_{\odot}\right]$	V_{T} range $[\mathrm{mag}]$
Blanco 1	34	-2.27 ± 0.70	$[1.1 ; 4.8]$	$[6.1 ; 11.4]$
Stock 2	204	-2.01 ± 0.40	$[1.5 ; 4.1]$	$[7.6 ; 11.0]$
α Per	70	-1.57 ± 0.44	$[1.1 ; 6.8]$	$[5.0 ; 10.5]$
Pleiades	127	-1.99 ± 0.39	$[1.0 ; 4.1]$	$[5.0 ; 10.9]$
NGC 2451 A	27	-0.69 ± 0.63	$[1.3 ; 6.8]$	$[4.8 ; 10.0]$
IC 2391	29	-1.07 ± 0.53	$[1.1 ; 8.1]$	$[3.5 ; 10.7]$
NGC 7092	25	-1.93 ± 1.24	$[1.4 ; 3.4]$	$[6.5 ; 9.9]$

Sanner \& Geffert, 2001, A\&A, 370, 87
Widely different Γ values

Mass-Function Slope Γ for Two Subregions and for the Whole-Cluster Region in the Given Mass Range

Cluster	Mass range	Mass function slopes $(\Gamma \pm \sigma)$		
	$\left(M_{0}\right)$	Inner region	Outer region	Whole cluster
Be 62	$11.17-1.14$	-0.89 ± 0.17	-2.10 ± 0.74	-1.88 ± 0.34
NGC 1528	$2.55-0.73$	-1.96 ± 0.42	-2.17 ± 0.43	-2.10 ± 0.35
NGC 1960	$6.82-1.01$	-1.25 ± 0.24	-1.99 ± 0.15	-1.80 ± 0.14
NGC 2287	$2.70-0.83$	-1.35 ± 0.86	-1.22 ± 0.27	-1.22 ± 0.19
NGC 2301	$2.78-0.82$	-0.85 ± 0.33	-1.56 ± 0.54	-1.34 ± 0.32
NGC 2323	$4.22-0.67$	-1.69 ± 0.09	-2.28 ± 0.31	-2.01 ± 0.17
NGC 2420	$1.44-0.67$	-0.93 ± 0.32	-1.50 ± 0.56	-1.30 ± 0.39
NGC 2437	$3.51-1.02$	-1.72 ± 0.13	-2.30 ± 0.62	-2.03 ± 0.42
NGC 2548	$2.46-0.82$	-1.11 ± 0.85	-1.02 ± 0.36	-1.12 ± 0.70

Typical values and errors

No statistical analysis of star clusters with Gaia data is available, yet

Magnetic field - star formation

- Price \& Bate, 2009, MNRAS, 398, 33
- Effects of magnetic pressure on fragmentation
- Stronger magnetic fields seems to favor single star formation (see next page)

Increasing magnetic field strength (B)

Star formation

THE STAGES OF STAR FORMATION

Gravitation „wins"
Magnetic field, Shock wave
Protostar

Star formation

- The detection of free gas in a Star Cluster is an excellent indicator for the time scale of continuous stellar formation

Star-forming Regions

Region	$\begin{gathered} \langle t\rangle^{a} \\ (\mathrm{Myr}) \end{gathered}$	Molecular Gas?	Ref. (age)
Coalsack	\ldots	Yes	\ldots
Orion Nebula	1	Yes	1
Taurus..............	2	Yes	1, 2, 3
Oph.................	1	Yes	1
Cha I, II	2	Yes	1
Lupus...............	2	Yes	1
MBM 12A	2	Yes	4
IC $348 \ldots \ldots \ldots \ldots$.	1-3	Yes	1, 4, 5, 6
NGC 2264	3	Yes	1
Upper Sco	2-5	No	1, 6, 7
Sco OB2	5-15	No	8
TWA	~ 10	No	9
η Cha..............	~ 10	No	10

Star formation lasts
3 to 4 Myrs and is continuous

This is also the "intrinsic" error of an age determination

Numerical simulation of star formation

in Giant Molecular Clouds

- Hypothesis: the formation of all members of a star cluster is continuous for 3 to 4 Myrs within one GMCs
- Is this a realistic approach?
- Is it possible to simulation the formation of star clusters and compare the results with observational data within the solar vicinity?

