A global property of plane curves: rotation index

Definition. A subset $C \subseteq E_{2}$ is called immersed curve of the class $C^{r}, r \geq 1$ if there exists a regular motion $f: I \rightarrow E_{2}$ tdy C^{r} such that $C=f(I)$ for some open interval $I \subseteq \mathbb{R}$.

In immersed curve $C \subseteq E_{2}$ is called immersed curve of the class C^{r} if there exists a parametrization $f:[a, b] \rightarrow E_{2}, a, b \in \mathbb{R}$ such that $f([a, b])=C, f(a)=f(b)$ and $\left.f\right|_{(a, b)} \rightarrow E_{2}$ is a regular motion of the class C^{r} such that $f_{+}^{(i)}(a)=f_{-}^{(i)}(b), i \leq r$.

If moreover maps $\left.f\right|_{[a, b)}$ and $\left.f\right|_{(a, b]}$ are injective then C is called simple closed immersed curve.

For simplicity, we shall just talk about closed and simple closed curves (which will be implicitly assumed to be immeresed). In this setting we shall introduce a new definition of the curvature for which we shall consider E_{2} as oriented Euclidean space:

Definition. At each point of the curve $f(t)$ we define oriented Frenet frame $\left(f(t) ; e_{1}(t), \bar{e}_{2}(t)\right)$ as follows: $e_{1}(t)=\frac{f^{\prime}(t)}{\left\|f^{\prime}(t)\right\|}$ and $\left(e_{1}(t), \bar{e}_{2}(t)\right)$ is a positive orthonormal basis. Assuming $f(s)$ is the arc-length parametrization, we call the number $\bar{\kappa}(s) \in \mathbb{R}$ satisfying $e_{1}^{\prime}(s)=\bar{\kappa}(s) \bar{e}_{2}(s)$ oriented curvature at the point $f(s)$.

Frenet formulae are similar to the non-oriented version: $e_{1}^{\prime}(s)=\bar{\kappa}(s) \bar{e}_{2}(s)$ and $e_{2}^{\prime}(s)=$ $-\bar{\kappa}(s) \bar{e}_{1}(s)$. Note the oriented curvature could be negative (think about examples).

Proposition. Let $f:[a, b] \rightarrow E_{2}$ be closed curve C of the class C^{r}. Then there is a function $\theta:[a, b] \rightarrow \mathbb{R}$ of the class C^{r} such that $e_{1}(t)=(\cos \theta(t), \sin \theta(t))$ which satisfies $\theta^{\prime}(t)=\bar{\kappa}(t)\left\|f^{\prime}(t)\right\|$. Moreover, the difference $\theta(b)-\theta(a)$ is independent on the choice of θ.

Proof. Existence of θ is obvious: choose $\theta(a)$ such that $e_{1}(a)=(\cos \theta(a), \sin \theta(a))$ and then extend θ continuously to the interval $[a, b]$. More precisly, using the arc-length parametrization we have $\cos \theta(s)=\left(e_{1}(s), \varepsilon_{1}\right)$ and $\sin \theta(s)=-\left(\bar{e}_{2}(s), \varepsilon_{1}\right)$ where ε_{1} is the first vector of the standard basis. Then $\theta(s)$ is of tha class C^{r}. (Do we need both previous relations? Why?) By differentiating we obtain $\theta^{\prime}(s)=\bar{\kappa}(s)$. Reparametrization $s=s(t), \frac{d s}{d t}>0$ the yields $\theta^{\prime}(t)=\bar{\kappa}(t)\left\|f^{\prime}(t)\right\|$.

To show independence of the difference $\theta(b)-\theta(a)$ on the choice of θ, assume $\varphi(t)$ is another function satisfying the proposition. Then $\theta(t)-\varphi(t)=2 k(t) \pi$ for some continuous function $k(t) \in \mathbb{Z}$. Thus $k(t)$ is a constant.

Thus the difference $\theta(b)-\theta(a)$ is obtained using a parametrization $f:[a, b] \rightarrow E_{2}$ of an immersed closed curve (but is independent on a reparametrization). Consider e.g. various parametrizations of the circle $(\cos t, \sin t)$ where either $t \in[0,2 \pi]$ or $t \in[0,4 \pi]$ etc.
Definition. The number $n_{C}:=\frac{1}{2 \pi}[\theta(b)-\theta(a)]$ is called rotation index of the closed curve uzavřené křivky C from the proposition.

