

M7160 Obyčejné diferenciální rovnice II

M7160 Ordinary Differential Equations II

Michal Veselý Text vychází z přednášek prof. Lomtatidze

Masarykova univerzita, Přírodovědecká fakulta Ústav matematiky a statistiky

Se sazbou v systému LATEX pomáhali Jakub Juránek a Jiřina Šišoláková

Tato publikace vznikla v rámci projektu Fond rozvoje Masarykovy univerzity (projekt MUNI/FR/1133/2018) realizovaného v období 1/2019-12/2019.

Contents

1	Auxiliary results	1
	1.1 Notations	1
	1.2 Carathéodory class	2
	1.3 Absolute continuity	6
2	Existence of solutions	8
3	Extendability of solutions	13
4	Set of solutions	18
5	Upper and lower solutions	21
6	Wintner theorem	29
7	Uniqueness of solutions	31
8	Krein theorem	37
9	Kneser theorem	47
10	Fukuhara theorems	51

1. **Auxiliary results**

1.1 **Notations**

\mathbb{R}_+	non-negative real numbers
$x = (x_i)_{i=1}^m$	column vectors with coordinates x_1, \ldots, x_m
\mathbb{R}^m	the space of real vectors $x = (x_i)_{i=1}^m$ with the norm

$$\|x\| = \sum_{i=1}^m |x_i|$$

the closed ball with the centre $x_0 \in \mathbb{R}^m$ and the radius $r \ge 0$, i.e., $B[x_0, r]$

$$B[x_0, r] = \{x \in \mathbb{R}^m; ||x - x_0|| \le r\}$$

$x \cdot y$	the Euclidean inner product of vectors $x, y \in \mathbb{R}^m$
$x \le y$	the inequality between vectors $x = (x_i)_{i=1}^m, y = (y_i)_{i=1}^m \in \mathbb{R}^m$ such
	that $x_i \le y_i, i \in \{1,, m\}$
sgn <i>x</i>	the vector $(\operatorname{sgn} x_i)_{i=1}^m$
[a,b]	the closed interval
(a,b)	the open interval
m(A)	the Lebesgue measure of a set $A \subseteq \mathbb{R}^m$
int(A)	the interior of a set $A \subseteq \mathbb{R}^m$
∂A	the boundary of a set $A \subseteq \mathbb{R}^m$
Ι	a real interval, which is not degenerated to a point
$C(I,\mathbb{R}^m)$	the space of continuous and bounded vector functions $u: I \to \mathbb{R}^m$
	with the norm

$$||u||_C = \sup\{||u(t)||; t \in I\}$$

- the set of continuous vector functions $u: I \to \mathbb{R}^m$
- the set of absolutely continuous vector functions $u: [a,b] \to \mathbb{R}^m$
- $\begin{array}{l} C_{loc}(I,\mathbb{R}^m)\\ \tilde{C}([a,b],\mathbb{R}^m)\\ \tilde{C}_{loc}(I,\mathbb{R}^m) \end{array}$ the set of vector functions $u: I \to \mathbb{R}^m$, which are absolutely continuous on any compact subinterval $[a,b] \subseteq I$
- $\tilde{C}^n([a,b],\mathbb{R})$ the set of all functions $u: [a,b] \to \mathbb{R}$, whose *n*-th derivatives are absolutely continuous
- $\tilde{C}^n_{loc}(I,\mathbb{R})$ the set of all functions $u \colon I \to \mathbb{R}$ such that $u \in \tilde{C}^n([a,b],\mathbb{R})$ for all interval $[a,b] \subseteq I$
- $L(I,\mathbb{R}^m)$ the space of all vector functions $u: I \to \mathbb{R}^m$ which are strongly integrable in the Lebesgue sense with the norm

$$\|u\|_L = \int_I \|u(s)\| \,\mathrm{d}s$$

the set of all vector functions $u: I \to \mathbb{R}^m$ such that $u \in L([a,b],\mathbb{R}^m)$ $L_{loc}(I,\mathbb{R}^m)$ for all interval $[a, b] \subseteq I$

Other notations are given by the range of considered values. For example, L(I,D) is the set

$$\{u: I \to D; u \in L(I, \mathbb{R}^m)\},\$$

where $D \subseteq \mathbb{R}^m$.

1.2 Carathéodory class

Definition 1.1. Let $A \subseteq \mathbb{R}^m$ and $D \subseteq \mathbb{R}^n$ be given. We say that a vector function $g: I \times A \to D$ belongs to the Carathéodory class and we write $g \in K(I \times A, D)$ if the following conditions:

- 1. the function $g(t, -): A \to D$ is continuous for almost all $t \in I$;
- 2. the function $g(-,x): I \to D$ is measurable for all $x \in A$;
- 3. for all r > 0, there exists $h_r \in L(I, \mathbb{R}_+)$ such that

$$||g(t,x)|| \le h_r(t), \qquad t \in I, x \in A \cap B[0,r],$$

are satisfied.

Definition 1.2. We say that a vector function $g: I \times \mathbb{R}^m \to \mathbb{R}^n$ is from the set

$$K_{loc}(I \times \mathbb{R}^m, \mathbb{R}^n)$$

if

$$g \in K([a,b] \times \mathbb{R}^m, \mathbb{R}^n)$$

for all $[a,b] \subseteq I$.

Lemma 1.1. If $g \in K(I \times \mathbb{R}^m, \mathbb{R}^n)$ and if $x \in C_{loc}(I, \mathbb{R}^m)$, then the vector function

$$t \mapsto g(t, x(t)), \qquad t \in I$$

is measurable.

Lemma 1.2. Let $g \in K(I \times \mathbb{R}^m, \mathbb{R}^n)$ be given and let $A \subset \mathbb{R}^m$ be bounded. Let

$$g^{\star}(t) = \sup \{ \|g(t,x)\|; x \in A \}, \quad t \in I.$$

Then, $g^* \in L(I, \mathbb{R}_+)$.

Lemma 1.3. Let $g \in K(I \times \mathbb{R}^m, \mathbb{R}^n)$. Then, there exists a function $h \in L(I, \mathbb{R}_+)$ and a non-decreasing function $\varphi \in C_{loc}(\mathbb{R}_+, \mathbb{R}_+)$ such that

$$||g(t,x)|| \le h(t) \varphi(||x||), \qquad t \in I, x \in \mathbb{R}^m.$$

Lemma 1.4. Let $g \in K(I \times \mathbb{R}^m, \mathbb{R}^n)$. For all r > 0, there exists a function $h_r \in L(I, \mathbb{R}_+)$ and a non-decreasing function $\varphi_r \in C_{loc}(\mathbb{R}_+, \mathbb{R}_+)$ such that $\varphi_r(0) = 0$ and

$$||g(t,x) - g(t,y)|| \le h_r(t) \varphi_r(||x - y||), \quad t \in I, x, y \in B[0,r].$$

Lemma 1.5. Let $g \in K(I \times \mathbb{R}^m, \mathbb{R}^n)$. The operator

$$F(x)(-) = g(-, x(-)), \qquad x \in C(I, \mathbb{R}^m),$$

maps the space $C(I, \mathbb{R}^m)$ into the space $L(I, \mathbb{R}^n)$ continuously.

Proof. For all $x \in C(I, \mathbb{R}^m)$, the function $F(x) : I \to \mathbb{R}^n$ is measurable (see Lemma 1.1). According to Definition 1.1, we have that $F(x) \in L(I, \mathbb{R}^n)$. Thus, the operator maps the space $C(I, \mathbb{R}^m)$ into the space $L(I, \mathbb{R}^n)$.

Let $\{x_k\}_{k=1}^{\infty} \subseteq C(I, \mathbb{R}^m)$ and $x \in C(I, \mathbb{R}^m)$ satisfy

$$\lim_{k\to\infty}\|x_k-x\|_C=0$$

Let r > 0 be such that

$$||x_k(t)|| \le r, \qquad ||x(t)|| \le r, \qquad t \in I, k \in \mathbb{N}.$$

Therefore, there exists a function $h_r \in L(I, \mathbb{R}_+)$ such that (see Lemma 1.4)

 $\|g(t,x_k(t))-g(t,x(t))\| \le h_r(t), \qquad t \in I, k \in \mathbb{N},$

i.e.,

$$|F(x_k)(t) - F(x)(t)|| \le h_r(t), \qquad t \in I, k \in \mathbb{N}.$$

Since the function g(t, -): $\mathbb{R}^m \to \mathbb{R}^n$ is continuous for almost all $t \in I$, it holds

$$\lim_{k\to\infty} \left[F(x_k)(t) - F(x)(t)\right] = 0$$

for almost all $t \in I$. By the Lebesgue theorem, we have

$$\|F(x_k) - F(x)\|_L = \int_I \|F(x_k)(s) - F(x)(s)\| \, \mathrm{d} s \to 0 \text{ as } k \to \infty.$$

Thus, the operator F is continuous.

Lemma 1.6. Let $g \in K(I \times \mathbb{R}^m, \mathbb{R}^n)$. For arbitrary r > 0, let a function $h_r \in L(I, \mathbb{R}_+)$ satisfy

$$||g(t,x)|| \le h_r(t), \qquad t \in I, x \in B[0,r].$$

Then, there exist functions g_k : $I \times \mathbb{R}^m \to \mathbb{R}^n$ *for* $k \in \mathbb{N}$ *such that:*

1. all functions g_k have all partial derivatives with respect to the last m variables and all functions g_k and their partial derivatives belong to the class

$$K(I \times \mathbb{R}^m, \mathbb{R}^n);$$

2. for all r > 0, the inequality

$$||g_k(t,x)|| \le h_{r+1}(t), \qquad t \in I, x \in B[0,r], k \in \mathbb{N},$$

holds;

3. for almost all $t \in I$ *and all* r > 0*, it holds*

$$\lim_{k\to\infty}g_k(t,x)=g(t,x)$$

uniformly in B[0, r].

Remark 1.1. If

$$||g(t,x)|| \le h(t), \qquad t \in I, x \in \mathbb{R}^m,$$

then one can assume that $h_r \equiv h$ for all r > 0.

Remark 1.2. The functions g_k from the statement of Lemma 1.6 have continuous partial derivatives. Therefore, they are locally Lipschitz, i.e., for all r > 0 and $k \in \mathbb{N}$, there exists a function $l_{r,k} \in L(I, \mathbb{R}_+)$ such that

$$||g_k(t,x) - g_k(t,y)|| \le l_{r,k}(t) ||x - y||, \quad t \in I, x, y \in B[0,r].$$

Remark 1.3. The functions g_k from Lemma 1.6 can be chosen in such a way that they have the following property. For all r > 0, there exists a function $\omega_r \in K(I \times \mathbb{R}_+, \mathbb{R}_+)$ which is non-decreasing with respect to the second variable, $\omega_r(-,0) \equiv 0$, and

$$\|g_k(t,x)-g_k(t,y)\| \leq \omega_r(t,\|x-y\|) + \omega_r\left(t,\frac{1}{k}\right), \qquad t \in I, x,y \in B[0,r], k \in \mathbb{N}.$$

Proof of Lemma 1.6. Let $\varphi_k : \mathbb{R}^m \to \mathbb{R}_+$ for $k \in \mathbb{N}$ be functions satisfying the following conditions:

- a) the functions φ_k have continuous all partial derivatives on \mathbb{R}^m ;
- b) the functions φ_k satisfy

$$\varphi_k(x) = 0, \qquad x \in \mathbb{R}^m, \|x\| \ge \frac{1}{k}, k \in \mathbb{N};$$

c) it holds

$$\int\limits_{\mathbb{R}^m} \boldsymbol{\varphi}_k(x) \, \mathrm{d}x = 1, \qquad k \in \mathbb{N}.$$

Such functions can be constructed as follows. Let

$$\varphi(s) = \begin{cases} e^{-\frac{1}{1-s}}, & 0 \le s < 1; \\ 0, & s \ge 1. \end{cases}$$

Let $\rho_k > 0$, $k \in \mathbb{N}$, be such that

$$\rho_k \int_{\mathbb{R}^m} \varphi\left(m^2 k^2 x \cdot x\right) \, \mathrm{d}x = 1.$$

We put

$$\varphi_k(x) = \rho_k \varphi\left(m^2 k^2 x \cdot x\right), \qquad x \in \mathbb{R}^m, k \in \mathbb{N}.$$

Obviously, a) and c) are valid. It is known that

$$||x||^2 \le m^2(x \cdot x), \qquad x \in \mathbb{R}^m.$$

If

$$\|x\| \ge \frac{1}{k},$$

then

$$m^2k^2(x\cdot x) \ge 1$$

and, consequently, $\varphi_k(x) = 0$. Therefore, b) is valid as well.

We define

$$g_k(t,x) = \int\limits_{\mathbb{R}^m} \varphi_k(y-x)g(t,y) \,\mathrm{d}y, \qquad t \in I, x \in \mathbb{R}^m, k \in \mathbb{N}.$$

The functions g_k satisfy the condition 1. Let r > 0 and $x \in B[0, r]$ be arbitrarily given. We have

$$g_k(t,x) = \int_{B[0,r+1]} \varphi_k(y-x)g(t,y) \,\mathrm{d}y, \qquad t \in I, \, k \in \mathbb{N}.$$

We obtain

$$\begin{aligned} \|g_{k}(t,x)\| &\leq \int_{B[0,r+1]} \varphi_{k}(y-x) \|g(t,y)\| \, \mathrm{d}y \\ &\leq h_{r+1}(t) \int_{B[0,r+1]} \varphi_{k}(y-x) \, \mathrm{d}y \\ &\leq h_{r+1}(t) \int_{\mathbb{R}^{m}} \varphi_{k}(y) \, \mathrm{d}y = h_{r+1}(t), \qquad t \in I, \, k \in \mathbb{N}. \end{aligned}$$

which gives the condition 2.

It remains to prove the condition 3. Let r > 0 and $x \in B[0, r]$ be arbitrarily given. Since

$$\int_{\mathbb{R}^m} \varphi_k(y-x) \, \mathrm{d} y = 1, \qquad k \in \mathbb{N},$$

we have

$$g(t,x) = g(t,x) \int_{\mathbb{R}^m} \varphi_k(y-x) \, \mathrm{d}y = \int_{\mathbb{R}^m} \varphi_k(y-x)g(t,x) \, \mathrm{d}y, \qquad t \in I, \, k \in \mathbb{N}.$$

Therefore,

$$g_k(t,x) - g(t,x) = \int_{\mathbb{R}^m} \varphi_k(y-x) \left[g(t,y) - g(t,x)\right] dy$$

=
$$\int_{B[x,\frac{1}{k}]} \varphi_k(y-x) \left[g(t,y) - g(t,x)\right] dy, \qquad t \in I, k \in \mathbb{N}.$$
 (1.1)

Due to Lemma 1.4, there exists a function $\omega_{r+1} \in K(I \times \mathbb{R}_+, \mathbb{R}_+)$ which is non-decreasing in the second variable, $\omega_{r+1}(-, 0) \equiv 0$, and

$$||g(t,y_1) - g(t,y_2)|| \le \omega_{r+1}(t, ||y_1 - y_2||), \quad t \in I, y_1, y_2 \in B[0, r+1].$$

Therefore,

$$\|g(t,x)-g(t,y)\| \le \omega_{r+1}\left(t,\frac{1}{k}\right), \qquad t \in I, y \in B\left[x,\frac{1}{k}\right].$$

From (1.1), we have

$$\begin{split} \|g_k(t,x) - g(t,x)\| &\leq \int\limits_{B[x,\frac{1}{k}]} \varphi_k(y-x) \|g(t,y) - g(t,x)\| \, \mathrm{d}y \\ &\leq \omega_{r+1} \left(t,\frac{1}{k}\right) \int\limits_{B[x,\frac{1}{k}]} \varphi_k(y-x) \, \mathrm{d}y \\ &\leq \omega_{r+1} \left(t,\frac{1}{k}\right) \int\limits_{\mathbb{R}^m} \varphi_k(y-x) \, \mathrm{d}y = \omega_{r+1} \left(t,\frac{1}{k}\right), \qquad t \in I, k \in \mathbb{N}. \end{split}$$

Thus, 3. is valid.

1.3 Absolute continuity

Definition 1.3. We say that a function $x: [a,b] \to \mathbb{R}^m$ is absolutely continuous on [a,b] if, for every $\varepsilon > 0$, there exists $\delta > 0$ such that, for any finite system of pairwise disjoint subintervals

$$(a_k,b_k)\subseteq [a,b], \qquad k\in\{1,\ldots,n\},$$

satisfying

$$\sum_{k=1}^n (b_k - a_k) < \delta,$$

it holds

$$\sum_{k=1}^n \|x(b_k)-x(a_k)\| < \varepsilon.$$

We recall that the set of all absolutely continuous functions $x: [a,b] \to \mathbb{R}^m$ is denoted by

$$C([a,b],\mathbb{R}_m).$$

Theorem 1.1. A function $x: [a,b] \to \mathbb{R}^m$ is called absolutely continuous if and only if the following conditions:

1. the function x is differentiable almost everywhere in [a,b];

~

2. the derivative

$$x' \in L([a,b],\mathbb{R}^m);$$

3. it holds

$$\int_{\alpha}^{\beta} x'(s) \, \mathrm{d}s = x(\beta) - x(\alpha), \qquad \alpha, \beta \in [a, b],$$

are satisfied.