Numerical simulation of star formation

in Giant Molecular Clouds

- Detailed paper by Bate \& Bonnell, 2005, MNRAS, 356, 1201
- Basis: Orion Nebula and Taurus star forming region
- "Complete" astrophysical numerical simulation including Shock Waves, dynamical parameters and 3D-Hydrodynamics, Jeans Mass < 1 M(Sun)
- The numerical simulations are astonishing close to the observations

Numerical simulation of star formation

in Giant Molecular Clouds

Input parameter:

1. Mass $(G M C)=50 \mathrm{M}($ Sun $)$, limited by CPU time
2. Diameter $=0.375 \mathrm{pc}$, limited by CPU time
3. Time for the gravitational collapse: 19000 years
4. Random turbulence field with a 3D Gaussian distribution

Core	Initial Gas Mass M_{\odot}	Initial Size pc	Final Gas Mass M_{\odot}	No. Stars Formed	No. Brown Dwarfs Formed	Mass of Stars and Brown Dwarfs M_{\odot}	Star Formation Efficiency \%
1	1.50 (0.15)	$0.04 \times 0.04 \times 0.03$	2.03 (1.04)	≥ 13	≤ 52	6.33	76 (86)
2	0.92 (0.16)	$(0.03 \times 0.01 \times 0.01)$	1.18 (0.50)	≥ 4	≤ 8	1.33	53 (73)
3	0.17 (0.06)	$(0.02 \times 0.01 \times 0.01)$	0.32 (0.08)	1	0	0.18	36 (69)
4	0.31 (0.07)	$(0.03 \times 0.01 \times 0.01)$	0.32 (0.06)	1	0	0.09	22 (60)
Cloud	50.0	$0.38 \times 0.38 \times 0.38$	42.1	≥ 19	≤ 60	7.92	16

„Stars": Mass > 0.084 M(Sun)
 Brown Dwarfs: Mass < 0.084 M(Sun), no Hydrogen burning

More low mass stars formed due to the IMF

For star clusters it is essential to know the internal velocity distribution because of their evolution (see later)

Binaries are connected with a line

The rms velocity dispersion of the simulations is $4.3 \mathrm{~km} \mathrm{~s}^{-1}$ Such observational data for $\mathrm{d}>500 \mathrm{pc}$ are still not available => Gaia DR3 will (hopefully) provide it

Situation - Gaia DR2

Open cluster kinematics with Gaia DR2^

C. Soubiran ${ }^{1}$, T. Cantat-Gaudin ${ }^{2}$, M. Romero-Gómez ${ }^{2}$, L. Casamiquela ${ }^{1}$, C. Jordi ${ }^{2}$, A. Vallenari ${ }^{3}$, T. Antoja ${ }^{2}$, L. Balaguer-Núñez ${ }^{2}$, D. Bossini ${ }^{3}$, A. Bragaglia ${ }^{4}$, R. Carrera ${ }^{3}$, A. Castro-Ginard ${ }^{2}$, F. Figueras ${ }^{2}$, U. Heiter ${ }^{6}$, D. Katz 7, A. Krone-Martins ${ }^{5}$, J.-F. Le Campion ${ }^{1}$, A. Moitinho ${ }^{5}$, and R. Sordo ${ }^{3}$

Results. For the high-quality sample of 406 clusters, the median uncertainty of the weighted mean radial velocity is $0.5 \mathrm{~km} \mathrm{~s}^{-1}$. The accuracy, assessed by comparison to ground-based high-resolution spectroscopy, is better than $1 \mathrm{~km} \mathrm{~s}^{-1}$.

So can we use this for studying the internal velocity distribution (rms $=4.3 \mathrm{~km} \mathrm{~s}^{-1}$)?

Situation - Gaia DR2

Fig. 2. Distribution of RV as a function of G magnitude for the 36 members of Skiff J0058+68.4

Huge spread and only a few members per cluster

Fig. 4. Distribution of RV for members for NGC 2244.