Example. The curve $f(t)=(\cos 2 \pi t, \sin 2 \pi t)$ for $t \in[0, m], m \in \mathbb{N}$ has the rotation index m. (This curve is of course a circle.) What are examples of closed curves with negative rotation index?

Theorem. It holds $n_{C}=\frac{1}{2 \pi} \int_{a}^{b} \bar{\kappa}(t)\left\|f^{\prime}(t)\right\| d t$.
Moreover, n_{C} is independent on a reparametrization preserving the orientation. Reparametrizations changing orientation change the sign of n_{C}.

Proof. The first part of the proof follows from the relation $\theta^{\prime}(t)=\bar{\kappa}(t)\left\|f^{\prime}(t)\right\|$. (In)dependence on the reparametrization $t=t(\tau)$ follows from the form of the integral on the right hand side after substituion $t=t(\tau)$.

Recall convex subset $T \subseteq \mathbb{R}^{2}$ satisfies pak $\overline{x_{1} x_{2}} \subseteq T$ for each $x_{1}, x_{2} \in T$. Here $\overline{x_{1} x_{2}}$ denotes the segment with endpoints x_{1} and x_{2}.

Lemma. Let $T \subseteq \mathbb{R}$ be a convex set and $e: T \rightarrow S^{1}$ be a function of the class C^{r}. Then there exists a function $\theta: T \rightarrow \mathbb{R}$ of the class C^{r} satisfying $e(x)=(\cos \theta(x), \sin \theta(x)), x \in T$. Moreover, if $\theta(x)$ and $\varphi(x)$ are two such functions then they differ by $2 k \pi$ for some $k \in \mathbb{Z}$.

Here we denote by S^{1} a circle. Note this technical lemma (stated without proof) is a two-dimensional proof of the proposition

The following theorem is the main result of this section:
Theorem (Hopf's Umlaufsatz). If $f:[a, b] \rightarrow E_{2}$ is a simple closed curve C then $n_{C}= \pm 1$.
The opposite implication does not hold. Why?
Proof. We can assume $a=0$ and that f is arc-length parametrization. Put $\Delta=\{(s, t) \mid$ $0 \leq s \leq b\} \subseteq \mathbb{R}^{2}$ and define the function $h: \Delta \rightarrow S^{1}$ as follows:

$$
h(s, t)= \begin{cases}e_{1}(s) & s=t \\ -e_{1}(0) & (s, t)=(0, b) \\ \frac{f(t)-f(s)}{\|f(t)-f(s)\|} & \text { otherwise }\end{cases}
$$

The set Δ is convex and function $h(s, t)$ is continuous. Further we can assume that $f(0)=$ $(0,0)$ and that this is the "lowest" point on the curve, i.e. that this point has minimal y coordinate. Then $e_{1}(0)$ is (up to the sign) first vector of the standard basis, i.e. $e_{1}(0)= \pm \varepsilon_{1}$. Further we shall assume $e_{1}(0)=\varepsilon_{1}$ (which might change the orientation of C).

It follows from the lemma that $h(s, t)=(\cos \tilde{\theta}(s, t), \sin \tilde{\theta}(s, t))$ for continuous function $\tilde{\theta}: \Delta \rightarrow \mathbb{R}$. Using $\theta(s)$ from the proposition, then the theorem sayes that

$$
\begin{aligned}
n_{C}=\frac{1}{2 \pi} \int_{a}^{b} \bar{\kappa}(s) d s & =\frac{1}{2 \pi}(\theta(b)-\theta(0))=\frac{1}{2 \pi}(\tilde{\theta}(b, b)-\tilde{\theta}(0,0))= \\
& =\frac{1}{2 \pi}[(\tilde{\theta}(0, b)-\tilde{\theta}(0,0))+(\tilde{\theta}(b, b)-\tilde{\theta}(0, b))]
\end{aligned}
$$

Here $N_{1}:=\tilde{\theta}(0, b)-\tilde{\theta}(0,0)$ is the angle which measures the change of the radious vector. Hence $N_{1}=\pi$ since the curve lies in the upper half-plane. Similarly, the angle $N_{2}=$ $\tilde{\theta}(b, b)-\tilde{\theta}(0, b)$ measures the change of the vector opposite to the radius vector, i.e. $N_{2}=\pi$. Thus $n_{C}=1$.