Remark 1.4. Let $t_0 \in [a,b]$ be arbitrarily given. If $h \in L([a,b], \mathbb{R}^m)$, then the function $x: [a,b] \to \mathbb{R}^m$ given by

$$x(t) = \int_{t_0}^t h(s) \,\mathrm{d}s, \qquad t \in [a,b],$$

is absolutely continuous and x'(t) = h(t) for almost all $t \in [a, b]$.

2. Existence of solutions

Let us consider the equation

$$x' = f(t, x), \tag{2.1}$$

where $f \in K_{loc}(I \times \mathbb{R}^n, \mathbb{R}^n)$.

Definition 2.1. Let $I_0 \subseteq I$ be an interval. We say that a function $x: I_0 \to \mathbb{R}^n$ is a solution of Eq. (2.1) if:

- 1. $x \in \tilde{C}_{loc}(I_0, \mathbb{R}^n);$
- 2. it holds

$$x'(t) = f(t, x(t))$$

for almost all $t \in I_0$.

Let $t_0 \in I_0$, $c_0 \in \mathbb{R}^n$. A solution $x: I_0 \to \mathbb{R}^n$ of Eq. (2.1) satisfying the condition

$$x(t_0) = c_0 \tag{2.2}$$

is called the solution of the Cauchy problem (2.1), (2.2).

Definition 2.2. Let *A*,*B* be sets of functions $x: I \to \mathbb{R}^n$ and let $t_0 \in I$. An operator $T: A \to B$ is called t_0 -Volterra if, for all $x, y \in A$ and all $t \in I$ such that

$$x(s) = y(s), \qquad \min\{t_0, t\} \le s \le \max\{t_0, t\},\$$

it holds

$$T(x)(t) = T(y)(t).$$

Lemma 2.1. Let $t_0 \in [a, b]$, $c_0 \in \mathbb{R}^n$, r > 0, and let

$$T: C([a,b], B[c_0,r]) \rightarrow C([a,b], B[c_0,r])$$

be a continuous t_0 -Volterra operator such that $T(c_0)(t_0) = c_0$. Let there exist a function $\omega \in C([0, b-a], \mathbb{R}_+)$ such that $\omega(0) = 0$ and that

$$||T(x)(t) - T(x)(s)|| \le \omega(|t-s|), \quad t,s \in [a,b], x \in C([a,b], B[c_0,r])$$

Then, the operator T has at least one fixed point, i.e., there exists a function

$$x \in C([a,b],B[c_0,r])$$

such that

$$T(x)(t) = x(t), \qquad t \in [a,b]$$

Proof. Without loss of generality, we can assume that the function ω is non-decreasing. We denote

$$I_{k,j} = \left[t_0 - \frac{j(t_0 - a)}{k}, t_0 + \frac{j(b - t_0)}{k}\right], \qquad j \in \{1, \dots, k - 1\}, k \in \mathbb{N}.$$

For $k \in \mathbb{N}$ and $t \in [a, b]$, we define

$$s_k(t) = \begin{cases} t + \frac{t_0 - a}{k}, & t < t_0 - \frac{t_0 - a}{k}; \\ t_0, & t \in I_{k,1}; \\ t - \frac{b - t_0}{k}, & t > t_0 + \frac{b - t_0}{k}. \end{cases}$$

Obviously, the functions s_k : $[a,b] \rightarrow [a,b], k \in \mathbb{N}$, are continuous and

$$|s_k(t)-s_k(\tau)|\leq |t-\tau|, \qquad t,\tau\in[a,b], k\in\mathbb{N}.$$

For $t \in [a, b]$, we denote

$$y_{k,0}(t) = c_0$$

and

$$y_{k,j}(t) = T(y_{k,j-1})(s_k(t)), \qquad j \in \{1, \dots, k-1\}, k \in \mathbb{N}.$$

We show that

$$y_{k,j}(t) = y_{k,j-1}(t), \quad t \in I_{k,j}, j \in \{1, \dots, k-1\}, k \ge 2, k \in \mathbb{N}.$$
 (2.3)

For an arbitrarily given integer $k \ge 2$, using the induction, we prove that the identity

$$y_{k,j}(t) = y_{k,j-1}(t), \qquad t \in I_{k,j},$$
(2.4)

is valid for all $j \in \{1, \dots, k-1\}$. Obviously,

$$y_{k,1}(t) = T(y_{k,0})(s_k(t)) = T(c_0)(s_k(t)) = T(c_0)(t_0) = c_0 = y_{k,0}(t), \quad t \in I_{k,1}.$$

We assume that (2.4) is valid for some $j \in \{1, ..., k-2\}$. We show that (2.4) is also valid for j+1. If $t \in I_{k,j+1}$, then $s_k(t) \in I_{k,j}$. Therefore,

$$y_{k,j+1}(t) = T(y_{k,j})(s_k(t)) = T(y_{k,j-1})(s_k(t)) = y_{k,j}(t), \quad t \in I_{k,j+1}$$

Hence, (2.4) is valid for all $j \in \{1, ..., k-1\}$. By the induction, we have proved (2.3). We denote

$$x_k(t) = y_{k,k-1}(t), \quad t \in [a,b], k \in \mathbb{N}.$$

One can see that

$$x_k \in C([a,b],B[c_0,r]), \qquad k \in \mathbb{N},$$

and that (see (2.3))

$$x_k(t) = y_{k,k-2}(t), \qquad t \in I_{k,k-1}, k \ge 2, k \in \mathbb{N}$$

Since

$$s_k(t) \in I_{k,k-1}, \qquad t \in [a,b], k \ge 2, k \in \mathbb{N},$$

we obtain

$$x_k(t) = T(y_{k,k-2})(s_k(t)) = T(x_k)(s_k(t)), \qquad t \in [a,b], k \ge 2, k \in \mathbb{N}.$$
 (2.5)

Next, we get

$$\begin{aligned} \|x_k(t) - x_k(\tau)\| &= \|T(x_k)(s_k(t)) - T(x_k)(s_k(\tau))\| \\ &\leq \boldsymbol{\omega}(|s_k(t) - s_k(\tau)|) \\ &\leq \boldsymbol{\omega}(|t - \tau|), \qquad t, \tau \in [a, b], k \ge 2, k \in \mathbb{N} \end{aligned}$$

Therefore, the functions x_k , $k \ge 2$, $k \in \mathbb{N}$, are uniformly bounded and equicontinuous. We can use the Arzelà–Ascoli theorem.

Without loss of generality, we can assume that

$$\lim_{k\to\infty}x_k(t)=x(t)$$

uniformly for $t \in [a, b]$, where

$$x \in C([a,b],B[c_0,r]).$$

We have

$$\|T(x_k)(s_k(t)) - T(x)(t)\| \le \|T(x_k)(s_k(t)) - T(x_k)(t)\| + \|T(x_k)(t) - T(x)(t)\|$$

$$\le \omega(|s_k(t) - t|) + \|T(x_k)(t) - T(x)(t)\|$$

for all $t \in [a,b]$, $k \in \mathbb{N}$. Since the operator *T* is continuous, $\omega(0) = 0$, and since

$$\lim_{k\to\infty}s_k(t)=t,\qquad t\in[a,b],$$

we obtain (see (2.5))

$$x(t) = \lim_{k \to \infty} T(x_k)(s_k(t)) = T(x)(t), \qquad t \in [a,b],$$

i.e., x is a fixed point of the operator T.

Theorem 2.1. Let r > 0 and $[a,b] \subseteq I$ be such that $t_0 \in [a,b]$ and

$$\left| \int_{t_0}^t f_{c_0}^{\star}(s,r) \, \mathrm{d}s \right| \le r, \qquad t \in [a,b],$$

where

$$f_{c_0}^{\star}(t,r) = \sup \{ \|f(t,x)\| ; x \in B[c_0,r] \}, \qquad t \in [a,b].$$

Then, the problem (2.1), (2.2) has a solution on [a,b].

Proof. The problem (2.1), (2.2) is equivalent with the equation

$$x(t) = c_0 + \int_{t_0}^t f(\tau, x(\tau)) \,\mathrm{d}\tau, \qquad t \in [a, b].$$

Especially, if $x \in C([a,b],\mathbb{R}^n)$ satisfies this integral equation, then $x \in \tilde{C}([a,b],\mathbb{R}^n)$. Therefore, it suffices to prove that there exists a function $x \in C([a,b],\mathbb{R}^n)$ satisfying this integral equation.

We define

$$T(x)(t) = c_0 + \int_{t_0}^t f(\tau, x(\tau)) \,\mathrm{d}\tau, \qquad t \in [a, b], x \in C([a, b], B[c_0, r]).$$

It is obvious that the operator

$$T: C([a,b], B[c_0,r]) \to C([a,b], \mathbb{R}^n)$$

is t_0 -Volterra. According to Lemma 1.5, the operator T is continuous. For

 $x \in C([a,b],B[c_0,r]),$

we have

$$\left\|T(x)(t)-c_0\right\| \leq \left|\int_{t_0}^t f_{c_0}^{\star}(\tau,r)\,\mathrm{d}\tau\right| \leq r, \qquad t\in[a,b],$$

i.e.,

$$T(x)(t) \in B[c_0, r], \qquad t \in [a, b].$$

Thus,

$$T: C([a,b], B[c_0,r]) \to C([a,b], B[c_0,r]).$$

Further,

$$||T(x)(t) - T(x)(s)|| \le \left| \int_{s}^{t} f_{c_0}^{\star}(\tau, r) d\tau \right|, \qquad s, t \in [a, b], x \in C([a, b], B[c_0, r]).$$

We denote

$$\boldsymbol{\omega}(\boldsymbol{\delta}) = \max\left\{\int_{t}^{t+\boldsymbol{\delta}} f_{c_0}^{\star}(\tau, r) \,\mathrm{d}\tau; t \in [a, b-\boldsymbol{\delta}]\right\}, \qquad \boldsymbol{\delta} \in [0, b-a].$$

The function $\omega \colon [0, b-a] \to \mathbb{R}_+$ is continuous, $\omega(0) = 0$, and

$$||T(x)(t) - T(x)(s)|| \le \omega(|t-s|), \qquad s,t \in [a,b], x \in C([a,b], B[c_0,r]).$$

Due to Lemma 2.1, there exists a function $x \in C([a,b], B[c_0,r])$ with the required property.

Corollary 2.1. For arbitrary $t_0 \in I$ and $c_0 \in \mathbb{R}^n$, there exists an interval $I_0 \subseteq I$ such that $t_0 \in I_0$ and the problem (2.1), (2.2) has at least one solution on the interval I_0 . Moreover, if t_0 is an interior point of I, then the interval I_0 can be chosen so that t_0 is an interior point of I_0 .

Proof. The statement of the corollary follows from Theorem 2.1.

Now, we consider the equation

$$u^{(n)} = f\left(t, u, u', \dots, u^{(n-1)}\right),$$
(2.6)

where $f \in K_{loc}(I \times \mathbb{R}^n, \mathbb{R})$.

Definition 2.3. Let $I_0 \subseteq I$ be an interval. We say that a function $u: I_0 \to \mathbb{R}$ is a solution of Eq. (2.6) on I_0 if

- 1. $u \in \tilde{C}_{loc}^{n-1}(I_0, \mathbb{R});$
- 2. it holds

$$u^{(n)}(t) = f\left(t, u(t), u'(t), \dots, u^{(n-1)}(t)\right)$$

for almost all $t \in I_0$.

Let $t_0 \in I$, $c_i \in \mathbb{R}$, $i \in \{0, 1, ..., n-1\}$. A solution $u: I_0 \to \mathbb{R}$ of Eq. (2.6) satisfying the condition

$$u^{(i)}(t_0) = c_i, \qquad i \in \{0, 1, \dots, n-1\},$$
(2.7)

is called the solution of the Cauchy problem (2.6), (2.7).

Corollary 2.2. For arbitrary $t_0 \in I$ and $c_i \in \mathbb{R}$, $i \in \{0, 1, ..., n-1\}$, there exists an interval $I_0 \subseteq I$ such that $t_0 \in I_0$ and that the problem (2.6), (2.7) has at least one solution on I_0 . Moreover, if t_0 is an interior point of I, then the interval I_0 can be chosen so that t_0 is an interior point of I_0 .

Proof. The statement of the corollary follows from Corollary 2.1. \Box

3. Extendability of solutions

We consider the Cauchy problem

$$x' = f(t, x), \tag{3.1}$$

$$x(t_0) = c_0,$$
 (3.2)

where $f \in K_{loc}(I \times \mathbb{R}^n, \mathbb{R}^n)$, $t_0 \in I$, $c_0 \in \mathbb{R}^n$.

Definition 3.1. Let *x* be a solution of Eq. (3.1) on an interval $(a,b) \subseteq I$. We say that the solution *x* is right-extendable if there exist $b_1 > b$, $b_1 \in I$, and a solution *y* of Eq. (3.1) on the interval $(a,b_1) \subseteq I$ such that y(t) = x(t), $t \in (a,b)$. The solution *y* is called a right-extension of the solution *x*. If any right-extension of the solution *x* does not exist, then we say that the solution *x* is not right-extendable.

Analogously, left-extendable solutions (and solutions which are not left-extendable) are defined. We say that a solution x is extendable if it is right-extendable or left-extendable. In the opposite case, we say that x is non-extendable.

Lemma 3.1. Let $(\alpha, \beta) \subseteq I$, r > 0, $\delta \ge 0$, $c \in \mathbb{R}^n$, and let

$$\delta + \int_{\alpha}^{\beta} f_c^{\star}(\tau, r) \, \mathrm{d}\tau < r$$

where

$$f_c^{\star}(t,r) = \sup \{ \| f(t,x) \| ; x \in B[c,r] \}, \quad t \in (\alpha,\beta).$$

Let x be a solution of Eq. (3.1) *on* (α, β) *satisfying*

$$\inf\{\|x(t)-c\|; t\in(\alpha,\beta)\}\leq\delta.$$

Then,

 $||x(t) - c|| < r, \qquad t \in (\alpha, \beta),$

and the limits

$$\lim_{t \to \alpha^+} x(t), \qquad \lim_{t \to \beta^-} x(t)$$

exist.

Proof. We prove the lemma by contradiction. There exists a point $t_0 \in (\alpha, \beta)$ such that

$$\|x(t_0) - c\| + \int_{\alpha}^{\beta} f_c^{\star}(\tau, r) \,\mathrm{d}\tau < r.$$
(3.3)

In addition, there exists $[\alpha_0, \beta_0] \subseteq (\alpha, \beta)$ such that $t_0 \in [\alpha_0, \beta_0]$ and that

$$\max\{\|x(t) - c\|; t \in [\alpha_0, \beta_0]\} = r.$$
(3.4)

From (3.1), we obtain

$$x(t)-c=x(t_0)-c+\int_{t_0}^t f(s,x(s))\,\mathrm{d} s,\qquad t\in(\alpha,\beta).$$

Therefore,

$$\|x(t) - c\| \le \|x(t_0) - c\| + \int_{\alpha_0}^{\beta_0} f_c^{\star}(s, r) \,\mathrm{d}s, \qquad t \in [\alpha_0, \beta_0].$$
(3.5)

From (3.3) and (3.5), it follows that

$$||x(t) - c|| < r, \quad t \in [\alpha_0, \beta_0].$$

This is a contradiction with (3.4).

It remains to prove the existence of the limits. Since

$$f(-,x(-)) \in L((\boldsymbol{\alpha},\boldsymbol{\beta}),\mathbb{R}^n),$$

the existence of the limits comes from

$$x(t) = x(t_0) + \int_{t_0}^t f(s, x(s)) \,\mathrm{d}s, \qquad t \in (\alpha, \beta).$$

Theorem 3.1. Let x be a solution of Eq. (3.1) on an interval $(a,b) \subseteq I$. Then, x is right-extendable if and only if $b < \sup I$ and

$$\liminf_{t \to b^-} \|x(t)\| < \infty.$$

Proof. Let $b < \sup I$ and let

$$\lim_{t \to b^-} \|x(t)\| \neq \infty.$$

There exists $c \in \mathbb{R}^n$ such that

$$\liminf_{t\to b^-} \|x(t) - c\| = 0.$$

We put r = 1, $\delta = 0$, and $\beta = b$. Let $\alpha \in (a, \beta)$ be such that the conditions of Lemma 3.1 are satisfied. Hence,

$$\lim_{t \to b^-} x(t) = c.$$

We consider the Cauchy problem

$$x' = f(t, x), \qquad x(b) = c.$$

From Corollary 2.1, it follows the existence of $b_1 > b$, $b_1 < \sup I$, and the existence of a solution \bar{x} of the considered Cauchy problem on the interval $[b, b_1]$. We put

$$y(t) = \begin{cases} x(t), & t \in (a,b); \\ \bar{x}(t), & t \in [b,b_1). \end{cases}$$

.

Obviously,

$$y \in \tilde{C}_{loc}((a, b_1), \mathbb{R}^n)$$

and y is a solution of Eq. (3.1) on the interval (a, b_1) , i.e., y is a right-extension of the solution x.