Situation - Gaia DR2

Not useable

Fig. 3. Histogram of the RV standard deviation, in log scale, for the OCs with at least three members.

Formation of Globular Clusters

- Globular Clusters also formed from one GMC - But how are GCLs formed in Galaxies?

Collapse of a Pregalactic Gas Cloud

Galactic Wind
Formation of Globular Clusters

Further Formation of
Fragments

Formation of Globular Clusters
in the outer halo region of the galaxy

Formation of Globular Clusters

Letter to the Editor

Origin of the system of globular clusters in the Milky Way

D. Massari ${ }^{1,2,3}$, H. H. Koppelman ${ }^{1}$, and A. Helmi ${ }^{1}$

Methods. To this end, we combined the kinematic information provided by Gaia for almost all Galactic clusters, with the largest sample of cluster ages available after carefully correcting for systematic errors. To identify clusters with a common origin we analysed their dynamical properties, particularly in the space of integrals of motion.
Results. We find that about 40% of the clusters likely formed in situ. A similarly large fraction, 35\%, appear to be possibly associated to known merger events, in particular to Gaia-Enceladus (19\%), the Sagittarius dwarf galaxy (5\%), the progenitor of the Helmi streams (6%), and to the Sequoia galaxy (5%), although some uncertainty remains due to the degree of overlap in their dynamical characteristics. Of the remaining clusters, 16% are tentatively associated to a group with high binding energy, while the rest are all on loosely bound orbits and likely have a more heterogeneous origin. The resulting age-metallicity relations are remarkably tight and differ in their detailed properties depending on the progenitor, providing further confidence on the associations made.

My interpretation: the results are inconclusive

Evolution of Star Clusters

- Star Clusters form with the following characteristics

1. Total Mass: IMF
2. Metallicity
3. Kinematics of the Cluster center: location within the Galaxy
4. Internal velocity dispersion

- How does a Star Cluster evolve with these starting parameters?
- Each member (= star) evolve "as an individual", some important topics

1. Binary Evolution
2. Mass Loss (hot stars)
3. AGB Evolution
4. Planetary Nebula (cool stars)
5. Supernovae explosions

- In Star Clusters, collisions are very uncommon (see later), almost no new multiple (binary) systems form during the later evolution
- Star Clusters, normally, follow Galactic Rotation

Each member (= star) evolve "as an individual", so we have to take into account all these stages

PROTESTAR

PROTOSTAR

SL

And we should find
White Dwarfs or Planetary Nebulae in Star Clusters

Planetary Nebulae

Majaess et al., 2007, PASP, 119, 1349

Not surprisingly, line of sight coincidences almost certainly exist for 7 of the 13 cases considered. Additional studies are advocated, however, for 6 planetary nebula/open cluster coincidences in which a physical association is not excluded by the available evidence, namely M 1-80/Berkeley 57, NGC 2438/NGC 2437, NGC 2452/NGC 2453, VBRC 2 \& NGC 2899/IC 2488, and HeFa 1/NGC 6067.

Additional Planetary Nebula/Open Cluster Coincidences $\left(r<15^{\prime}\right)$.

Planetary Nebula	PN Identifier	Open Cluster	Cluster $r_{n}\left({ }^{\prime}\right)^{\text {c }}$	Estimated $R_{C}\left({ }^{\prime}\right)^{\text {d }}$	Separation (${ }^{\prime}$)
NGC 6741	G033.8-02.6	Berkeley 81	3	\cdots	13
K4 4-41	G068.7+01.9	NGC 6846	1	\ldots	1
KLW 6	G070.9+02.4	Berkeley 49	2	\cdots	11
K 3-57	G072.1+00.1	Berkeley 51	1	\cdots	12
A 69	G076.3+01.1	Anon (Turner)	3	...	4
Bl 2-1	G104.1+01.0	NGC 7261	3	22	7
FP0739-2709	G242.3-02.4	ESO 493-03	4	.	8
PHR0840-3801	G258.4+02.3	Ruprecht 66	1	...	2
PHR0905-5548	G274.8-05.7	ESO 165-09	8	\cdots	9
Pe 2-4	G275.5-01.3	van den Bergh-Hagen 72	1	\cdots	9
...	...	NGC 2910	2	24	14
$\mathrm{NeVe} 3-1$	G275.9-01.0	NGC 2925	5	26	12
Hf 4	G283.9-01.8	van den Bergh-Hagen 91	3	...	14
He 2-86	G300.7-02.0	NGC 4463	2	22	3
PHR1315-6555	G305.3-03.1	AL 67-01	2	\ldots	1
PHR1429-6043	G314.6-00.1	NGC 5617	5	25	1
$v \mathrm{Be} 3$	G326.1-01.9	NGC 5999	2	25	5

