8. Migration & Fluid flow

Application of Darcy, Flowpath, and Percolation Models to Petroleum System Models

Migration Darcy Flow Modeling

Concept: Based on equations of flow through porous media **Advantages:**

- Good definition of <u>carrier and seal</u> system
- Easy inclusion of <u>complex migration and transport processes</u> such as multi-phase migration, gas diffusion and PVT controls
- Only method that fully integrates <u>pressures</u> into the modeling process **Disadvantages:**
- Cannot accurately handle accumulations and breakthroughs
- Long processing times
- In order to obtain acceptable processing times, <u>models must be</u> <u>simplified</u> with a loss of geometric information

Migration from the deep kitchen

Darcy Law Capillary entry pressure

Pore space saturation with HC liquids

Migration from the deep kitchen

Darcy Law in low permeability environment

Flowpath (= ray tracing) Modeling

Concept: Geometrical **surface** analysis (**buoyancy** driven migration) **Advantages:**

- Fast processing
- <u>High resolution</u> modeling
- Accurate reservoir geometries can be included

Disadvantages:

- Incomplete physical model of petroleum migration
- Arbitrary definitions of the migration system, e.g. of seals
- Not suitable for complex migration processes
- Misleading simplicity

Flowpath

Import structural map – show fetch areas

Flowpath

Poloygon of active source kitchen – inject oil and gas generated

Flowpath

Migration – Flowpath

Flowpath – Buoyancy Driven – Following Topography

Liquid (oil) and vapour (gas) migration, accumulation and spills

Fault Assignments in 3D

Faults as conduits or seals

Closed faults scenario Open faults scenario

Hybrid Migration Modeling: The Petroleum System

HC Generation / Migration

Rift stage source rock with transformation ratio accumulation bodies, vectors and flow paths.

Late Neogene

8. n-Component / Phase Modeling:

flash calculations

Fluid Composition and Phase prediction Multicomponent pvT-Analysis

Multicomponent pvT-Analysis

HC Components		
\downarrow		
Component	Mol%	Mass%
CO2	0.91	0.43
N2	0.16	0.05
C1	36.47	6.24
C2	9.67	3.10
C3	6.95	3.27
iC4	1.44	0.89
nC4	3.93	2.44
iC5	1.44	1.11
nC5	1.41	1.09
C6	4.33	3.97
C7+	33.29	44.71

HC Phases

Prediction of GOR, API Density

<u>Volume</u> Liquid, Vapour, (Water) Phase

Composition

Liquid, Vapour, (Water) Phase

<u>Density</u> Liquid, Vapour, (Water) Phase

<u>Viscosity</u> Liquid, Vapour, (Water) Phase

p, T Separator

pV Diagram of Pure Substance (single component)

pT Diagram of a Mixture (two components)

Symmetrical Black Oil Model (SBO)

Flash Calculations

Flash Calculations

Flash calculations

2-D 2-phase / n-component modeling:

HC Quality Prediction

C2-C5 S3

C6-C14 S3

C15+ 53

01.0 21.3

04.1 00.0

31.4 00.0

What it looks like when it comes to the surface

Component Tracking

Flash calculations 3D 3-phase / n-component modeling:

View of the hydrocarbon accumulation with volumetrics, properties, phase and component information

Dynamics of Accumulation and Phase Partitioning

Prediction: Volume/Phase/Composition

Example: 3-D Fluid Flow Models

Summary - Migration

Progress in Basin Modeling

- From basin to reservoir scale
- Thermal histories -> Fluid Flow -> Component / Phase Composition (pVT)
- Prospect appraisal (ranking and risking) -> product predictions to regional reserves assessments

Gracias por su atención

Juraj Francu jfrancu@egi.utah.edu