We consider the opposite implication. If x is a right-extendable solution and if $y: (a, b_1) \to \mathbb{R}^n$ is a right-extension of x, then

$$b < b_1 \leq \sup I$$

and

$$\liminf_{t\to b^-} \|x(t)\| = \|y(b)\| < \infty.$$

Theorem 3.2. Let x be a solution of Eq. (3.1) on an interval $(a,b) \subseteq I$. Then, x is left-extendable if and only if $a > \inf I$ and

$$\liminf_{t \to a^+} \|x(t)\| < \infty$$

Proof. Theorem 3.2 can be proved analogously as Theorem 3.1.

Theorem 3.3. *The problem* (3.1), (3.2) *has a non-extendable solution.*

Proof. We suppose that $t_0 < \sup I$. We show that the problem (3.1), (3.2) has a solution which is not right-extendable. Similarly, one can show the second case.

We consider an increasing sequence $\{b_k\}_{k=1}^{\infty} \subset (t_0, \sup I)$ with the property that

$$\lim_{k\to\infty}b_k=\sup I.$$

For $c \in \mathbb{R}^n$ and r > 0, we define

$$f_c^{\star}(t,r) = \sup \{ \|f(t,x)\| ; x \in B[c,r] \}, \quad t \in I.$$

Obviously, there exists $t_1 \in (t_0, b_1]$ such that

$$\int_{t_0}^{t_1} f_{c_0}^{\star}(s, 1) \, \mathrm{d}s \le 1.$$

According to Theorem 2.1, the problem (3.1), (3.2) has a solution x_0 on the interval $[t_0, t_1]$. We define

$$c_1 = x_0(t_1)$$

and

$$r_1 = \max \{ \|x_0(t) - c_0\| ; t \in [t_0, t_1] \}.$$

If

$$\int_{t_1}^{b_2} f_{c_0}^{\star}(s, r_1 + 1) \, \mathrm{d}s \le 1,$$

then we put $t_2 = b_2$. Otherwise, we choose $t_2 \in (t_1, b_2)$ such that

$$\int_{t_1}^{t_2} f_{c_0}^{\star}(s, r_1 + 1) \, \mathrm{d}s = 1.$$

We have

$$\int_{t_1}^{t_2} f_{c_1}^{\star}(s,1) \, \mathrm{d}s \le \int_{t_1}^{t_2} f_{c_0}^{\star}(s,r_1+1) \, \mathrm{d}s \le 1.$$

According to Theorem 2.1, the problem

$$x' = f(t, x), \qquad x(t_1) = c_1$$

has a solution x_1 on the interval $[t_1, t_2]$.

We continue in this process. We obtain the sequences $\{t_k\}_{k=1}^{\infty}$, $\{x_k\}_{k=0}^{\infty}$, $\{c_k\}_{k=1}^{\infty}$, $\{r_k\}_{k=1}^{\infty}$ for which:

- 1. $t_k \in (t_{k-1}, b_k], k \in \mathbb{N};$
- 2. $c_k = x_{k-1}(t_k), k \in \mathbb{N};$
- 3. x_k for $k \in \mathbb{N} \cup \{0\}$ is a solution of the problem

$$x' = f(t, x), \qquad x(t_k) = c_k$$

on the interval $[t_k, t_{k+1}]$;

4. it holds

$$r_k = \max\{\|x_{k-1}(t) - c_0\|; t \in [t_{k-1}, t_k]\}, \qquad k \in \mathbb{N};$$

5. if

$$\int_{t_k}^{t_{k+1}} f_{c_0}^{\star}(s, r_k + 1) \, \mathrm{d}s < 1$$

for some $k \in \mathbb{N}$, then $t_{k+1} = b_{k+1}$.

We put

$$b = \lim_{k \to \infty} t_k$$

and

$$x(t) = x_k(t), \quad t \in [t_k, t_{k+1}), k \in \mathbb{N} \cup \{0\}.$$

Considering 3., we see that x is a solution of the problem (3.1), (3.2) on the interval $[t_0, b]$.

By contradiction, we show that the solution x is not right-extendable. We assume that the finite limit

 $\lim_{t\to b^-} x(t)$

exists and that

$$b < \sup I$$
.

The function *x* is bounded, i.e.,

$$r = \sup \{ \|x(t) - c_0\|; t \in [t_0, b) \} < \infty$$

According to 4.,

$$r_k \leq r, \qquad k \in \mathbb{N}.$$

Thus,

$$\int_{t_k}^{t_{k+1}} f_{c_0}^\star(s, r_k+1) \, \mathrm{d} s \leq \int_{t_k}^b f_{c_0}^\star(s, r+1) \, \mathrm{d} s \to 0 \quad \text{as} \quad k \to \infty.$$

Therefore, there exists $k_0 \in \mathbb{N}$ such that

$$\int_{t_k}^{t_{k+1}} f_{c_0}^{\star}(s, r_k + 1) \, \mathrm{d}s < 1, \qquad k \ge k_0, \, k \in \mathbb{N}.$$

Now, from 5., it follows that

$$t_{k+1} = b_{k+1}, \qquad k \ge k_0, k \in \mathbb{N}.$$

Hence,

$$b = \sup I$$
.

The obtained contradiction proves that the solution *x* is not right-extendable.

4. Set of solutions

We consider the Cauchy problem

$$x' = f(t, x), \tag{4.1}$$

$$x(t_0) = c_0,$$
 (4.2)

where $f \in K_{loc}(I \times \mathbb{R}^n, \mathbb{R}^n)$, $t_0 \in I$, $c_0 \in \mathbb{R}^n$.

Lemma 4.1. Let $r_0 \ge 0$, r > 0, $t_0 \le a_0 < b_0$, where $b_0 \in I$, be such that

$$\int_{a_0}^{b_0} f_0^\star(s, r_0 + r) \,\mathrm{d}s < r,$$

where

$$f_0^{\star}(t,r) = \sup \{ \|f(t,x)\| ; x \in B[0,r] \}, \qquad t \in I$$

Then, for all solution x of Eq. (4.1) on the interval $[t_0, b_0)$ which satisfies

$$|x(t)|| \le r_0, \qquad t \in [t_0, a_0],$$

it holds

$$||x(t)|| < r_0 + r, \qquad t \in [t_0, b_0).$$

Moreover, the limit

$$\lim_{t\to b_0^-} \|x(t)\|$$

exists.

Proof. We prove the lemma by contradiction. We suppose that there exist a solution x of Eq. (4.1) on the interval $[t_0, b_0)$ and $t_1 \in (a_0, b_0)$ such that

$$||x(t)|| \le r_0, \qquad t \in [t_0, a_0],$$

 $||x(t)|| < r_0 + r, \qquad t \in [a_0, t_1),$

and that

$$||x(t_1)|| = r_0 + r.$$

The contradiction comes from

$$\|x(t_1)\| \le \|x(a_0)\| + \int_{a_0}^{t_1} \|f(s, x(s))\| \, \mathrm{d}s \le r_0 + \int_{a_0}^{t_1} f_0^{\star}(s, r_0 + r) \, \mathrm{d}s < r_0 + r$$

Note that the obtained statement guarantees

$$f(-,x(-)) \in L([a_0,b_0),\mathbb{R}^n).$$

Therefore, the existence of the limit

$$\lim_{t\to b_0^-} \|x(t)\|$$

follows from

$$x(t) = x(a_0) + \int_{a_0}^{t} f(s, x(s)) \,\mathrm{d}s, \qquad t \in [a_0, b_0).$$

Theorem 4.1. Let $[a,b] \subseteq I$, $t_0 \in [a,b]$, and let any non-extendable solution of the problem (4.1), (4.2) exist on [a,b]. Let $X_{[a,b]}$ be the set of the restrictions of all non-extendable solutions of the problem (4.1), (4.2) to the interval [a,b]. Then, the set $X_{[a,b]}$ is bounded in the space $C([a,b],\mathbb{R}^n)$.

Proof. We assume that $t_0 < b$. We show that the set $X_{[t_0,b]}$ is bounded in the space $C([t_0,b],\mathbb{R}^n)$. For $t_0 > a$, one can similarly show that the set $X_{[a,t_0]}$ is bounded in the space $C([a,t_0],\mathbb{R}^n)$.

We put

$$\rho(t) = \sup \left\{ \|x(s)\| ; s \in [t_0, t], x \in X_{[t_0, b]} \right\}, \qquad t \in [t_0, b]$$

We choose $t_1 \in (t_0, b]$ such that

$$\int_{t_0}^{t_1} f_0^{\star}(s, \|c_0\| + 1) \,\mathrm{d}s < 1$$

where f_0^* is from Lemma 4.1. According to Lemma 4.1, we have

$$\rho(t) \le \rho(t_1) \le ||c_0|| + 1, \quad t \in [t_0, t_1].$$

We show that $\rho(b) < \infty$. By contradiction, we assume that $\rho(b) = \infty$. Then, $t_1 < b$ and there exists $t^* \in (t_1, b]$ such that

$$\rho(t) = \infty, \qquad t \in (t^*, b],$$

and that

$$\rho(t) < \infty, \qquad t \in [t_0, t^\star)$$

We assume the existence of a sequence $\{\tau_k\}_{k=1}^{\infty} \subset [t_0, t^*)$ and a sequence $\{x_k\}_{k=1}^{\infty}$ of solutions of the problem (4.1), (4.2) on the interval $[t_0, t^*]$ such that

$$\lim_{k\to\infty}\|x_k(\tau_k)\|=\infty$$

In addition, for all $\beta \in [t_0, t^*)$, we have

$$||x_k(t)|| \leq \rho(\beta), \quad t \in [t_0, \beta], k \in \mathbb{N}.$$

It is obvious that the functions $x_k, k \in \mathbb{N}$, are uniformly bounded on any compact subinterval of the interval $[t_0, t^*)$. At the same time, for any $\beta \in [t_0, t^*)$, we have

$$\begin{aligned} \|x_k(t) - x_k(s)\| &\leq \left| \int\limits_s^t \|f(\xi, x_k(\xi))\| \, \mathrm{d}\xi \right| \\ &\leq \left| \int\limits_s^t f_0^*(\xi, \rho(\beta)) \, \mathrm{d}\xi \right|, \qquad s, t \in [t_0, \beta], k \in \mathbb{N} \end{aligned}$$

Therefore, the functions $x_k, k \in \mathbb{N}$, are also equicontinuous on any compact subinterval of the interval $[t_0, t^*)$. Due to the Arzelà–Ascoli theorem, without loss of generality, we can assume that the sequence $\{x_k\}_{k=1}^{\infty}$ is uniformly convergent on any compact subinterval of the interval $[t_0, t^*)$. We put

$$\lim_{k\to\infty}x_k(t)=x(t), \qquad t\in[t_0,t^*).$$

By the Lebesgue theorem, one can verify that *x* is a solution of the problem (4.1), (4.2) on the interval $[t_0, t^*)$. Since $t^* \leq b$ and since any non-extendable solution of the problem (4.1), (4.2) exists on the interval $[t_0, b]$, the finite limit

$$\lim_{t\to t^{\star-}} \|x(t)\|$$

exists. Hence,

$$r_0 = \sup\{\|x(t)\|; t \in [t_0, t^*)\} < \infty.$$
(4.3)

We choose $t_{\star} \in [t_0, t^{\star})$ so that

$$\int_{t_{\star}}^{t^{\star}} f_0^{\star}(s, r_0 + 2) \, \mathrm{d}s < 1.$$

From the construction of the solution *x* and from (4.3), it follows the existence of $k_0 \in \mathbb{N}$ with the property that

$$||x_k(t)|| \le r_0 + 1, \qquad t \in [t_0, t_\star], k \ge k_0, k \in \mathbb{N}.$$

Therefore, considering Lemma 4.1, we obtain

$$||x_k(t)|| < r_0 + 2, \qquad t \in [t_0, t^*), k \ge k_0, k \in \mathbb{N}.$$

Hence,

$$\rho(t^{\star}) < \infty$$
.

Now, it is enough to consider again Lemma 4.1 (for $r_0 + 3$).

Remark 4.1. From the Arzelà–Ascoli theorem, from the proof of Theorem 4.1, and from the Lebesgue theorem, it follows that the set $X_{[a,b]}$ from the statement of Theorem 4.1 is even compact in $C([a,b], \mathbb{R}^n)$.

5. Upper and lower solutions

We consider the Cauchy problem

$$x' = f(t, x), \tag{5.1}$$

$$x(t_0) = c_0,$$
 (5.2)

where $f \in K_{loc}(I \times \mathbb{R}^n, \mathbb{R}^n)$, $t_0 \in I$, $c_0 \in \mathbb{R}^n$.

Definition 5.1. Let $f: I \times \mathbb{R}^n \to \mathbb{R}^n$, where $f = (f_i)_{i=1}^n$. We say that f is quasi non-decreasing in the last n variables if, for all $i \in \{1, ..., n\}$ and almost all $t \in I$, it holds

$$f_i(t, x_1, \dots, x_n) \le f_i(t, y_1, \dots, y_n), \qquad x_k \le y_k, k \in \{1, \dots, n\}, k \ne i, x_i = y_i.$$

Lemma 5.1. Let the map

$$(t,x) \mapsto f(t,x) \operatorname{sgn}(t-t_0), \qquad (t,x) \in I \times \mathbb{R}^n,$$

be quasi non-decreasing in the last n variables. Let $[a,b] \subseteq I$, $t_0 \in [a,b]$, and let any non-extendable solution of the problem (5.1), (5.2) exist on the interval [a,b]. Then, for any function $y \in \tilde{C}([a,b], \mathbb{R}^n)$ satisfying

 $y(t_0) \leq c_0$

and

$$\left[y'(t) - f(t, y(t))\right] \operatorname{sgn}(t - t_0) \le 0$$

for almost all $t \in [a,b]$, there exists a solution x of the problem (5.1), (5.2) on the interval [a,b] such that

$$y(t) \leq x(t), \qquad t \in [a,b].$$

Proof. Let $y \in \tilde{C}([a,b], \mathbb{R}^n)$ be an arbitrary function from the statement of the lemma. We suppose that $t_0 < b$. We prove the existence of a solution *x* of the problem (5.1), (5.2) on the interval $[t_0, b]$ with the property that

$$y(t) \le x(t), \qquad t \in [t_0, b].$$

In the second case, we can proceed analogously.

For all $i \in \{1, \ldots, n\}$, we put

$$\chi_i(t,z) = \begin{cases} y_i(t), & z \le y_i(t); \\ z, & z > y_i(t); \end{cases} \quad t \in [t_0,b], z \in \mathbb{R}.$$

We define

$$\chi(t,x) = (\chi_i(t,x_i))_{i=1}^n, \quad t \in [t_0,b], x = (x_i)_{i=1}^n \in \mathbb{R}^n,$$

and

$$\hat{f}(t,x) = f(t,\boldsymbol{\chi}(t,x)), \qquad t \in [t_0,b], x \in \mathbb{R}^n.$$

Obviously,

$$\tilde{f} \in K([t_0, b] \times \mathbb{R}^n, \mathbb{R}^n).$$

We consider the Cauchy problem

$$x' = \tilde{f}(t, x), \qquad x(t_0) = c_0.$$

We consider that $x = (x_i)_{i=1}^n$ is a solution of this problem, which is not right-extendable, and that $[t_0, b_0) \subseteq [t_0, b]$ is the maximal interval, where the solution *x* exists (see Theorem 3.3). Let $i \in \{1, ..., n\}$ be arbitrarily given. We prove that

$$y_i(t) \le x_i(t), \qquad t \in [t_0, b_0)$$

Let us consider the opposite, i.e., let there exist $[\alpha, \beta] \subseteq [t_0, b_0)$ such that

$$y_i(\alpha) = x_i(\alpha)$$

and that

$$y_i(t) > x_i(t), \quad t \in (\alpha, \beta].$$

We define

$$u(t) = y_i(t) - x_i(t), \qquad t \in [\alpha, \beta].$$

Obviously, $u(\alpha) = 0$ and

$$u(t) > 0, \qquad t \in (\alpha, \beta].$$

We have

$$u'(t) = y'_i(t) - x'_i(t)$$

$$\leq f_i(t, y(t)) - \tilde{f}_i(t, x(t))$$

$$= f_i(t, y_1(t), \dots, y_n(t)) - f_i(t, \chi_1(t, x_1(t)), \dots, \chi_n(t, x_n(t)))$$

for almost all $t \in (\alpha, \beta)$. From the definition of the function χ , it follows that

$$y_i(t) = \boldsymbol{\chi}_i(t, x_i(t)), \quad t \in [\boldsymbol{\alpha}, \boldsymbol{\beta}],$$

and that

$$y_k(t) \leq \boldsymbol{\chi}_k(t, x_k(t)), \qquad t \in [\boldsymbol{\alpha}, \boldsymbol{\beta}], k \neq i.$$

Since the map

$$(t,x) \mapsto f(t,x)\operatorname{sgn}(t-t_0), \qquad (t,x) \in I \times \mathbb{R}^n,$$

is quasi non-decreasing in the last *n* variables, $u'(t) \leq 0$ for almost all $t \in (\alpha, \beta)$, which gives a contradiction. The contradiction (together with the arbitrariness of $i \in \{1, ..., n\}$) proves that

$$y(t) \le x(t), \quad t \in [t_0, b_0).$$

Thus,

$$\hat{f}(t, x(t)) = f(t, x(t)), \qquad t \in [t_0, b_0),$$

i.e., x is a solution of the problem (5.1), (5.2) on $[t_0, b_0)$.

