M7160 Obyčejné diferenciální rovnice II

M7160 Ordinary Differential Equations II

Michal Veselý
Text vychází z přednášek prof. Lomtatidze
Masarykova univerzita, Přírodovědecká fakulta
Ústav matematiky a statistiky

Se sazbou v systému LATEX pomáhali Jakub Juránek a Jiřina Šišoláková

[^0]
Contents

1 Auxiliary results 1
1.1 Notations 1
1.2 Carathéodory class 2
1.3 Absolute continuity 6
2 Existence of solutions 8
3 Extendability of solutions 13
4 Set of solutions 18
5 Upper and lower solutions 21
6 Wintner theorem 29
7 Uniqueness of solutions 31
8 Krein theorem 37
9 Kneser theorem 47
10 Fukuhara theorems 51

1. Auxiliary results

1.1 Notations

\mathbb{R}_{+}

$$
x=\left(x_{i}\right)_{i=1}^{m}
$$

\mathbb{R}^{m}
$B\left[x_{0}, r\right]$
the closed ball with the centre $x_{0} \in \mathbb{R}^{m}$ and the radius $r \geq 0$, i.e.,

$$
B\left[x_{0}, r\right]=\left\{x \in \mathbb{R}^{m} ;\left\|x-x_{0}\right\| \leq r\right\}
$$

$x \cdot y \quad$ the Euclidean inner product of vectors $x, y \in \mathbb{R}^{m}$
$x \leq y \quad$ the inequality between vectors $x=\left(x_{i}\right)_{i=1}^{m}, y=\left(y_{i}\right)_{i=1}^{m} \in \mathbb{R}^{m}$ such that $x_{i} \leq y_{i}, i \in\{1, \ldots, m\}$
$\operatorname{sgn} x \quad$ the vector $\left(\operatorname{sgn} x_{i}\right)_{i=1}^{m}$
$[a, b]$ the closed interval
$(a, b) \quad$ the open interval
$m(A) \quad$ the Lebesgue measure of a set $A \subseteq \mathbb{R}^{m}$
$\operatorname{int}(A) \quad$ the interior of a set $A \subseteq \mathbb{R}^{m}$
$\partial A \quad$ the boundary of a set $\bar{A} \subseteq \mathbb{R}^{m}$
$I \quad$ a real interval, which is not degenerated to a point
$C\left(I, \mathbb{R}^{m}\right) \quad$ the space of continuous and bounded vector functions $u: I \rightarrow \mathbb{R}^{m}$ with the norm

$$
\|u\|_{C}=\sup \{\|u(t)\| ; t \in I\}
$$

$C_{l o c}\left(I, \mathbb{R}^{m}\right) \quad$ the set of continuous vector functions $u: I \rightarrow \mathbb{R}^{m}$
$\tilde{C}\left([a, b], \mathbb{R}^{m}\right)$
$\tilde{C}_{l o c}\left(I, \mathbb{R}^{m}\right)$
$\tilde{C}^{n}([a, b], \mathbb{R})$
$\tilde{C}_{l o c}^{n}(I, \mathbb{R})$
$L\left(I, \mathbb{R}^{m}\right) \quad$ the space of all vector functions $u: I \rightarrow \mathbb{R}^{m}$ which are strongly integrable in the Lebesgue sense with the norm

$$
\|u\|_{L}=\int_{I}\|u(s)\| \mathrm{d} s
$$

$L_{l o c}\left(I, \mathbb{R}^{m}\right) \quad$ the set of all vector functions $u: I \rightarrow \mathbb{R}^{m}$ such that $u \in L\left([a, b], \mathbb{R}^{m}\right)$ for all interval $[a, b] \subseteq I$

Other notations are given by the range of considered values. For example, $L(I, D)$ is the set

$$
\left\{u: I \rightarrow D ; u \in L\left(I, \mathbb{R}^{m}\right)\right\},
$$

where $D \subseteq \mathbb{R}^{m}$.

