

Where the structural information comes from

PDB Statistics – by method

Molecular Type	X-ray ∥↑	NMR↓↑	EM↓↑
Nucleic acid (only)	2054	1296	35
Other	460	49	117
Protein (only)	136930	11383	3848
Protein/NA	6615	264	1069
Total	146059	12992	5069

In vitro structure & dynamics

buffered solutions, crystalline state, or deposited isolated molecules on the surface

X-ray diffraction

approximation

Complex heterogenous aqueous env.

Simple homogenous anhydrous env.

-180 °C

37 °C

NMR spectroscopy

approximation

Complex heterogenous aqueous env.

Simple homogenous aqueous env.

VS.

20 °C

37 °C

Electron microscopy

approximation

Complex heterogenous aqueous env.

Simple homogenous aqueous env.

structure is independent of environmental conditions

...not entirely true, particularly for DNA

(Δ pH, Δ ion strengh, ion type, MC, hydration)

X-ray – particularly prone to env. artifacts

...monocrystal production

Crystal Screen[™]

Tube	Salt	Tub
#		#
1.	0.02 M Calcium chloride dihydrate	1.
2.	None	2.
3.	None	3.
4.	None	4.
5.	0.2 M Sodium citrate tribasic dihydrate	5.
6.	0.2 M Magnesium chloride hexahydrate	6.
7.	None	7.
8.	0.2 M Sodium citrate tribasic dihydrate	8.
9.	0.2 M Ammonium acetate	9.
10.	0.2 M Ammonium acetate	10
11.	None	11
12.	0.2 M Magnesium chloride hexahydrate	12
13.	0.2 M Sodium citrate tribasic dihydrate	13

HR2-110 Reagent Formulation

e	Buffer ◊	Tube #	Precipitant
	0.1 M Sodium acetate trihydrate pH 4.6	1.	30% v/v (+/-)-2-Methyl-2,4-pentanediol
	None	2.	0.4 M Potassium sodium tartrate tetrahydrate
	None	3.	0.4 M Ammonium phosphate monobasic
	0.1 M TRIS hydrochloride pH 8.5	4.	2.0 M Ammonium sulfate
	0.1 M HEPES sodium pH 7.5	5.	30% v/v (+/-)-2-Methyl-2,4-pentanediol
	0.1 M TRIS hydrochloride pH 8.5	6.	30% w/v Polyethylene glycol 4,000
	0.1 M Sodium cacodylate trihydrate pH 6.5	7.	1.4 M Sodium acetate trihydrate
	0.1 M Sodium cacodylate trihydrate pH 6.5	8.	30% v/v 2-Propanol
	0.1 M Sodium citrate tribasic dihydrate pH 5.6	9.	30% w/v Polyethylene glycol 4,000
	0.1 M Sodium acetate trihydrate pH 4.6	10.	30% w/v Polyethylene glycol 4,000
	0.1 M Sodium citrate tribasic dihydrate pH 5.6	11.	1.0 M Ammonium phosphate monobasic
	0.1 M HEPES sodium pH 7.5	12.	30% v/v 2-Propanol
	0.1 M TRIS hydrochloride pH 8.5	13.	30% v/v Polyethylene glycol 400

thermodynamically NOT kinetically preferred conformation is responsible for biological activity.

... not generally true

Biological processes (folding, interactions) t <

Only H2 would be observed in conventional X-ray, NMR experiment

Bessi et al. Angew Chem Int Ed Engl. 2015 Jul 13;54(29):8444-8.

Summary

...X-ray, NMR, cryoEM structures

...are biased

- Towards thermodynamically preferred (lowest energy) conformation, which is not necessarily biologically active; the bias is a function of T [°C]
- Towards conformation specific to selected environmental conditions
- Parameters used to assess structure quality refers only to precision not accuracy

> Summary

...in addition, NMR

Bias from external information on local structure

PDB Statistics: PDB Data Distribution by Resolution

Distribution by structure resolution. Data shown include structures solved by X-ray crystallography or electron microscopy.

Resolution (Angstrom)

cryoEM

X-ray

Bias from external information on local structure

Example: Implicitly used assumption of planarity of nucleic acid bases

However, NA bases are planar only when isolated and when at 0 K.

Data from ultra-high resolution structures of nucleotides Nucleic Acids Res, Volume 37, Issue 21, 1 November 2009, Pages 7321–7331

During structure determination we presume planarity

... source of the artefact in NMR – affects interpretation of NOEs, Js, RDCs

Structural Biology – an issue

How to recognize physiologically relevant (accurate) structure?

... assessment of structural accuracy presumes knowledge of reference structure

Cellular Structural Biology – a concept

... characterization of structures at physiologically relevant env. conditions

Plitzko et al. Structural Biology Outside the Box-Inside the Cell. *Curr Opin Struct Biol.* **2017** Oct;46:110-121

EXAM by homework

Model a 3D complex between TBA aptamer and FGF2 presuming that the TBA binds to the heparin binding site via electrostatic interactions.

Consider visualization of charge distribution on structural models of FGF2 and TBA.

e.g., Raček et al. Atomic Charge Calculator II: Web-Based Tool for the Calculation of Partial Atomic Charges. Nucleic Acids Res. 2020 May 13;gkaa367. doi: 10.1093/nar/gkaa367