Now, we prove that $b_0 = b$. Let $b_0 < b$. Since *x* is a solution of the problem

$$x' = \tilde{f}(t, x), \qquad x(t_0) = c_0$$

on the interval $[t_0, b_0)$, which is not right-extendable, from Theorem 3.1, it follows

$$\lim_{t \to b_0^-} \|x(t)\| = \infty$$

At the same time, from Theorem 3.1, it follows a contradiction with an assumption of the lemma. Thus, we have proved that $b_0 = b$, i.e.,

$$y(t) \le x(t), \qquad t \in [t_0, b).$$

Due to the assumptions of the lemma, there exists the finite limit

$$\lim_{t\to b^-} x(t),$$

i.e., x is a solution of the problem (5.1), (5.2) on $[t_0, b]$ and

$$y(t) \leq x(t), \qquad t \in [t_0, b].$$

 \square

Lemma 5.2. Let the map

$$(t,x) \mapsto f(t,x) \operatorname{sgn}(t-t_0), \qquad (t,x) \in I \times \mathbb{R}^n,$$

be quasi non-decreasing in the last n variables. Let $[a,b] \subseteq I$, $t_0 \in [a,b]$, and let any non-extendable solution of the problem (5.1), (5.2) exist on the interval [a,b]. Then, for any function $y \in \tilde{C}([a,b],\mathbb{R}^n)$ satisfying

$$y(t_0) \ge c_0$$

and

$$\left[y'(t) - f(t, y(t))\right] \operatorname{sgn}(t - t_0) \ge 0$$

for almost all $t \in [a,b]$, there exists a solution x of the problem (5.1), (5.2) on the interval [a,b] with the property that

$$y(t) \ge x(t), \qquad t \in [a,b].$$

Proof. The lemma is possible to prove analogously as Lemma 5.1.

Definition 5.2. Let x^* be a solution of the problem (5.1), (5.2) on the interval $I_0 \subseteq I$, where $t_0 \in I_0$. We say that x^* is the upper (lower) solution of the problem (5.1), (5.2) on the interval $I_0 \subseteq I$ if, for all interval $I_1 \subseteq I_0$, where $t_0 \in I_1$, and any solution x of the problem (5.1), (5.2) on the interval I_1 , it holds

$$x(t) \le x^{\star}(t) \quad (x(t) \ge x^{\star}(t)), \qquad t \in I_1.$$

Theorem 5.1. Let the map

$$(t,x) \mapsto f(t,x) \operatorname{sgn}(t-t_0), \qquad (t,x) \in I \times \mathbb{R}^n,$$

be quasi non-decreasing in the last n variables. Let $[a,b] \subseteq I$, $t_0 \in [a,b]$, and let any non-extendable solution of the problem (5.1), (5.2) exist on the interval [a,b]. Then, the problem (5.1), (5.2) has the upper solution and the lower solution on the interval [a,b].

Proof. We prove only the existence of the upper solution on the interval [a,b]. In the second case, it is possible to proceed analogously. As *X*, we denote the set of all solutions of the problem (5.1), (5.2) on the interval [a,b]. We define

$$x_i^{\star}(t) = \sup \{x_i(t); (x_k)_{k=1}^n \in X\}, \quad t \in [a,b], i \in \{1,\ldots,n\}.$$

According to Theorem 4.1, the set *X* is bounded in the space $C([a,b],\mathbb{R}^n)$. Therefore,

$$x_i^{\star}(t) < \infty, \qquad t \in [a,b], i \in \{1,\ldots,n\}$$

We show that $x^* = (x_i^*)_{i=1}^n$ is the upper solution of the problem (5.1), (5.2) on the interval [a,b]. It is obvious that

$$x(t) \le x^{\star}(t), \qquad t \in [a,b], x \in X.$$

Firstly, we prove that the function x^* is absolutely continuous. Since the set *X* is bounded in $C([a,b],\mathbb{R}^n)$, there exists a function $h \in L([a,b],\mathbb{R}_+)$ with the property that

$$||f(t,x)|| \le h(t), \quad t \in [a,b], x \in X.$$

Let $s, t \in [a, b]$, s < t. Then,

$$\begin{aligned} x_i(t) &= x_i(s) + \int_s^t f_i(\tau, x(\tau)) \,\mathrm{d}\tau \\ &\leq x_i(s) + \int_s^t h(\tau) \,\mathrm{d}\tau \\ &\leq x_i^\star(s) + \int_s^t h(\tau) \,\mathrm{d}\tau, \qquad x = (x_i)_{i=1}^n \in X, \, i \in \{1, \dots, n\}, \end{aligned}$$

i.e.,

$$x_i^{\star}(t) \leq x_i^{\star}(s) + \int\limits_s^t h(\tau) \,\mathrm{d}\tau, \qquad i \in \{1,\ldots,n\}.$$

Analogously, one can obtain

$$x_i^{\star}(s) \leq x_i^{\star}(t) + \int\limits_s^{\cdot} h(\tau) \,\mathrm{d}\tau, \qquad i \in \{1,\ldots,n\},$$

t

which gives

$$|x_i^{\star}(t) - x_i^{\star}(s)| \leq \left| \int_s^t h(\tau) \,\mathrm{d}\tau \right|, \qquad i \in \{1, \dots, n\}, s, t \in [a, b].$$

Therefore, $x^* \in \tilde{C}([a,b],\mathbb{R}^n)$.

Now, we show that x^* is a solution of the problem (5.1), (5.2). We know that one can find $r_0 > 0$ such that

$$||x(t)|| \le r_0, \qquad t \in [a,b], x \in X.$$

According to Lemma 1.4, for r_0 , there exist a function $h_0 \in L([a,b], \mathbb{R}_+)$ and a non-decreasing function $\omega_0 \in C_{loc}(\mathbb{R}_+, \mathbb{R}_+)$ such that $\omega_0(0) = 0$ and

$$||f(t,x) - f(t,y)|| \le h_0(t) \omega_0(||x-y||), \quad t \in [a,b], x, y \in B[0,r_0].$$

As I_0 , we denote the set of all $s \in [a, b]$ for which the following conditions:

- 1. there exists $(x^{\star})'(s)$;
- 2. there exists v'(s) and

$$v'(s) = f(s, x^{\star}(s)),$$

where

$$v(t) = \int_{t_0}^t f(\tau, x^*(\tau)) \,\mathrm{d}\tau, \qquad t \in [a, b];$$

3. there exists $v'_0(s)$ and

$$v_0'(s) = h_0(s),$$

where

$$v_0(t) = \int_{t_0}^t h_0(\tau) \,\mathrm{d}\tau, \qquad t \in [a,b],$$

are valid. Obviously, $m(I_0) = b - a$. Let $i \in \{1, ..., n\}$ and $s \in I_0$, where $s > t_0$, be arbitrary. Due to Remark 4.1, X is a compact set in the space $C([a,b], \mathbb{R}^n)$. Therefore, there exists $\tilde{x} = (\tilde{x}_k)_{k=1}^n \in X$ such that $\tilde{x}_i(s) = x_i^*(s)$. We put

$$\boldsymbol{\varepsilon}(t) = \max\left\{ \left| \tilde{x}_i(\tau) - x_i^{\star}(\tau) \right| ; t \leq \tau \leq s \right\}, \qquad t \in [t_0, s].$$

It is seen that the function $\varepsilon \colon [t_0, s] \to \mathbb{R}_+$ is continuous, non-increasing, and $\varepsilon(s) = 0$. We have

$$\begin{aligned} f_{i}(t,\tilde{x}(t)) &\leq f_{i}\left(t,x_{1}^{\star}(t),\dots,x_{i-1}^{\star}(t),\tilde{x}_{i}(t),x_{i+1}^{\star}(t),\dots,x_{n}^{\star}(t)\right) \\ &= f_{i}(t,x^{\star}(t)) + f_{i}\left(t,x_{1}^{\star}(t),\dots,x_{i-1}^{\star}(t),\tilde{x}_{i}(t),x_{i+1}^{\star}(t),\dots,x_{n}^{\star}(t)\right) - f_{i}(t,x^{\star}(t)) \\ &\leq f_{i}(t,x^{\star}(t)) + h_{0}(t)\,\omega_{0}(|\tilde{x}_{i}(t) - x_{i}^{\star}(t)|) \\ &\leq f_{i}(t,x^{\star}(t)) + h_{0}(t)\,\omega_{0}(\varepsilon(t)), \qquad t \in (t_{0},s]. \end{aligned}$$

Hence (consider $\tilde{x}_i(s) = x_i^*(s)$), we obtain

$$\begin{aligned} x_i^{\star}(s) &= \tilde{x}_i(s) = \tilde{x}_i(t) + \int_t^s f_i(\tau, \tilde{x}(\tau)) \,\mathrm{d}\tau \\ &\leq x_i^{\star}(t) + \int_t^s f_i(\tau, x^{\star}(\tau)) \,\mathrm{d}\tau + \int_t^s h_0(\tau) \omega_0(\varepsilon(\tau)) \,\mathrm{d}\tau \\ &\leq x_i^{\star}(t) + \int_t^s f_i(\tau, x^{\star}(\tau)) \,\mathrm{d}\tau + \omega_0(\varepsilon(t)) \int_t^s h_0(\tau) \,\mathrm{d}\tau, \qquad t \in (t_0, s]. \end{aligned}$$

Therefore,

$$\frac{x_i^{\star}(s)-x_i^{\star}(t)}{s-t} \leq \frac{1}{s-t} \int_t^s f_i(\tau, x^{\star}(\tau)) \,\mathrm{d}\tau + \frac{1}{s-t} \,\omega_0(\varepsilon(t)) \int_t^s h_0(\tau) \,\mathrm{d}\tau, \qquad t \in (t_0, s).$$

Since $s \in I_0$ is arbitrary and $\omega_0(\varepsilon(s)) = 0$, we obtain

$$(x_i^{\star})'(s) \le f_i(s, x^{\star}(s)), \qquad s \in I_0, s > t_0.$$

Analogously, one can show

$$(x_i^{\star})'(s) \ge f_i(s, x^{\star}(s)), \qquad s \in I_0, s < t_0.$$

Thus,

$$[(x^{\star})'(t) - f(t, x^{\star}(t))] \operatorname{sgn}(t - t_0) \le 0$$

for almost all $t \in [a, b]$. According to Lemma 5.1, there exists $x_0 \in X$ such that

$$x^{\star}(t) \le x_0(t), \qquad t \in [a,b].$$

At the same time,

$$x(t) \le x^{\star}(t), \qquad t \in [a,b], x \in X,$$
 (5.3)

which gives

$$x_0(t) \leq x^{\star}(t), \qquad t \in [a,b].$$

Therefore, $x^* \equiv x_0$ and x^* is a solution of the problem (5.1), (5.2). Moreover, (5.3) means that x^* is the upper solution of this problem on the interval [a, b].

Corollary 5.1. Let the map

$$(t,x) \mapsto f(t,x) \operatorname{sgn}(t-t_0), \qquad (t,x) \in I \times \mathbb{R}^n,$$

be quasi non-decreasing in the last n variables. Let $[a,b] \subseteq I$, $t_0 \in [a,b]$, and let any non-extendable solution of the problem (5.1), (5.2) exist on the interval [a,b].

1. For any function $y \in \tilde{C}([a,b],\mathbb{R}^n)$ satisfying

$$y(t_0) \leq c_0$$

and

$$\left[y'(t) - f(t, y(t))\right] \operatorname{sgn}(t - t_0) \le 0$$

for almost all $t \in [a, b]$, it holds

$$y(t) \le x^{\star}(t), \qquad t \in [a,b],$$

where x^* is the upper solution of the problem (5.1), (5.2) on the interval [a,b].

2. For any function $y \in \tilde{C}([a,b],\mathbb{R}^n)$ satisfying

$$y(t_0) \ge c_0$$

and

$$\left[y'(t) - f(t, y(t))\right] \operatorname{sgn}(t - t_0) \ge 0$$

for almost all $t \in [a, b]$, it holds

$$y(t) \ge x_{\star}(t), \qquad t \in [a,b]$$

where x_{\star} is the lower solution of the problem (5.1), (5.2) on the interval [a,b].

Proof. The corollary follows directly from Lemmas 5.1 and 5.2 and from Theorem 5.1. \Box

Definition 5.3. Let $f: I \times \mathbb{R}^n \to \mathbb{R}^n$ be given. We say that f is non-decreasing in the last n variables if

$$f(t,x) \le f(t,y), \qquad t \in I, x \le y.$$

Corollary 5.2. Let the map

$$(t,x) \mapsto f(t,x) \operatorname{sgn}(t-t_0), \qquad (t,x) \in I \times \mathbb{R}^n,$$

be non-decreasing in the last n variables. Let $[a,b] \subseteq I$, $t_0 \in [a,b]$, and let any non-extendable solution of the problem (5.1), (5.2) exist on the interval [a,b].

1. For any function $y \in C([a,b], \mathbb{R}^n)$ satisfying

$$y(t) \le c_0 + \int_{t_0}^t f(s, y(s)) \, \mathrm{d}s, \qquad t \in [a, b],$$

it holds

$$y(t) \le x^{\star}(t), \qquad t \in [a,b],$$

where x^* is the upper solution of the problem (5.1), (5.2) on the interval [a,b].

2. For any function $y \in C([a,b], \mathbb{R}^n)$ satisfying

$$y(t) \ge c_0 + \int_{t_0}^t f(s, y(s)) \, \mathrm{d}s, \qquad t \in [a, b],$$

it holds

$$y(t) \ge x_{\star}(t), \qquad t \in [a,b],$$

where x_{\star} is the lower solution of the problem (5.1), (5.2) on the interval [a,b].

Proof. We prove only the first part. The second part can be proved analogously. We put

$$z(t) = c_0 + \int_{t_0}^t f(s, y(s)) \,\mathrm{d}s, \qquad t \in [a, b].$$

Obviously,

$$z \in \tilde{C}([a,b],\mathbb{R}^n)$$

and

$$y(t) \le z(t), \qquad t \in [a,b].$$

The identity

$$z'(t) = f(t, y(t))$$

holds for almost all $t \in [a, b]$. We have

$$z'(t) \operatorname{sgn}(t-t_0) = f(t, y(t)) \operatorname{sgn}(t-t_0)$$
$$\leq f(t, z(t)) \operatorname{sgn}(t-t_0)$$

for almost all $t \in [a, b]$, i.e.,

$$\left[z'(t) - f(t, z(t))\right] \operatorname{sgn}(t - t_0) \le 0$$

for almost all $t \in [a,b]$. According to Corollary 5.1, we obtain

$$z(t) \le x^{\star}(t), \qquad t \in [a,b],$$

where x^* is the upper solution of the problem (5.1), (5.2) on the interval [a, b]. Finally, the inequality

$$y(t) \leq z(t), \qquad t \in [a,b],$$

gives

$$y(t) \le x^*(t), \qquad t \in [a,b].$$

6. Wintner theorem

We consider the Cauchy problem

$$x' = f(t, x), \tag{6.1}$$

$$x(t_0) = c_0,$$
 (6.2)

where $f \in K_{loc}(I \times \mathbb{R}^n, \mathbb{R}^n)$, $t_0 \in I$, $c_0 \in \mathbb{R}^n$.

Theorem 6.1 (Wintner). Let there exist a function $h \in K_{loc}(I \times \mathbb{R}_+, \mathbb{R}_+)$ such that

$$f(t,x) \cdot \operatorname{sgn}((t-t_0)x) \le h(t, ||x||), \qquad (t,x) \in I \times \mathbb{R}^n,$$

where the problem

$$\rho' = h(t, \rho) \operatorname{sgn}(t - t_0),$$
 (6.3)

$$\rho(t_0) = \|c_0\| \tag{6.4}$$

has the upper solution on the interval I. Then, the problem (6.1), (6.2) has a solution on I. Moreover, all non-extendable solutions of the problem (6.1), (6.2) exist on I.

Proof. We suppose that $t_0 \in int(I)$. If t_0 is an endpoint of the interval *I*, then one can proceed analogously.

From Theorem 3.3, it follows that there exists at least one non-extendable solution of the problem (6.1), (6.2) on a subinterval J of I. Let x be an arbitrary non-extendable solution of the problem (6.1), (6.2) on $int(J) = (a,b) \subseteq I$. We show that a = inf I, $b = \sup I$. We denote

$$u(t) = ||x(t)||, \quad t \in (a,b).$$

Obviously,

$$u \in \tilde{C}_{loc}((a,b), \mathbb{R}_+),$$
$$u(t_0) = \|c_0\|,$$

and

$$u'(t) = x'(t) \cdot \operatorname{sgn} x(t)$$

for almost all $t \in (a, b)$. Therefore,

$$u'(t)\,\operatorname{sgn}(t-t_0) \le h(t,u(t))$$

for almost all $t \in (a, b)$. Thus,

$$\left[u'(t) - h(t, u(t)) \operatorname{sgn}(t - t_0)\right] \operatorname{sgn}(t - t_0) \le 0$$
(6.5)

for almost all $t \in (a,b)$. Since the problem (6.3), (6.4) has the upper solution on *I*, all non-extendable solutions of the problem (6.3), (6.4) exist on *I*. Therefore, considering $u(t_0) = ||c_0||$ together with (6.5), from Corollary 5.1, it follows that

$$u(t) \leq \rho^{\star}(t), \qquad t \in (a,b),$$

where ρ^* is the upper solution of the problem (6.3), (6.4) on the interval *I*. Using Theorems 3.1 and 3.2, we obtain

$$a = \inf I$$
, $b = \sup I$.