PNs exist in Open Clusters

Important topic of how SN explosions affect the cluster evolution

Shockwaves
Mass flow

Statistically, SN explosions are rather common

SN Remnants

- Catalogue of Galactic SNRs:
http://www.mrao.cam.ac.uk/surveys/snrs/
- 294 entries
- Complete list of papers for Open Clusters 1. Pauls, 1977, A\&A, 59, L13: NGC 559?

2. Kumar, 1978, ApJ, 219, L13: Tr 18 and 21?
3. Peterson et al., 1988, MNRAS, 235, 1439: Lynga 1, Pismis 20, Stock 14, and Trumpler 21, none conclusive

- No new papers available
- They exist but are extremely rare

Muno et al., 2006, ApJ, 636, L41: Westerlund 1 $d=5200 \mathrm{pc}, \log \mathrm{t}<6.4$

Pulsar, V fainter than 25th mag

- White Dwarfs were detected in Open Clusters

The number is compatible with a common stellar evolution scenario, but the membership determination is very difficult

- The absolute magnitude of WDs is about 10 magnitudes fainter than the corresponding Main Sequence

von Hippel, 1998, AJ, 115, 1536

White Dwarfs in Open Clusters

Cluster (1)	Alias (2)	$\begin{aligned} & N_{s} \\ & \text { (3) } \end{aligned}$	Reference (4)	$\begin{aligned} & N_{b} \\ & (5) \end{aligned}$	Reference (6)	$\begin{aligned} & N_{i} \\ & (7) \end{aligned}$	Mass (8)	Reference (9)	Age (10)	Reference (11)
Hyades.		7	1,2	3	9, 14	${ }^{\circ}$	410-480	16	0.63	21
Pleiades	M45	1	3, 4, 5	...		1-2	1000-2000	17, 18	0.07	22
NGC 2168.	M35	2	3, 6	$\geq 1600-3200$	19	0.09	3, 6
NGC 2287.	M41	2	4		0.18	4
NGC 2420.		4	7	≥ 4000	20	2.4	23
NGC 2451.		1	3, 8		0.07	8
NGC 2477.		4	7	...		\ldots	...		1.2	7
NGC 2516.		4	9	...		\ldots	\ldots		0.14	24
NGC 2632.	M44	4	10	\ldots		...	\ldots		0.7	25
NGC 2682.	M67	1	11	2	11, 15	\ldots			4.0	24
NGC 3532.		6	3, 12, 13	.		\ldots	≥ 600	13	0.17	13
Total .		36		5		...				

NoTe.-NGC 2632 = Praesepe.
Single Multiple

In total, 41 WDs until 1998 found, no firm improvement after that

Why do Star Clusters dissipate?

Virial Theorem: $\quad 2 E_{k i n}=-\Omega$
Kinetic Energy:

$$
2 E_{k i n}=n \cdot m_{i} \cdot \bar{v}^{2}=M \cdot \bar{v}^{2}
$$

$\bar{v} \ldots$ mean v of the members
relative to the cluster center

Potential Energy:

$$
\begin{aligned}
& \Omega=-\frac{1}{2} \cdot \frac{G \cdot M^{2}}{\bar{R}^{2}} \\
& \bar{v}^{2}=\frac{G \cdot M}{2 \bar{R}^{2}}
\end{aligned}
$$