1.2 Carathéodory class

Definition 1.1. Let $A \subseteq \mathbb{R}^{m}$ and $D \subseteq \mathbb{R}^{n}$ be given. We say that a vector function $g: I \times A \rightarrow D$ belongs to the Carathéodory class and we write $g \in K(I \times A, D)$ if the following conditions:

1. the function $g(t,-): A \rightarrow D$ is continuous for almost all $t \in I$;
2. the function $g(-, x): I \rightarrow D$ is measurable for all $x \in A$;
3. for all $r>0$, there exists $h_{r} \in L\left(I, \mathbb{R}_{+}\right)$such that

$$
\|g(t, x)\| \leq h_{r}(t), \quad t \in I, x \in A \cap B[0, r]
$$

are satisfied.
Definition 1.2. We say that a vector function $g: I \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is from the set

$$
K_{l o c}\left(I \times \mathbb{R}^{m}, \mathbb{R}^{n}\right)
$$

if

$$
g \in K\left([a, b] \times \mathbb{R}^{m}, \mathbb{R}^{n}\right)
$$

for all $[a, b] \subseteq I$.
Lemma 1.1. If $g \in K\left(I \times \mathbb{R}^{m}, \mathbb{R}^{n}\right)$ and if $x \in C_{\text {loc }}\left(I, \mathbb{R}^{m}\right)$, then the vector function

$$
t \mapsto g(t, x(t)), \quad t \in I,
$$

is measurable.
Lemma 1.2. Let $g \in K\left(I \times \mathbb{R}^{m}, \mathbb{R}^{n}\right)$ be given and let $A \subset \mathbb{R}^{m}$ be bounded. Let

$$
g^{\star}(t)=\sup \{\|g(t, x)\| ; x \in A\}, \quad t \in I .
$$

Then, $g^{\star} \in L\left(I, \mathbb{R}_{+}\right)$.
Lemma 1.3. Let $g \in K\left(I \times \mathbb{R}^{m}, \mathbb{R}^{n}\right)$. Then, there exists a function $h \in L\left(I, \mathbb{R}_{+}\right)$and a non-decreasing function $\varphi \in C_{\text {loc }}\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$such that

$$
\|g(t, x)\| \leq h(t) \varphi(\|x\|), \quad t \in I, x \in \mathbb{R}^{m} .
$$

Lemma 1.4. Let $g \in K\left(I \times \mathbb{R}^{m}, \mathbb{R}^{n}\right)$. For all $r>0$, there exists a function $h_{r} \in L\left(I, \mathbb{R}_{+}\right)$ and a non-decreasing function $\varphi_{r} \in C_{l o c}\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$such that $\varphi_{r}(0)=0$ and

$$
\|g(t, x)-g(t, y)\| \leq h_{r}(t) \varphi_{r}(\|x-y\|), \quad t \in I, x, y \in B[0, r] .
$$

Lemma 1.5. Let $g \in K\left(I \times \mathbb{R}^{m}, \mathbb{R}^{n}\right)$. The operator

$$
F(x)(-)=g(-, x(-)), \quad x \in C\left(I, \mathbb{R}^{m}\right)
$$

maps the space $C\left(I, \mathbb{R}^{m}\right)$ into the space $L\left(I, \mathbb{R}^{n}\right)$ continuously.
Proof. For all $x \in C\left(I, \mathbb{R}^{m}\right)$, the function $F(x): I \rightarrow \mathbb{R}^{n}$ is measurable (see Lemma 1.1). According to Definition 1.1, we have that $F(x) \in L\left(I, \mathbb{R}^{n}\right)$. Thus, the operator maps the space $C\left(I, \mathbb{R}^{m}\right)$ into the space $L\left(I, \mathbb{R}^{n}\right)$.

Let $\left\{x_{k}\right\}_{k=1}^{\infty} \subseteq C\left(I, \mathbb{R}^{m}\right)$ and $x \in C\left(I, \mathbb{R}^{m}\right)$ satisfy

$$
\lim _{k \rightarrow \infty}\left\|x_{k}-x\right\|_{C}=0
$$

Let $r>0$ be such that

$$
\left\|x_{k}(t)\right\| \leq r, \quad\|x(t)\| \leq r, \quad t \in I, k \in \mathbb{N} .
$$

Therefore, there exists a function $h_{r} \in L\left(I, \mathbb{R}_{+}\right)$such that (see Lemma 1.4)

$$
\left\|g\left(t, x_{k}(t)\right)-g(t, x(t))\right\| \leq h_{r}(t), \quad t \in I, k \in \mathbb{N}
$$

i.e.,

$$
\left\|F\left(x_{k}\right)(t)-F(x)(t)\right\| \leq h_{r}(t), \quad t \in I, k \in \mathbb{N}
$$