If $a \notin I$, $b \notin I$, then the proof is done. Let us consider that

$$a \in I$$
 or $b \in I$.

We show that the finite limit

$$\lim_{t \to a^+} x(t) \qquad \text{or} \qquad \lim_{t \to b^-} x(t)$$

exists. We know that

$$f \in K([a,t_0] \times \mathbb{R}^n, \mathbb{R}^n)$$
 or $f \in K([t_0,b] \times \mathbb{R}^n, \mathbb{R}^n).$

Therefore, from

$$u(t) \leq \boldsymbol{\rho}^{\star}(t), \qquad t \in (a,b),$$

and from the fact that ρ^* is the upper solution of the problem (6.3), (6.4) on *I*, it follows

$$f(-,x(-)) \in L([a,t_0],\mathbb{R}^n)$$
 or $f(-,x(-)) \in L([t_0,b],\mathbb{R}^n)$.

The existence of the limit

$$\lim_{t \to a^+} x(t) \qquad \text{or} \qquad \lim_{t \to b^-} x(t)$$

comes from

$$x(t) = c_0 + \int_{t_0}^t f(s, x(s)) \,\mathrm{d}s, \qquad t \in (a, b).$$

_	_	_
		٦

Corollary 6.1. Let $h_0 \in L_{loc}(I, \mathbb{R}_+)$ and let $\omega \in C_{loc}(\mathbb{R}_+, (0, \infty))$ satisfy

$$\int_{0}^{\infty} \frac{\mathrm{d}s}{\omega(s)} = \infty.$$

If the inequality

$$f(t,x) \cdot \operatorname{sgn}((t-t_0)x) \le h_0(t) \, \boldsymbol{\omega}(\|x\|)$$

holds on the set $I \times \mathbb{R}^n$, then the problem (6.1), (6.2) has a solution on I. Moreover, all non-extendable solutions of the problem (6.1), (6.2) exist on I.

Proof. Since the problem

$$\rho' = h_0(t) \,\omega(\rho) \operatorname{sgn}(t - t_0),$$
$$\rho(t_0) = \|c_0\|$$

has the upper solution on the interval I, the statement of the corollary comes directly from Theorem 6.1.

7. Uniqueness of solutions

We consider the Cauchy problem

$$x' = f(t, x), \tag{7.1}$$

$$x(t_0) = c_0, (7.2)$$

where $f \in K_{loc}(I \times \mathbb{R}^n, \mathbb{R}^n)$, $t_0 \in I$, $c_0 \in \mathbb{R}^n$.

Definition 7.1. We say that the problem (7.1), (7.2) is uniquely solvable if, for arbitrary solutions x_1 and x_2 on intervals I_1 and I_2 , respectively, it holds

$$x_1(t) = x_2(t), \qquad t \in I_1 \cap I_2.$$

Definition 7.2. We say that a function $g: I \setminus \{t_0\} \times \mathbb{R}_+ \to \mathbb{R}$ is an element of the set $K_{loc}(I \setminus \{t_0\} \times \mathbb{R}_+, \mathbb{R})$ if $g \in K(I_0 \times \mathbb{R}_+, \mathbb{R})$ for any compact interval $I_0 \subseteq I \setminus \{t_0\}$.

Definition 7.3. Let $g \in K_{loc}(I \setminus \{t_0\} \times \mathbb{R}_+, \mathbb{R})$ and let $I_0 \subseteq I$ be such that $t_0 \in I_0$. We say that a function $x: I_0 \setminus \{t_0\} \to \mathbb{R}_+$ is a solution of the equation x' = g(t, x) if the following conditions:

- 1. $x \in \tilde{C}(J, \mathbb{R})$ for any compact interval $J \subseteq I_0 \setminus \{t_0\}$;
- 2. x'(t) = g(t, x(t)) for almost all $t \in I_0$

are fulfilled.

Lemma 7.1. Let $\Delta > 0$, $\lambda \in [0,1)$, $h \in L([t_0,t_0+\Delta],(0,\infty))$, and let a function $\varphi \in C_{loc}(\mathbb{R}_+,\mathbb{R}_+)$ be such that

$$\lim_{s\to 0^+}\frac{\varphi(s)}{s^{\lambda}}=0.$$

If a function u \in *C*([*t*₀,*t*₀+ Δ], \mathbb{R}_+) *satisfies*

$$u(t) \leq \int_{t_0}^t h(\tau) \varphi(u(\tau)) d\tau, \qquad t \in [t_0, t_0 + \Delta],$$

then

$$\lim_{t \to t_0^+} \frac{[u(t)]^{1-\lambda}}{\int_{t_0}^t h(s) \, \mathrm{d}s} = 0.$$

Proof. It is seen that $u(t_0) = 0$. Let $\varepsilon > 0$ be arbitrary. There exists $t_{\varepsilon} \in (t_0, t_0 + \Delta]$ with the property that

$$\varphi(u(\tau)) \leq \varepsilon [u(\tau)]^{\lambda}, \qquad \tau \in [t_0, t_{\varepsilon}].$$

Next, we obtain

$$u(t) \leq \varepsilon \int_{t_0}^{t} h(\tau) \left[u(\tau) \right]^{\lambda} \mathrm{d}\tau, \qquad t \in [t_0, t_{\varepsilon}].$$
(7.3)

We denote

$$v(t) = \left(\varepsilon(1-\lambda)\int_{t_0}^t h(\tau)\,\mathrm{d}\tau\right)^{\frac{1}{1-\lambda}}, \qquad t\in[t_0,t_\varepsilon].$$

One can directly verify that v is "the unique positive solution" of the Cauchy problem

$$v' = \varepsilon h(t)v^{\lambda}, \qquad v(t_0) = 0$$

for $t \in [t_0, t_{\varepsilon}]$. Therefore, Corollary 5.2 and (7.3) give

$$u(t) \leq v(t), \qquad t \in [t_0, t_{\mathcal{E}}].$$

Thus,

$$\limsup_{t \to t_0^+} \frac{[u(t)]^{1-\lambda}}{\int\limits_{t_0}^t h(s) \,\mathrm{d}s} \leq \limsup_{t \to t_0^+} \frac{\varepsilon(1-\lambda) \int\limits_{t_0}^t h(s) \,\mathrm{d}s}{\int\limits_{t_0}^t h(s) \,\mathrm{d}s} \leq \varepsilon.$$

Now, it suffices to consider the arbitrariness of $\varepsilon > 0$.

Lemma 7.2. Let $\Delta > 0$, $\lambda \in [0,1)$, $h \in L([t_0 - \Delta, t_0], (0, \infty))$, and let a function $\varphi \in C_{loc}(\mathbb{R}_+, \mathbb{R}_+)$ be such that

$$\lim_{s\to 0^+}\frac{\varphi(s)}{s^{\lambda}}=0$$

If a function $u \in C([t_0 - \Delta, t_0], \mathbb{R}_+)$ satisfies

$$u(t) \leq \int_{t}^{t_0} h(\tau) \varphi(u(\tau)) \,\mathrm{d}\tau, \qquad t \in [t_0 - \Delta, t_0],$$

then

$$\lim_{t \to t_0^-} \frac{[u(t)]^{1-\lambda}}{\int\limits_t^{t_0} h(s) \,\mathrm{d}s} = 0.$$

Proof. The lemma can be proved analogously as Lemma 7.1.

Theorem 7.1. Let $\delta > 0$ and $\varepsilon > 0$ be such that

$$[f(t,x)-f(t,y)]\cdot \operatorname{sgn}\left[(t-t_0)(x-y)\right] \le h(t)\varphi(\|x-y\|), \qquad t \in J, x, y \in B[c_0,\delta],$$

where $J = [t_0 - \varepsilon, t_0 + \varepsilon] \cap I$, $h \in L_{loc}(J, (0, \infty))$, and $\varphi \in C([0, 2\delta], \mathbb{R}_+)$ has the property that

$$\lim_{s\to 0^+}\frac{\varphi(s)}{s^{\lambda}}=0$$

for some $\lambda \in [0, 1)$. If, for any r > 0, there exists a function

$$\omega_r \in K_{loc}(I \smallsetminus \{t_0\} \times \mathbb{R}_+, \mathbb{R})$$

such that

$$\omega_r(-,0)\equiv 0$$

and that

$$[f(t,x) - f(t,y)] \cdot \operatorname{sgn} [(t-t_0)(x-y)] \le \omega_r(t, ||x-y||), \qquad t \in I \smallsetminus \{t_0\}, x, y \in B[c_0, r],$$

and if the problem

$$\rho' = \omega_r(t,\rho) \operatorname{sgn}(t-t_0), \qquad \lim_{t \to t_0} \frac{[\rho(t)]^{1-\lambda}}{\int\limits_{t_0}^t h(s) \, \mathrm{d}s} = 0$$

has only the zero solution, then the problem (7.1), (7.2) is uniquely solvable.

Proof. Let x_1 and x_2 be non-extendable solutions of the problem (7.1), (7.2) on intervals I_1 and I_2 , respectively. Our aim is to prove

$$x_1(t) = x_2(t), \qquad t \in I_1 \cap I_2.$$

We denote

$$u(t) = ||x_1(t) - x_2(t)||, \quad t \in I_1 \cap I_2.$$

We consider that there exists $t_1 \in I_1 \cap I_2$ such that $u(t_1) \neq 0$. Without loss of generality, we can assume that $t_1 > t_0$. It is obvious that

$$u \in \tilde{C}([t_0, t_1], \mathbb{R}_+)$$

and that

$$u'(t) = [x'_1(t) - x'_2(t)] \cdot \operatorname{sgn}(x_1(t) - x_2(t))$$
(7.4)

for almost all $t \in [t_0, t_1]$. Thus, we obtain

$$u(t) = \int_{t_0}^t u'(\tau) \,\mathrm{d}\tau \leq \int_{t_0}^t h(\tau) \varphi(u(\tau)) \,\mathrm{d}\tau, \qquad t \in [t_0, t_0 + \Delta],$$

where $\Delta > 0$ is sufficiently small. According to Lemma 7.1, we have

$$\lim_{t \to t_0^+} \frac{[u(t)]^{1-\lambda}}{\int_{t_0}^t h(s) \, \mathrm{d}s} = 0.$$

Next, we denote

$$r = \max \left\{ \|x_1(t) - c_0\| + \|x_2(t) - c_0\|; t \in [t_0, t_1] \right\}.$$

For this number *r*, there exists a function $\omega_r \in K_{loc}(I \setminus \{t_0\} \times \mathbb{R}_+, \mathbb{R})$ from the statement of the theorem. From (7.4), it follows

$$u'(t) \leq \omega_r(t, u(t))$$

for almost all $t \in (t_0, t_1]$. We put

$$\bar{\omega}_{r}(t,y) = \begin{cases} \omega_{r}(t,u(t)), & y > u(t); \\ \omega_{r}(t,y), & 0 \le y \le u(t); \\ 0, & y < 0; \end{cases} \quad t \in (t_{0},t_{1}], y \in \mathbb{R}.$$

Evidently,

$$\bar{\omega}_r \in K_{loc}((t_0, t_1] \times \mathbb{R}, \mathbb{R}).$$

From Theorem 3.3, it follows that there exist $a \in [t_0, t_1)$ and a non-extendable solution ρ of the problem

$$\rho' = \bar{\omega}_r(t,\rho), \qquad \rho(t_1) = \frac{1}{2}u(t_1)$$

on the interval $(a,t_1]$. We show that

$$\boldsymbol{\rho}(t) \leq \boldsymbol{u}(t), \qquad t \in (a, t_1].$$

By contradiction, we assume that there exist $t_2, t_3 \in (a, t_1)$, where $t_2 < t_3$, such that

$$\rho(t) > u(t), \qquad t \in [t_2, t_3),$$

and that

$$\rho(t_3) = u(t_3).$$

From the definition of $\bar{\omega}_r$, it follows

$$\rho'(t) = \omega_r(t, u(t))$$

for almost all $t \in [t_2, t_3]$. From the inequality

$$u'(t) \leq \omega_r(t, u(t))$$

which is valid for almost all $t \in (t_0, t_1]$, we obtain

$$\rho(t) \leq u(t), \qquad t \in [t_2, t_3].$$

We have a contradiction.

Now, we show that

$$\boldsymbol{\rho}(t) > 0, \qquad t \in (a, t_1].$$

By contradiction, we assume that there exists $t_4 \in (a, t_1)$ for which

$$\rho(t) > 0, \qquad t \in (t_4, t_1],$$

and for which

 $\rho(t_4)=0.$

We recall that

$$\rho(t) \leq u(t), \qquad t \in (a, t_1].$$

Due to the definition of $\bar{\omega}_r$, the function

$$\bar{\rho}(t) = \begin{cases} 0, & t \in (t_0, t_4] \\ \rho(t), & t \in (t_4, t_1] \end{cases}$$

is a non-zero solution of the problem

$$\rho'(t) = \omega_r(t,\rho) \operatorname{sgn}(t-t_0), \qquad \lim_{t \to t_0} \frac{[\rho(t)]^{1-\lambda}}{\int\limits_{t_0}^t h(s) \, \mathrm{d}s} = 0$$
(7.5)

on the interval $(t_0, t_1]$, which is a contradiction.

We have proved that

$$0 < \boldsymbol{\rho}(t) \leq \boldsymbol{u}(t), \qquad t \in (a, t_1].$$

From Theorem 3.2, it follows that $a = t_0$, i.e.,

$$0 < \rho(t) \le u(t), \quad t \in (t_0, t_1].$$

Due to the definition of $\bar{\omega}_r$, we have a non-zero solution of the problem (7.5) on the interval $(t_0, t_1]$, which is a contradiction with the assumption of the theorem.

Corollary 7.1 (Osgood). *If there exist functions* $l_r \in L(I, \mathbb{R}_+)$ *and* $\eta_r \in C_{loc}(\mathbb{R}_+, \mathbb{R}_+)$ *for any* r > 0 *such that*

$$\eta_r(0) = 0, \qquad \eta_r(s) > 0, \qquad s > 0, \qquad \int_0^{2r} \frac{\mathrm{d}s}{\eta_r(s)} = \infty,$$

and that

$$[f(t,x) - f(t,y)] \cdot \text{sgn}[(t-t_0)(x-y)] \le l_r(t)\eta_r(||x-y||), \quad t \in I, x, y \in B[c_0,r],$$

then the problem (7.1), (7.2) is uniquely solvable.

Proof. We put

$$\delta = 1, \qquad J = I, \qquad \lambda = 0, \ h(t) = l_1(t) + 1, \qquad t \in J, \ \varphi(x) = \eta_1(x), \qquad x \in [0, 2],$$

and

$$\omega_r(t,x) = l_r(t)\eta_r(x), \qquad t \in I, x \in \mathbb{R}_+, r > 0.$$

One can directly verify that all conditions of Theorem 7.1 are fulfilled. Note that, for any r > 0, the problem

$$\rho' = l_r(t)\eta_r(\rho)\operatorname{sgn}(t-t_0), \qquad \rho(t_0) = 0$$

has only the zero solution. Thus, for any r > 0, the problem

$$\rho' = l_r(t)\eta_r(\rho)\operatorname{sgn}(t-t_0), \qquad \lim_{t \to t_0} \frac{\rho(t)}{\int\limits_{t_0}^t h(s)\,\mathrm{d}s} = 0$$

has only the zero solution as well. Therefore, the corollary follows from Theorem 7.1. $\hfill\square$

Corollary 7.2 (Nagumo–Perron). Let $t_0 \in int(I)$. Let $h \in L_{loc}(I, (0, \infty))$ be such that the function

$$f_0(t,x) = \frac{f(t,x)}{h(t)}, \qquad (t,x) \in I \times \mathbb{R}^n,$$

is continuous in a neighbourhood of $[t_0, c_0]$. If the inequality

$$[f(t,x) - f(t,y)] \cdot \text{sgn}[(t-t_0)(x-y)] \le \frac{h(t)}{\left| \int_{t_0}^t h(\tau) \, \mathrm{d}\tau \right|} \, \|x-y\|, \qquad t \neq t_0,$$

is valid on the set $I \times \mathbb{R}^n$, then the problem (7.1), (7.2) is uniquely solvable.