Escape Velocity: $\quad \bar{v}_{\infty}^{2}=4 \cdot \bar{v}^{2}$
Collisions:

$$
t_{\text {coll }} \approx \frac{1}{\rho \cdot \sigma \cdot \Delta \bar{v}}
$$

Density ρ and cross section σ :

$$
\rho=\frac{N}{\bar{R}^{3}} \quad \sigma=4 \pi \cdot R_{*}^{2} \Rightarrow t_{\text {coll }}=\frac{\bar{R}^{3}}{4 \pi \cdot N \cdot R_{*}^{2} \cdot \Delta \bar{v}}
$$

Example of a typical Open Cluster:
$N=1000, \Delta \bar{v}=10 \mathrm{kms}^{-1}, \mathrm{R}_{*}=2.5 R_{\text {Sun }}, \overline{\mathrm{R}}=5 \mathrm{pc}$
$t_{\text {coll }}=10^{25} \mathrm{~s}=>$ Collisions play no role

Even in the most inner core parts, collisions are highly improper, but could occur

Conclusions:

1. Binary and Multiple systems are not results of collisions in later stages but form already at the very beginning
2. Members do, in general, not escape due to collisions (swing-by effect), but their peculiar velocity component is part of the cluster formation or due to a SN explosion

Crossing Time: $\quad t_{\text {cross }}=\frac{\bar{R}}{\Delta v}$
$\Delta v=10 \mathrm{kms}^{-1}$ and $\overline{\mathrm{R}}=5 \mathrm{pc} \Rightarrow t_{\text {cross }}=4.9 \cdot 10^{8} y r$
Members can escape from a Star
Cluster on a reasonable time scale

Reasons: Velocity dispersion caused by the cluster formation and SN events ("angular momentum kick")

Tidal Forces due to Differential Galactic Rotation

Total Mass of the Milky Way: $M_{G}=2 \times 10^{11} \mathrm{M}($ Sun $)$

Gravitational acceleration of the complete star cluster g_{G} and the individual member g_{*} :

$$
g_{G}=\frac{G \cdot M_{G}}{R_{G C}^{2}} \quad g_{*}=\frac{G \cdot M_{G}}{\left(R_{G C}-r\right)^{2}}
$$

The difference of these two values, is the force, of which "the Milky Way" tries to pull away a star from the cluster

$$
g_{G, *}=\frac{2 \cdot G \cdot M_{G} \cdot r}{R_{G C}^{3}} \text { for } r \ll R_{G C}
$$

On the other side we have the gravitational force of the open cluster. The stability radius r_{s} is defined as:

$$
\begin{aligned}
& \frac{2 \cdot G \cdot M_{G} \cdot r_{S}}{R_{G C}^{3}}=\frac{G \cdot M_{O C}}{r_{s}^{2}} \Rightarrow r_{S}=R_{G C} \cdot\left(\frac{M_{O C}}{2 M_{G}}\right)^{1 / 3} \\
& r_{S}=10.9 \cdot\left(\frac{M_{O C}}{1000}\right)^{1 / 3} \text { for } R_{G C}=8 \mathrm{kpc} \text { in }\left[\mathrm{M}_{\text {Sun }}, \mathrm{pc}\right]
\end{aligned}
$$

For $1000 \mathrm{M}($ Sun $)=>$ Diameter 20 pc

Tidal Forces due to Differential Galactic Rotation

- Star Clusters lose members on their way following the Galactic rotation due to differential rotation and internal velocity distribution as well as "SN kicks"
- These stars become "Galactic field stars"
- For some Star Clusters, also tidal tails were found. These are former members still very weakly bound to the Star Cluster following its path

Tidal Trails - Coma Berenices

Open Cluster, age about 400 Myr

Tidal Trails - Palomar 5

Globular Cluster, age about 11 Gyr

Summary

- Star Cluster dissipate because of

1. Differential Galactic Rotation
2. Internal Velocity Dispersion
3. Collisions in the first few Myrs
4. SN Explosions and corresponding Shock Waves
5. (Collisions with "Field Stars")

- Explains the existence of Globular Clusters
- Valid for all Spiral Galaxies