Proof. We put $\lambda = 0$ and

$$\boldsymbol{\omega}_{r}(t,x) = \frac{h(t)x}{\left|\int\limits_{t_{0}}^{t} h(\tau) \,\mathrm{d}\tau\right|}, \qquad t \neq t_{0}, t \in I, x \in \mathbb{R}_{+}, r > 0.$$

Since the function f_0 is continuous in some neighbourhood of the point $[t_0, c_0]$, there exist

$$\boldsymbol{\varepsilon}, \boldsymbol{\delta} \in \left(0, \frac{1}{2}\right)$$

such that the function f_0 is uniformly continuous on $[t_0 - \varepsilon, t_0 + \varepsilon] \times B[c_0, \delta]$. Let $J = [t_0 - \varepsilon, t_0 + \varepsilon]$. For $s \in [0, 2\delta] \subseteq [0, 1]$, we put

$$\varphi(s) = \max \left\{ \|f_0(t,x) - f_0(t,y)\| ; t \in J, x, y \in B[c_0,\delta], \|x - y\| \le s \right\}.$$

Obviously, $\varphi \in C([0, 2\delta], \mathbb{R}_+)$ and $\varphi(0) = 0$. One can easily verify that all conditions of Theorem 7.1 are fulfilled. For example, by a direct computation, one can verify that the problem

$$\rho' = \frac{h(t)}{\int\limits_{t_0}^t h(\tau) \,\mathrm{d}\tau} \rho, \qquad \lim_{t \to t_0} \frac{\rho(t)}{\int\limits_{t_0}^t h(\tau) \,\mathrm{d}\tau} = 0$$

has only the zero solution. Therefore, the corollary also follows from Theorem 7.1. $\hfill\square$

8. Krein theorem

Let I be a compact interval. Now, we consider the Cauchy problem

$$x' = f_0(t, x), \tag{8.1.0}$$

$$x(t_0) = c_0, (8.2.0)$$

where $f_0 \in K(I \times \mathbb{R}^n, \mathbb{R}^n)$, $t_0 \in I$, $c_0 \in \mathbb{R}^n$.

For $m \in \mathbb{N}$, together with the problem (8.1.0), (8.2.0), we consider the perturbed problem

$$x' = f_m(t, x), \tag{8.1.m}$$

$$x(t_m) = c_m, \tag{8.2.m}$$

where $f_m \in K(I \times \mathbb{R}^n, \mathbb{R}^n)$, $t_m \in I$, $c_m \in \mathbb{R}^n$.

For $m \in \mathbb{N} \cup \{0\}$, by the symbol $X(f_m, t_m, c_m)$, we denote the set of all non-extendable solutions of the problem (8.1.m), (8.2.m).

Definition 8.1. Let $Y \subseteq C(I, \mathbb{R}^n)$. Then, the ε -neighbourhood of the set Y is the set

$$Y_{\varepsilon} = \bigcup_{y \in Y} B(y, \varepsilon),$$

where

$$B(y,\varepsilon) = \{x \in C(I,\mathbb{R}^n); \|x-y\|_C < \varepsilon\}.$$

Definition 8.2. Let $Y \subseteq C(I, \mathbb{R}^n)$ and let $Y^m \subseteq C(I, \mathbb{R}^n)$ for all sufficiently large $m \in \mathbb{N}$. If, for any $\varepsilon > 0$, there exists $m_0 \in \mathbb{N}$ such that

$$Y^m \subseteq Y_{\varepsilon}, \qquad m \ge m_0,$$

then we write

$$\lim_{m\to\infty}Y^m\subseteq Y.$$

Lemma 8.1. Let the following conditions:

 $\overline{1}$. for all $x \in \mathbb{R}^n$, it holds

$$\lim_{m\to\infty}\int\limits_{t_0}^t f_m(\tau,x)\,\mathrm{d}\tau = \int\limits_{t_0}^t f_0(\tau,x)\,\mathrm{d}\tau$$

uniformly on I;

 $\overline{2}$. for any r > 0, there exists $\omega_r \in K(I \times \mathbb{R}_+, \mathbb{R}_+)$ such that

$$\omega_r(-,0)\equiv 0$$

and that

$$||f_m(t,x) - f_m(t,y)|| \le \omega_r(t, ||x-y||), \qquad t \in I, x, y \in B[0,r], m \in \mathbb{N},$$

be fulfilled. If $\{x_m\}_{m=0}^{\infty}$ is a sequence of functions from the space $C(I, \mathbb{R}^n)$ such that

$$\lim_{m\to\infty}x_m(t)=x_0(t)$$

uniformly on I, then

$$\lim_{m\to\infty}\int_{t_0}^t f_m(\tau,x_m(\tau))\,\mathrm{d}\tau = \int_{t_0}^t f_0(\tau,x_0(\tau))\,\mathrm{d}\tau$$

uniformly on I.

Proof. Since the sequence $\{x_m\}_{m=1}^{\infty}$ is uniformly convergent, $\{\|x_m\|_C\}_{m=1}^{\infty}$ is bounded. Let $r \in \mathbb{R}$ satisfy

$$1 + \|x_m\|_C \le r, \qquad m \in \mathbb{N} \cup \{0\}$$

Let ω_r be from the condition $\overline{2}$. Without loss of generality, we can assume that the function ω_r is non-decreasing in the second variable. Using Lemma 1.4, we can also assume that

$$|f_0(t,x) - f_0(t,y)|| \le \omega_r(t, ||x-y||), \quad t \in I, x, y \in B[0,r].$$

We denote

$$y_m(t) = \int_{t_0}^t f_m(\tau, x_m(\tau)) \,\mathrm{d}\tau - \int_{t_0}^t f_0(\tau, x_0(\tau)) \,\mathrm{d}\tau, \qquad t \in I, m \in \mathbb{N}.$$

Let $\varepsilon > 0$ be arbitrarily given. We choose $\eta \in (0, 1]$ so that (see also Lemma 4.1)

$$\int_{I} \omega_r(\tau,\eta) \,\mathrm{d}\tau < \frac{\varepsilon}{2}.$$

Since the function x_0 is continuous on the compact interval, there exists a system $\{t_i\}_{i=1}^k \ (k \ge 2, k \in \mathbb{N})$ of points of the interval *I* such that

$$\min I = t_1 < t_2 < \cdots < t_k = \max I$$

and that

$$||x_0(t) - x_0(t_i)|| < \frac{\eta}{2}, \quad t \in [t_i, t_{i+1}], i \in \{1, \dots, k-1\}.$$

We put

$$\tilde{x}(t) = x_0(t_i), \qquad t \in [t_i, t_{i+1}), i \in \{1, \dots, k-1\},\$$

and

$$\tilde{x}(t_k) = x_0(t_{k-1}).$$

Obviously,

$$\|\tilde{x}(t)-x_0(t)\|<\frac{\eta}{2}, \qquad t\in I.$$

There exists $m_0 \in \mathbb{N}$ with the property that

$$\|x_m-x_0\|_C<\frac{\eta}{2}, \qquad m\geq m_0, m\in\mathbb{N}.$$

Therefore,

$$||x_m(t)-\tilde{x}(t)|| < \eta, \qquad t \in I, m \ge m_0, m \in \mathbb{N}.$$

Next, we obtain

$$\begin{aligned} \|y_m(t)\| &\leq \left| \int_{t_0}^t \|f_m(\tau, x_m(\tau)) - f_m(\tau, \tilde{x}(\tau))\| \,\mathrm{d}\tau \right| \\ &+ \left\| \int_{t_0}^t f_m(\tau, \tilde{x}(\tau)) - f_0(\tau, \tilde{x}(\tau)) \,\mathrm{d}\tau \right\| \\ &+ \left| \int_{t_0}^t \|f_0(\tau, \tilde{x}(\tau)) - f_0(\tau, x_0(\tau))\| \,\mathrm{d}\tau \right| \\ &\leq \left\| \int_{t_0}^t f_m(\tau, \tilde{x}(\tau)) - f_0(\tau, \tilde{x}(\tau)) \,\mathrm{d}\tau \right\| + 2 \int_I \omega_r(\tau, \eta) \,\mathrm{d}\tau \end{aligned}$$

for all $t \in I$, $m \ge m_0$, $m \in \mathbb{N}$. We define

$$\gamma_{i,m} = \max\left\{ \left\| \int_{t_0}^t f_m(\tau, x_0(t_i)) - f_0(\tau, x_0(t_i)) \,\mathrm{d}\tau \right\| ; t \in I \right\}$$

for all $i \in \{1, ..., k-1\}, m \in \mathbb{N}$.

Using the condition $\overline{1}$, one can easily verify that

$$\lim_{m\to\infty}\gamma_{i,m}=0,\qquad i\in\{1,\ldots,k-1\}.$$

Since

$$\int_{I} \omega_r(\tau,\eta) \,\mathrm{d}\tau < \frac{\varepsilon}{2},$$

the definitions of \tilde{x} and $\gamma_{i,m}$ give

$$\|y_m(t)\| \leq \varepsilon + \sum_{i=1}^{k-1} \gamma_{i,m}, \qquad t \in I, m \geq m_0, m \in \mathbb{N}.$$

From this inequality, we obtain the statement of the lemma. It is enough to consider the arbitrariness of $\varepsilon>0$ and

$$\lim_{m\to\infty}\gamma_{i,m}=0,\qquad i\in\{1,\ldots,k-1\}.$$

Theorem 8.1 (Krein). If the following conditions:

1. it holds

$$\lim_{m\to\infty}t_m=t_0,\qquad \lim_{m\to\infty}c_m=c_0;$$

2. for all $x \in \mathbb{R}^n$, it holds

$$\lim_{m \to \infty} \int_{t_0}^t f_m(\tau, x) \, \mathrm{d}\tau = \int_{t_0}^t f_0(\tau, x) \, \mathrm{d}\tau$$

uniformly on I;

3. for any r > 0*, there exists a function* $\omega_r \in K(I \times \mathbb{R}_+, \mathbb{R}_+)$ *such that*

$$\omega_r(-,0)\equiv 0$$

and that

$$\|f_m(t,x)-f_m(t,y)\| \le \omega_r(t,\|x-y\|), \qquad t \in I, x, y \in B[0,r], m \in \mathbb{N};$$

4. every non-extendable solution of the problem (8.1.0), (8.2.0) exists on I, i.e.,

$$X(f_0,t_0,c_0) \subset C(I,\mathbb{R}^n),$$

are fulfilled, then there exists $m_0 \in \mathbb{N}$ such that, for all $m > m_0$, $m \in \mathbb{N}$, all non-extendable solution of the problem (8.1.m), (8.2.m) exists on I and

$$\lim_{m\to\infty} X\left(f_m, t_m, c_m\right) \subseteq X\left(f_0, t_0, c_0\right)$$

Proof. According to Theorem 4.1, the set $X(f_0, t_0, c_0)$ is bounded in the space $C(I, \mathbb{R}^n)$. Thus, there exists $r_0 > 0$ such that

$$||x||_C \le r_0, \qquad x \in X(f_0, t_0, c_0).$$

We define the function

$$\chi(x) = \begin{cases} x, & \|x\| \le r_0 + 1, x \in \mathbb{R}^n; \\ (r_0 + 1)\frac{x}{\|x\|}, & \|x\| > r_0 + 1, x \in \mathbb{R}^n, \end{cases}$$

and we put

$$\tilde{f}_m(t,x) = f_m(t,\boldsymbol{\chi}(x)), \qquad (t,x) \in I \times \mathbb{R}^n, \ m \in \mathbb{N} \cup \{0\}.$$

It is obvious that

$$\tilde{f}_m \in K(I \times \mathbb{R}^n, \mathbb{R}^n), \qquad m \in \mathbb{N} \cup \{0\},$$

and that

$$\left\|\tilde{f}_m(t,x)\right\| \leq f_m^{\star}(t), \qquad t \in I, x \in \mathbb{R}^n, m \in \mathbb{N} \cup \{0\},$$

where

$$f_m^{\star}(t) = \sup \{ \|f_m(t,x)\|; x \in B[0, r_0+1] \}, \quad t \in I$$

Due to Lemma 1.2, $f_m^{\star}(t) \in L(I, \mathbb{R}_+)$ for all considered *m*. For all $m \in \mathbb{N} \cup \{0\}$, we consider the equation

$$x' = \tilde{f}_m(t, x). \tag{8.3.m}$$

As $X(\tilde{f}_m, t_m, c_m)$, we denote the set of all non-extendable solutions of the problem (8.3.m), (8.2.m).

Now, we show that

$$X(\tilde{f}_0, t_0, c_0) = X(f_0, t_0, c_0).$$

Obviously,

$$X(f_0,t_0,c_0) \subseteq X\left(\tilde{f}_0,t_0,c_0\right).$$

We assume the existence of $\tilde{x} \in X(\tilde{f}_0, t_0, c_0)$ such that $\tilde{x} \notin X(f_0, t_0, c_0)$. We have

$$\|\tilde{x}\|_{C} > r_{0} + 1, \qquad \|\tilde{x}(t_{0})\| = \|c_{0}\| < r_{0} + 1.$$

Therefore, there exists an interval $I_0 \subset I$ such that $t_0 \in I_0$ and that

$$\sup\{\|\tilde{x}(t)\|; t \in I_0\} = r_0 + 1.$$

Now, it is seen that the function \tilde{x} is a solution of (8.1.0), (8.2.0) on the interval I_0 . Due to 4. from the statement of the theorem, we know that there exists an extension y of the solution \tilde{x} to I. Then,

$$y \in X(f_0, t_0, c_0)$$

and

$$||y||_C \ge r_0 + 1.$$

This is a contradiction which proves

$$X\left(\tilde{f}_0,t_0,c_0\right)\subseteq X(f_0,t_0,c_0).$$

Since

$$\|\tilde{f}_m(t,x)\| \le f_m^{\star}(t), \qquad t \in I, x \in \mathbb{R}^n, m \in \mathbb{N}$$

according to Corollary 6.1, for arbitrary $m \in \mathbb{N}$, any element of the set $X(\tilde{f}_m, t_m, c_m)$ exists on I, i.e.,

$$X\left(ilde{f}_m,t_m,c_m
ight)\subset C(I,\mathbb{R}^n),\qquad m\in\mathbb{N}.$$

Next, we prove that

$$\lim_{m\to\infty} X\left(\tilde{f}_m, t_m, c_m\right) \subseteq X(f_0, t_0, c_0).$$

We assume the opposite. Then, there exist $\varepsilon_0 > 0$, an increasing sequence $\{m_k\}_{k=1}^{\infty}$ of positive integers, and a sequence $\{x_k\}_{k=1}^{\infty}$ of functions from the space $C(I, \mathbb{R}^n)$ such that

$$x_k \in X\left(\widetilde{f}_{m_k}, t_{m_k}, c_{m_k}\right), \qquad k \in \mathbb{N},$$

and that

$$x_k \notin X_{\varepsilon_0}(f_0, t_0, c_0), \qquad k \in \mathbb{N}.$$

Evidently,

$$x_k(t) = c_{m_k} + y_k(t) + z_k(t), \qquad t \in I, k \in \mathbb{N},$$

where

$$y_k(t) = \int_{t_{m_k}}^t \tilde{f}_{m_k}(\tau, x_k(\tau)) - f_{m_k}(\tau, 0) d\tau, \qquad t \in I, k \in \mathbb{N},$$

and

$$z_k(t) = \int\limits_{t_{m_k}}^t f_{m_k}(au, 0) \,\mathrm{d} au, \qquad t \in I, \, k \in \mathbb{N}.$$

From the condition 3., we obtain

$$\begin{split} \left\| \tilde{f}_m(t,x) - f_m(t,0) \right\| &= \left\| f_m(t,\boldsymbol{\chi}(x)) - f_m(t,0) \right\| \\ &\leq \boldsymbol{\omega}_{r_0+1}(t, \|\boldsymbol{\chi}(x)\|) \\ &\leq \boldsymbol{\omega}_{r_0+1}(t,r_0+1), \qquad t \in I, x \in \mathbb{R}^n, m \in \mathbb{N}, \end{split}$$

because, without loss of generality, we can assume that the function ω_{r_0+1} is non-decreasing in the second variable. Thus,

$$||y'_k(t)|| \le \omega_{r_0+1}(t, r_0+1)$$

for almost all $t \in I$, $k \in \mathbb{N}$. Hence, the functions y_k , $k \in \mathbb{N}$, are equicontinuous. Moreover, we have

$$\begin{aligned} \|y_k(t)\| &\leq \left| \int\limits_{t_{m_k}}^t \|y_k'(\tau)\| \,\mathrm{d}\tau \right| \\ &\leq \int\limits_I \omega_{r_0+1}(\tau, r_0+1) \,\mathrm{d}\tau, \qquad t \in I, \, k \in \mathbb{N}, \end{aligned}$$

i.e., the functions y_k , $k \in \mathbb{N}$, are uniformly bounded. According to the Arzelà–Ascoli theorem, without loss of generality, we can assume that the sequence $\{y_k\}_{k=1}^{\infty}$ is uniformly convergent.

At the same time, for $t \in I$, $k \in \mathbb{N}$, we have

$$\begin{split} \left\| z_{k}(t) - \int_{t_{0}}^{t} f_{0}(\tau, 0) \, \mathrm{d}\tau \right\| &\leq \left\| \int_{t_{0}}^{t_{m_{k}}} f_{m_{k}}(\tau, 0) \, \mathrm{d}\tau \right\| + \left\| \int_{t_{0}}^{t} f_{m_{k}}(\tau, 0) \, \mathrm{d}\tau - \int_{t_{0}}^{t} f_{0}(\tau, 0) \, \mathrm{d}\tau \right\| \\ &\leq \left\| \int_{t_{0}}^{t_{m_{k}}} f_{m_{k}}(\tau, 0) \, \mathrm{d}\tau - \int_{t_{0}}^{t} f_{0}(\tau, 0) \, \mathrm{d}\tau \right\| + \left\| \int_{t_{0}}^{t_{m_{k}}} f_{0}(\tau, 0) \, \mathrm{d}\tau \right\| \\ &+ \left\| \int_{t_{0}}^{t} f_{m_{k}}(\tau, 0) \, \mathrm{d}\tau - \int_{t_{0}}^{t} f_{0}(\tau, 0) \, \mathrm{d}\tau \right\| \\ &\leq \int_{t_{0}}^{t_{m_{k}}} \| f_{0}(\tau, 0) \| \, \mathrm{d}\tau \\ &+ 2 \max \left\{ \left\| \int_{t_{0}}^{s} f_{m_{k}}(\tau, 0) \, \mathrm{d}\tau - \int_{t_{0}}^{s} f_{0}(\tau, 0) \, \mathrm{d}\tau \right\| ; s \in I \right\} \end{split}$$

Thus, from the conditions 1. and 2., we obtain

$$\lim_{k\to\infty} z_k(t) = \int_{t_0}^t f_0(\tau,0) \,\mathrm{d}\tau$$

uniformly on I. From

$$x_k(t) = c_{m_k} + y_k(t) + z_k(t), \qquad t \in I, k \in \mathbb{N},$$

from the condition 1., and from the uniform convergences of the sequences $\{y_k\}_{k=1}^{\infty}$ and $\{z_k\}_{k=1}^{\infty}$ obtained above, it follows that there exists $\tilde{x} \in C(I, \mathbb{R}^n)$ such that

$$\lim_{k\to\infty}x_k(t)=\tilde{x}(t)$$

uniformly on *I*.

Now, we show that

$$\tilde{x} \in X\left(\tilde{f}_0, t_0, c_0\right).$$

From

$$x_k \in X\left(\widetilde{f}_{m_k}, t_{m_k}, c_{m_k}\right), \qquad k \in \mathbb{N},$$

it follows

$$x_{k}(t) = x_{k}(t_{0}) + \int_{t_{0}}^{t} f_{m_{k}}(\tau, \chi(x_{k}(\tau))) d\tau, \qquad t \in I, k \in \mathbb{N}.$$
 (8.1)

Since

$$\begin{aligned} \|x_k(t_0) - c_0\| &\leq \|x_k(t_0) - \tilde{x}(t_0)\| + \|\tilde{x}(t_0) - \tilde{x}(t_{m_k})\| \\ &+ \|\tilde{x}(t_{m_k}) - x_k(t_{m_k})\| + \|x_k(t_{m_k}) - c_0\| \\ &\leq 2 \|x_k - \tilde{x}\|_C + \|\tilde{x}(t_0) - \tilde{x}(t_{m_k})\| + \|c_{m_k} - c_0\| \end{aligned}$$

for all $k \in \mathbb{N}$, from the condition 1., from the uniform limit

$$\lim_{k\to\infty}x_k(t)=\tilde{x}(t)$$

on *I*, and from the continuity of \tilde{x} , we obtain

$$\lim_{k \to \infty} x_k(t_0) = c_0$$

Next,

$$\lim_{k\to\infty}\chi(x_k(t))=\chi(\tilde{x}(t))$$

uniformly on I. Thus, (8.1) and Lemma 8.1 give

$$\tilde{x}(t) = c_0 + \int_{t_0}^t \tilde{f}_0(\tau, \tilde{x}(\tau)) \,\mathrm{d}\tau, \qquad t \in I,$$

i.e.,

$$\tilde{x} \in X\left(\tilde{f}_0, t_0, c_0\right).$$

Therefore,

$$\tilde{x} \in X\left(f_0, t_0, c_0\right)$$

Since \tilde{x} is the uniform limit of the sequence $\{x_k\}_{k=1}^{\infty}$, there exists $k_0 \in \mathbb{N}$ such that

$$\|\tilde{x}-x_k\|_C < \varepsilon_0, \qquad k \ge k_0, \, k \in \mathbb{N},$$

and, consequently,

$$x_k \in X_{\varepsilon_0}(f_0, t_0, c_0), \qquad k \ge k_0, k \in \mathbb{N},$$

which is a contradiction with

$$x_k \notin X_{\varepsilon_0}(f_0, t_0, c_0), \qquad k \in \mathbb{N}.$$

The contradiction proves

$$\lim_{m\to\infty} X\left(\tilde{f}_m,t_m,c_m\right) \subseteq X\left(f_0,t_0,c_0\right).$$

From Definition 8.2, it follows the existence of $m_0 \in \mathbb{N}$ for which

$$X\left(\tilde{f}_m,t_m,c_m\right)\subseteq X_1\left(f_0,t_0,c_0\right), \qquad m\geq m_0, m\in\mathbb{N}.$$

Let $m \ge m_0$ $(m \in \mathbb{N})$ and $y \in X(\tilde{f}_m, t_m, c_m)$ be arbitrary. Then, $y \in X_1(f_0, t_0, c_0)$, i.e., there exists $x \in X(f_0, t_0, c_0)$ such that $||y - x||_C < 1$. Thus,

$$\|y\|_C < \|x\|_C + 1 \le r_0 + 1$$

i.e.,

$$y \in X(f_m, t_m, c_m).$$

We have obtained that

$$X\left(\tilde{f}_m,t_m,c_m\right)\subseteq X\left(f_m,t_m,c_m\right),\qquad m\geq m_0,m\in\mathbb{N}.$$

The opposite inclusion is also valid, which gives

$$X\left(\tilde{f}_m, t_m, c_m\right) = X\left(f_m, t_m, c_m\right), \qquad m \ge m_0, m \in \mathbb{N}.$$

We have proved that

$$X\left(\widetilde{f}_m,t_m,c_m\right)\subset C(I,\mathbb{R}^n),\qquad m\in\mathbb{N}$$

Hence,

$$X(f_m,t_m,c_m) \subset C(I,\mathbb{R}^n), \qquad m \ge m_0, m \in \mathbb{N}.$$

Now, it is enough to consider

$$\lim_{m\to\infty} X\left(\tilde{f}_m, t_m, c_m\right) \subseteq X\left(f_0, t_0, c_0\right),$$

i.e.,

$$\lim_{m\to\infty} X(f_m,t_m,c_m) \subseteq X(f_0,t_0,c_0).$$

Corollary 8.1. Let the assumptions 1.-4. from Theorem 8.1 be valid and let

$$x_m \in X(f_m, t_m, c_m), \qquad m \in \mathbb{N}.$$

Then, the sequence $\{x_m\}_{m=1}^{\infty}$ has a subsequence $\{x_{m_k}\}_{k=1}^{\infty}$ such that

$$\lim_{k\to\infty}x_{m_k}(t)=x(t)$$

uniformly on I, where

$$x \in X(f_0, t_0, c_0).$$

Proof. From Theorem 8.1, it follows the existence of $m_0 \in \mathbb{N}$ such that

$$x_m \in C(I,\mathbb{R}^n), \qquad m \ge m_0, m \in \mathbb{N}.$$

In addition,

$$\lim_{m\to\infty} X\left(f_m,t_m,c_m\right) \subseteq X\left(f_0,t_0,c_0\right).$$

Thus, there exists $r_0 > 0$ for which

$$||x_m(t)|| \le r_0, \qquad t \in I, m \ge m_0, m \in \mathbb{N}.$$

We recall that the set $X(f_0, t_0, c_0)$ is bounded in the space $C(I, \mathbb{R}^n)$ (due to Theorem 4.1). We have obtained that the functions of the sequence $\{x_m\}_{m=m_0}^{\infty}$ are uniformly bounded.

Obviously,

$$x_m(t) = x_m(t_0) + y_m(t) + z_m(t), \qquad t \in I, m \ge m_0, m \in \mathbb{N}$$

where

$$y_m(t) = \int\limits_{t_0}^t f_m(\tau, x_m(\tau)) - f_m(\tau, 0) \,\mathrm{d} au, \qquad t \in I, m \ge m_0, m \in \mathbb{N},$$

and

$$z_m(t) = \int\limits_{t_0}^{\cdot} f_m(au,0) \,\mathrm{d} au, \qquad t\in I, \, m\geq m_0, \, m\in\mathbb{N}.$$

From the condition 3., we obtain

$$\begin{aligned} \|f_m(t,x) - f_m(t,0)\| &\leq \omega_{r_0}(t, \|x\|) \\ &\leq \omega_{r_0}(t, r_0), \qquad t \in I, x \in B[0, r_0], \, m \geq m_0, \, m \in \mathbb{N}, \end{aligned}$$

because we can assume (without loss of generality) that the function ω_{r_0} is non-decreasing in the second variable. At the same time, we have

$$\left\|y_m'(t)\right\| \le \omega_{r_0}(t, r_0)$$

for almost all $t \in I$ and all $m \ge m_0$, $m \in \mathbb{N}$. Hence, the functions of the sequence $\{y_m\}_{m=m_0}^{\infty}$ are equicontinuous. From the condition 2., we get

$$\lim_{m\to\infty} z_m(t) = \int_{t_0}^t f_0(\tau,0) \,\mathrm{d}\tau$$

uniformly on *I*. Thus, the functions of the sequence $\{z_m\}_{m=m_0}^{\infty}$ are equicontinuous. Therefore, the functions of the sequence $\{x_m\}_{m=m_0}^{\infty}$ are equicontinuous as well. Using the Arzelà–Ascoli theorem, from the sequence $\{x_m\}_{m=m_0}^{\infty}$, one can extract a

subsequence $\{x_{m_k}\}_{k=1}^{\infty}$ satisfying

$$\lim_{k\to\infty}x_{m_k}(t)=x(t)$$

uniformly on *I*, where $x \in C(I, \mathbb{R}^n)$.

It remains to prove that $x \in X(f_0, t_0, c_0)$. Let $\varepsilon > 0$ be arbitrary. Then, there exists $k_0 \in \mathbb{N}$ such that

$$x_{m_{k_0}} \in X_{\frac{\varepsilon}{2}}(f_0, t_0, c_0)$$

and that

$$\left\|x_{m_{k_0}}-x\right\|_C<\frac{\varepsilon}{2}.$$

Therefore, one can choose $y \in X(f_0, t_0, c_0)$ satisfying

$$x_{m_{k_0}}\in B\left(y,\frac{\varepsilon}{2}\right),$$

i.e.,

$$\left\|y-x_{m_{k_0}}\right\|_C<\frac{\varepsilon}{2}.$$

Thus, $x \in B(y, \varepsilon)$. From the arbitrariness of $\varepsilon > 0$, it follows that x is an element of the closure of the set $X(f_0, t_0, c_0)$. This set is closed (see Remark 4.1). Therefore,

$$x \in X(f_0, t_0, c_0).$$

Remark 8.1. From the proof of Theorem 8.1 and from Corollary 8.1, it follows that the condition 3. can be replaced by the following one:

3. for any r > 0, there exists a function $\omega_r \in K(I \times \mathbb{R}_+, \mathbb{R}_+)$ such that

$$\omega_r(-,0)\equiv 0$$

and that

$$\|f_m(t,x) - f_m(t,y)\| \le \omega_r(t,\|x-y\|) + \omega_r\left(t,\frac{1}{m}\right)$$

for all $t \in I$, $x, y \in B[0, r]$, $m \in \mathbb{N}$.

9. Kneser theorem

Let *I* be a compact interval. We consider the Cauchy problem

$$x' = f(t, x), \tag{9.1}$$

$$x(t_0) = c_0,$$
 (9.2)

where $f \in K(I \times \mathbb{R}^n, \mathbb{R}^n)$, $t_0 \in I$, $c_0 \in \mathbb{R}^n$. As $X(f, t_0, c_0)$, we denote the set of all non-extendable solutions of the problem (9.1), (9.2).

Theorem 9.1 (Kneser). If any non-extendable solution of the problem (9.1), (9.2) exists on *I*, then the set $X(f, t_0, c_0)$ is compact and connected in the space $C(I, \mathbb{R}^n)$.

Proof. According to Remark 4.1, the set $X(f,t_0,c_0)$ is compact in the space $C(I,\mathbb{R}^n)$. We show that it is connected. We suppose the opposite, i.e., let $X(f,t_0,c_0)$ be disconnected. Thus, there exist non-empty closed sets $X_1, X_2 \subset X(f,t_0,c_0)$ such that

$$X_1 \cap X_2 = \emptyset, \qquad X_1 \cup X_2 = X(f, t_0, c_0).$$

We denote

$$\delta = \inf \{ \|y - x\|_C; y \in X_1, x \in X_2 \}.$$

We know that $\delta > 0$. The sets X_1, X_2 are compact. Hence, there exist $x_1 \in X_1, x_2 \in X_2$ such that

$$\|x_1 - x_2\|_C = \delta$$

From the compactness of $X(f, t_0, c_0)$ in $C(I, \mathbb{R}^n)$, it follows the existence of r > 0 such that

$$||x||_C \le r-1, \qquad x \in X(f, t_0, c_0).$$

Now, we use Lemma 1.6 and Remarks 1.2 and 1.3. There exists a sequence $\{f_m\}_{m=1}^{\infty}$ of functions satisfying the following conditions:

a. it holds

$$f_m \in K(I \times \mathbb{R}^n, \mathbb{R}^n), \qquad m \in \mathbb{N};$$

b. for any $\rho > 0$ and $m \in \mathbb{N}$, there exists a function $l_{\rho,m} \in L(I, \mathbb{R}_+)$ such that

$$||f_m(t,x) - f_m(t,y)|| \le l_{\rho,m}(t) ||x-y||, \quad t \in I, x, y \in B[0,\rho];$$

c. for almost all $t \in I$ and any $\rho > 0$, it holds

$$\lim_{m \to \infty} f_m(t, x) = f(t, x)$$

uniformly on $B[0, \rho]$;

d. for any $\rho > 0$, there exists a function $h_{\rho} \in L(I, \mathbb{R}_+)$ such that

$$||f_m(t,x)|| \le h_\rho(t), \qquad t \in I, x \in B[0,\rho], m \in \mathbb{N};$$

e. for any $\rho > 0$, there exists a function $\omega_{\rho} \in K(I \times \mathbb{R}_+, \mathbb{R}_+)$ such that

$$\omega_{\rho}(-,0)\equiv 0$$

and that

$$\|f_m(t,x) - f_m(t,y)\| \le \omega_\rho(t, \|x - y\|) + \omega_\rho\left(t, \frac{1}{m}\right)$$

for all $t \in I$, $x, y \in B[0, \rho]$, $m \in \mathbb{N}$.

For all $\lambda \in [0,1]$ and $m \in \mathbb{N}$, we put

$$f_{\lambda,m}(t,x) = f_m(t,x) + (1-\lambda) [f(t,x_1(t)) - f_m(t,x_1(t))] + \lambda [f(t,x_2(t)) - f_m(t,x_2(t))], \quad t \in I, x \in \mathbb{R}^n.$$

One can easily verify that the functions $f_{\lambda,m}$ satisfy the following conditions:

1. it holds

$$f_{\lambda,m} \in K(I \times \mathbb{R}^n, \mathbb{R}^n), \qquad \lambda \in [0,1], m \in \mathbb{N}$$

2. for any $\rho > 0$ and $m \in \mathbb{N}$, there exists a function $l_{\rho,m} \in L(I, \mathbb{R}_+)$ such that

$$\left\|f_{\lambda,m}(t,x)-f_{\lambda,m}(t,y)\right\| \leq l_{\rho,m}(t) \|x-y\|, \qquad t \in I, x, y \in B[0,\rho], \lambda \in [0,1];$$

3. for almost all $t \in I$ and any $\rho > 0$, it holds

$$\lim_{m\to\infty}f_{\lambda,m}(t,x)=f(t,x)$$

uniformly with respect to $x \in B[0, \rho], \lambda \in [0, 1];$

4. for any $\rho > 0$, it holds

$$\left\|f_{\lambda,m}(t,x)\right\| \leq \tilde{h}_{\rho}(t), \quad t \in I, x \in B[0,\rho], \lambda \in [0,1], m \in \mathbb{N},$$

where

$$\tilde{h}_{\rho}(t) = h_{\rho}(t) + h_{r-1}(t) + ||f(t, x_1(t))|| + ||f(t, x_2(t))||, \quad t \in I;$$

5. for any $\rho > 0$, there exists a function $\omega_{\rho} \in K(I \times \mathbb{R}_+, \mathbb{R}_+)$ with the property that

$$\omega_{\rho}(-,0)\equiv 0$$

and that

$$\left\|f_{\lambda,m}(t,x) - f_{\lambda,m}(t,y)\right\| \le \omega_{\rho}\left(t, \|x-y\|\right) + \omega_{\rho}\left(t, \frac{1}{m}\right)$$

for all $t \in I$, $x, y \in B[0, \rho]$, $\lambda \in [0, 1]$, $m \in \mathbb{N}$.

For all $\lambda \in [0,1]$ and $m \in \mathbb{N}$, we consider the problem

$$x' = f_{\lambda,m}(t,x), \tag{9.3}$$

$$x(t_0) = c_0.$$
 (9.2)

Due to the condition 2., from Corollary 7.1, it follows that the problem (9.3), (9.2) is uniquely solvable for any $\lambda \in [0, 1]$ and $m \in \mathbb{N}$. As $x_{\lambda,m}$, we denote the non-extendable solution of this problem. Since the convergence is uniform with respect to λ in the condition 3. and since the majorants are also independent on λ in the conditions 4. and 5., the assumptions of Theorem 8.1 (Remark 8.1) are satisfied (uniformly with respect to λ). Thus, there exists $m_0 \in \mathbb{N}$ such that, for all $m \ge m_0$, $m \in \mathbb{N}$, and $\lambda \in [0, 1]$, the solution $x_{\lambda,m}$ exists on the interval *I*. Moreover, due to the inequality

$$||x||_C \le r-1, \qquad x \in X(f, t_0, c_0),$$

the proof of Theorem 8.1 guarantees that, without loss of generality, we can assume the inequality

$$\|x_{\lambda,m}\|_C \leq r, \qquad m \geq m_0, m \in \mathbb{N}, \lambda \in [0,1]$$

We denote

$$\eta_m(\lambda) = \inf \left\{ \left\| x_{\lambda,m} - y \right\|_C; y \in X_1 \right\}, \qquad \lambda \in [0,1], \, m \ge m_0, \, m \in \mathbb{N}.$$

From the definition of the function $f_{\lambda,m}$ and the uniqueness of the solution $x_{\lambda,m}$, it follows that

$$x_{0,m} \equiv x_1, \qquad x_{1,m} \equiv x_2, \qquad m \in \mathbb{N}.$$

Therefore, $\eta_m(0) = 0$, $\eta_m(1) = \delta$, $m \ge m_0$, $m \in \mathbb{N}$. Let $m \ge m_0$ $(m \in \mathbb{N})$ be arbitrarily given. Let $\lambda_0 \in [0,1]$ be also arbitrarily given and let $\{\lambda_k\}_{k=1}^{\infty} \subset [0,1]$ be a sequence for which

$$\lim_{k\to\infty}\lambda_k=\lambda_0$$

Using Theorem 8.1, one can verify that

$$\lim_{k \to \infty} x_{\lambda_k,m}(t) = x_{\lambda_0,m}(t)$$

uniformly on *I*. Since the set X_1 is compact, from the definition of the function η_m , it follows that

$$\lim_{k\to\infty}\eta_m(\lambda_k)=\eta_m(\lambda_0),$$

i.e., the function η_m is continuous on [0, 1]. Therefore,

$$\eta_m(0) = 0, \qquad \eta_m(1) = \delta, \qquad m \ge m_0, m \in \mathbb{N},$$

implies that, for any $m \ge m_0$, $m \in \mathbb{N}$, there exists $\lambda_m \in (0, 1)$ with the property that

$$\eta_m(\lambda_m)=rac{\delta}{2},$$

i.e.,

$$\inf\left\{\left\|x_{\lambda_m,m}-y\right\|_C; y\in X_1\right\}=\frac{\delta}{2}, \qquad m\geq m_0, m\in\mathbb{N}.$$

Due to the condition 4. and

$$\|x_{\boldsymbol{\lambda},m}\|_C \leq r, \qquad m \geq m_0, m \in \mathbb{N}, \, \boldsymbol{\lambda}_0 \in [0,1],$$

the functions of the sequence $\{x_{\lambda_m,m}\}_{m=m_0}^{\infty}$ have to be uniformly bounded and equicontinuous. According to the Arzelà–Ascoli theorem, without loss of generality, we can assume that this sequence is convergent, i.e., there exists $\tilde{x} \in C(I, \mathbb{R}^n)$ such that

$$\lim_{m\to\infty} x_{\lambda_m,m}(t) = \tilde{x}(t)$$

uniformly on *I*. Next, Theorem 8.1 gives

$$\tilde{x} \in X(f, t_0, c_0).$$

Since the set X_1 is compact, we have

$$\inf\{\|\tilde{x}-y\|_C; y\in X_1\}=\frac{\delta}{2}.$$

Thus, we know that $\tilde{x} \notin X_1$ and, consequently, $\tilde{x} \in X_2$, which is a contradiction. The contradiction proves that the set $X(f, t_0, c_0)$ is connected.

10. Fukuhara theorems

Let I be a compact interval. We consider the Cauchy problem

$$x' = f(t, x),$$
 (10.1)

$$x(t_0) = c_0, (10.2)$$

where $f \in K(I \times \mathbb{R}^n, \mathbb{R}^n)$, $t_0 \in I$, $c_0 \in \mathbb{R}^n$. As $X(f, t_0, c_0)$, we denote the set of all non-extendable solutions of the problem (10.1), (10.2). For $M \subseteq \mathbb{R}^m$, we denote

$$X(f,t_0,M) = \bigcup_{c \in M} X(f,t_0,c).$$

Theorem 10.1 (1. Fukuhara). Let M be a closed and connected subset of \mathbb{R}^n . If, for any $c_0 \in M$, all non-extendable solution of the problem (10.1), (10.2) exists on I, then the set $X(f, t_0, M)$ is closed and connected in the space $C(I, \mathbb{R}^n)$. Moreover, if the set M is bounded, then the set $X(f, t_0, M)$ is compact.

Proof. The set $X(f, t_0, M)$ is closed in the space $C(I, \mathbb{R}^n)$. Indeed, it suffices to consider Theorem 8.1 and the fact that the set M is closed.

We show that the set $X(f,t_0,M)$ is connected. We suppose the opposite. Then, there exist non-empty closed sets $X_1, X_2 \subset X(f,t_0,M)$ such that

$$X_1 \cap X_2 = \emptyset, \qquad X_1 \cup X_2 = X(f, t_0, M)$$

Let $c_0 \in M$ be arbitrary. We denote

$$Y_i = X(f, t_0, c_0) \cap X_i, \quad i \in \{1, 2\}.$$

If $Y_1 \neq \emptyset$ and $Y_2 \neq \emptyset$, then Y_1 and Y_2 are non-empty closed subsets of $X(f, t_0, c_0)$ such that

$$Y_1 \cap Y_2 = \emptyset, \qquad Y_1 \cup Y_2 = X(f, t_0, c_0).$$

Next, from Theorem 9.1, it follows that the set $X(f,t_0,c_0)$ is a subset of X_i for some $i \in \{1,2\}$. We denote

$$M_i = \{c_0 \in M; X(f, t_0, c_0) \subseteq X_i\}, \qquad i \in \{1, 2\}.$$

Obviously, $M_1 \neq \emptyset$, $M_2 \neq \emptyset$, $M_1 \cap M_2 = \emptyset$, and $M_1 \cup M_2 = M$. We prove that the set M_1 is closed. Let $\{c_m\}_{m=1}^{\infty} \subseteq M_1$ be such that

$$\lim_{m\to\infty}c_m=c_0$$

Then, $c_0 \in M$ (*M* is closed) and there exists a sequence $\{x_m\}_{m=1}^{\infty} \subseteq X_1$ such that

$$x_m \in X(f, t_0, c_m), \qquad m \in \mathbb{N}$$

Without loss of generality (see Corollary 8.1), we can assume that

$$\lim_{m\to\infty}x_m(t)=\tilde{x}(t)$$

uniformly on I, where

$$\tilde{x} \in X(f, t_0, c_0).$$

Since the set X_1 is closed, we see that $\tilde{x} \in X_1$. Thus, $c_0 \in M_1$, which means that M_1 is closed.

Analogously, one can prove that M_2 is closed as well. Hence, we have proved that M_1, M_2 are non-empty closed subsets of the set M satisfying

$$M_1 \cap M_2 = \emptyset, \qquad M_1 \cup M_2 = M,$$

which is a contradiction with the assumption that M is connected. The contradiction means that the set $X(f, t_0, M)$ is connected.

Now, we consider that the set *M* is bounded. Let $\{x_m\}_{m=1}^{\infty}$ be a sequence of elements of $X(f, t_0, M)$. Then, there exists a sequence $\{c_m\}_{m=1}^{\infty} \subseteq M$ such that

$$x_m \in X(f, t_0, c_m), \qquad m \in \mathbb{N}$$

Due to the compactness of the set M, without loss of generality, we can assume that

$$\lim_{m\to\infty}c_m=c_0,$$

where $c_0 \in M$. From Corollary 8.1, it follows the existence of a subsequence $\{x_{m_k}\}_{k=1}^{\infty}$ of the sequence $\{x_m\}_{m=1}^{\infty}$ satisfying

$$\lim_{k\to\infty}x_{m_k}(t)=x(t)$$

uniformly on I, where

$$x \in X(f, t_0, c_0).$$

Since $c_0 \in M$, we see that

$$x \in X(f, t_0, M),$$

i.e., the set $X(f, t_0, M)$ is compact in the space $C(I, \mathbb{R}^n)$.

Let

$$X(f,t_0,c_0) \subseteq C(I,\mathbb{R}^n)$$

We denote

$$W(f,t_0,c_0) = \{(t,x(t)); t \in I, x \in X(f,t_0,c_0)\}$$

and, for $t \in I$, we put

$$W_t(f,t_0,c_0) = \{x \in \mathbb{R}^n; (t,x) \in W(f,t_0,c_0)\}.$$

Theorem 10.2 (2. Fukuhara). If any non-extendable solution of the problem (10.1), (10.2) exists on *I*, then, for all $\bar{t} \in I$ and $\bar{c} \in \partial W_{\bar{t}}(f, t_0, c_0)$, there exists $\bar{x} \in X(f, t_0, c_0)$ such that $\bar{x}(\bar{t}) = \bar{c}$ and the graph of the function \bar{x} between t_0 and \bar{t} is on the boundary of the set $W(f, t_0, c_0)$, i.e.,

$$(t,\bar{x}(t)) \in \partial W(f,t_0,c_0), \qquad \min\{t_0,\bar{t}\} \le t \le \max\{t_0,\bar{t}\}.$$

Proof. If we use the boundedness of the set $X(f, t_0, c_0)$ (see Theorem 4.1), then, without loss of generality, we can assume the existence of a function $h \in L(I, \mathbb{R}_+)$ for which

$$||f(t,x)|| \le h(t), \qquad t \in I, x \in \mathbb{R}^n$$

We prove the theorem in the case when $\bar{t} > t_0$ (in the second case, the proof is analogical). According to Theorem 9.1, $W_{\bar{t}}(f, t_0, c_0)$ is a connected and compact subset of \mathbb{R}^n . Therefore, there exists a sequence $\{c_k\}_{k=1}^{\infty} \subset \mathbb{R}^n$ such that

$$c_k \notin W_{\overline{t}}(f, t_0, c_0), \qquad k \in \mathbb{N},$$

and that

$$\lim_{k\to\infty}c_k=\bar{c}$$

For $k \in \mathbb{N}$, we consider the problem

$$x' = f(t, x),$$
 (10.1)

$$x(\bar{t}) = c_k. \tag{10.3}$$

We assume that

$$||f(t,x)|| \le h(t), \qquad t \in I, x \in \mathbb{R}^n.$$

Therefore, for all $k \in \mathbb{N}$, there exists a solution x_k of the problem (10.1), (10.3) on the interval *I*, where (see also Corollary 6.1)

$$x_k \in X(f, \bar{t}, c_k), \qquad k \in \mathbb{N}.$$

By contradiction, we show that

$$(t, x_k(t)) \notin W(f, t_0, c_0), \qquad t \in [t_0, \overline{t}], k \in \mathbb{N}.$$

If, for some $k \in \mathbb{N}$, there exists $t^* \in [t_0, \overline{t})$ such that

$$(t^{\star}, x_k(t^{\star})) \in W(f, t_0, c_0),$$

then one can find $\tilde{x} \in X(f, t_0, c_0)$ satisfying $\tilde{x}(t^*) = x_k(t^*)$. We denote

$$y(t) = \begin{cases} \tilde{x}(t), & t \in [\inf I, t^*]; \\ x_k(t), & t \in (t^*, \sup I] \end{cases}$$

Obviously,

$$y \in X(f, t_0, c_0).$$

Therefore,

$$y(\overline{t}) \in W_{\overline{t}}(f,t_0,c_0).$$

At the same time,

$$y(\bar{t}) = c_k \notin W_{\bar{t}}(f, t_0, c_0),$$

which is a contradiction.

Corollary 6.1 gives that all non-extendable solution of the problem

$$x' = f(t,x),$$
 (10.1)

$$x(\bar{t}) = \bar{c} \tag{10.4}$$

exists on the interval *I*. Therefore, with regard to Corollary 8.1, without loss of generality, we can assume that

$$\lim_{k\to\infty}x_k(t)=x_0(t)$$

uniformly on I, where

$$x_0 \in X(f, \bar{t}, \bar{c})$$

Let $s \in (t_0, \bar{t})$ be arbitrarily given. We consider the sets $W_s(f, t_0, c_0)$ and $W_s(f, \bar{t}, \bar{c})$. We have proved that $x_0(s)$ is not an inner point of the set $W_s(f, t_0, c_0)$, i.e.,

$$x_0(s) \notin W_s(f,t_0,c_0)$$
 or $x_0(s) \in \partial W_s(f,t_0,c_0)$.

But, it is valid that

$$W_s(f,t_0,c_0) \cap W_s(f,\bar{t},\bar{c}) \neq \emptyset.$$

Indeed, since $(\bar{t}, \bar{c}) \in W(f, t_0, c_0)$, there exists $\tilde{x} \in X(f, t_0, c_0)$ such that $\tilde{x}(\bar{t}) = \bar{c}$. This fact means that

 $\tilde{x} \in X(f, \bar{t}, \bar{c}).$

Thus,

$$\tilde{x}(s) \in W_s(f, t_0, c_0) \cap W_s(f, \bar{t}, \bar{c})$$

The sets $W_s(f, t_0, c_0)$ and $W_s(f, \bar{t}, \bar{c})$ are connected and closed and they are not disjoint. There exists a point belonging to the set $W_s(f, \bar{t}, \bar{c})$ which is not in the interior of the set $W_s(f, t_0, c_0)$. Therefore, there exists a point $c_s \in \mathbb{R}^n$ such that

$$c_s \in \partial W_s(f, t_0, c_0) \cap W_s(f, \bar{t}, \bar{c}).$$

Hence, there exists a solution \tilde{x}_1 of the problem (10.1), (10.2) passing through the point $[s, c_s]$ and, at the same time, there exists a solution \tilde{x}_2 of the problem (10.1), (10.4) passing through the point $[s, c_s]$. If we put

$$y(t) = \begin{cases} \tilde{x}_1(t), & t \in [\inf I, s]; \\ \tilde{x}_2(t), & t \in (s, \sup I], \end{cases}$$

then

$$y \in X(f,t_0,c_0), \qquad y(s) = c_s, \qquad y(\bar{t}) = \bar{c}.$$

We have proved that, for any $s \in (t_0, \overline{t})$, there exists $y \in X(f, t_0, c_0)$ such that

$$y(\bar{t}) = \bar{c}, \qquad (s, y(s)) \in \partial W(f, t_0, c_0).$$

Thus, for an arbitrary set

$$\{s_1,\ldots,s_m\}\subset(t_0,\overline{t}),$$

there exists $y_m \in X(f, t_0, c_0)$ with the property that

$$y_m(\bar{t}) = \bar{c}, \qquad (s_i, y_m(s_i)) \in \partial W(f, t_0, c_0), \qquad i \in \{1, \dots, m\}.$$
 (10.5)

Let $\{s_k\}_{k=1}^{\infty}$ be dense in (t_0, \bar{t}) . It is obvious that, for any $m \in \mathbb{N}$, there exists $y_m \in X(f, t_0, c_0)$ satisfying (10.5). Since the set $X(f, t_0, c_0)$ is compact in the space $C(I, \mathbb{R}^n)$, without loss of generality, we can assume that the sequence $\{y_m\}_{m=1}^{\infty}$ is convergent, i.e.,

$$\lim_{m \to \infty} y_m(t) = \bar{x}(t)$$

uniformly on *I*, where

$$\bar{x} \in X(f, t_0, c_0).$$

Using (10.5), one can easily verify that

$$(t,\bar{x}(t)) \in \partial W(f,t_0,c_0), \qquad t \in [t_0,\bar{t}].$$

The proof is complete.

REFERENCES

- [1] Y. Deng: Lectures, problems and solutions for ordinary differential equations. Hackensack: World Scientific, 2018.
- [2] S. P. Hastings: Classical methods in ordinary differential equations: with applications to boundary value problems. Providence: American Mathematical Society, 2012.
- [3] D. W. Jordan: Nonlinear ordinary differential equations—problems and solutions: a sourcebook for scientists and engineers. Oxford: Oxford University Press, 2007.
- [4] A. K. Nandakumaran, P. S. Datti, R. K. George: Ordinary differential equations: principles and applications. New York: Cambridge University Press, 2017.
- [5] C. E. Roberts: Ordinary differential equations: applications, models, and computing. Boca Raton: Chapman and Hall/CRC, 2010.
- [6] D.G. Schaeffer: Ordinary differential equations: basics and beyond. New York: Springer, 2016.