Since the function $g(t,-): \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is continuous for almost all $t \in I$, it holds

$$
\lim _{k \rightarrow \infty}\left[F\left(x_{k}\right)(t)-F(x)(t)\right]=0
$$

for almost all $t \in I$. By the Lebesgue theorem, we have

$$
\left\|F\left(x_{k}\right)-F(x)\right\|_{L}=\int_{I}\left\|F\left(x_{k}\right)(s)-F(x)(s)\right\| \mathrm{d} s \rightarrow 0 \text { as } k \rightarrow \infty .
$$

Thus, the operator F is continuous.
Lemma 1.6. Let $g \in K\left(I \times \mathbb{R}^{m}, \mathbb{R}^{n}\right)$. For arbitrary $r>0$, let a function $h_{r} \in L\left(I, \mathbb{R}_{+}\right)$ satisfy

$$
\|g(t, x)\| \leq h_{r}(t), \quad t \in I, x \in B[0, r] .
$$

Then, there exist functions $g_{k}: I \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ for $k \in \mathbb{N}$ such that:

1. all functions g_{k} have all partial derivatives with respect to the last m variables and all functions g_{k} and their partial derivatives belong to the class

$$
K\left(I \times \mathbb{R}^{m}, \mathbb{R}^{n}\right)
$$

2. for all $r>0$, the inequality

$$
\left\|g_{k}(t, x)\right\| \leq h_{r+1}(t), \quad t \in I, x \in B[0, r], k \in \mathbb{N},
$$

holds;
3. for almost all $t \in I$ and all $r>0$, it holds

$$
\lim _{k \rightarrow \infty} g_{k}(t, x)=g(t, x)
$$

uniformly in $B[0, r]$.

Remark 1.1. If

$$
\|g(t, x)\| \leq h(t), \quad t \in I, x \in \mathbb{R}^{m}
$$

then one can assume that $h_{r} \equiv h$ for all $r>0$.
Remark 1.2. The functions g_{k} from the statement of Lemma 1.6 have continuous partial derivatives. Therefore, they are locally Lipschitz, i.e., for all $r>0$ and $k \in \mathbb{N}$, there exists a function $l_{r, k} \in L\left(I, \mathbb{R}_{+}\right)$such that

$$
\left\|g_{k}(t, x)-g_{k}(t, y)\right\| \leq l_{r, k}(t)\|x-y\|, \quad t \in I, x, y \in B[0, r] .
$$

Remark 1.3. The functions g_{k} from Lemma 1.6 can be chosen in such a way that they have the following property. For all $r>0$, there exists a function $\omega_{r} \in K\left(I \times \mathbb{R}_{+}, \mathbb{R}_{+}\right)$ which is non-decreasing with respect to the second variable, $\omega_{r}(-, 0) \equiv 0$, and

$$
\left\|g_{k}(t, x)-g_{k}(t, y)\right\| \leq \omega_{r}(t,\|x-y\|)+\omega_{r}\left(t, \frac{1}{k}\right), \quad t \in I, x, y \in B[0, r], k \in \mathbb{N} .
$$

Proof of Lemma 1.6. Let $\varphi_{k}: \mathbb{R}^{m} \rightarrow \mathbb{R}_{+}$for $k \in \mathbb{N}$ be functions satisfying the following conditions:
a) the functions φ_{k} have continuous all partial derivatives on \mathbb{R}^{m};
b) the functions φ_{k} satisfy

$$
\varphi_{k}(x)=0, \quad x \in \mathbb{R}^{m},\|x\| \geq \frac{1}{k}, k \in \mathbb{N} ;
$$

c) it holds

$$
\int_{\mathbb{R}^{m}} \varphi_{k}(x) \mathrm{d} x=1, \quad k \in \mathbb{N} .
$$

Such functions can be constructed as follows. Let

$$
\varphi(s)= \begin{cases}\mathrm{e}^{-\frac{1}{1-s}}, & 0 \leq s<1 \\ 0, & s \geq 1\end{cases}
$$

Let $\rho_{k}>0, k \in \mathbb{N}$, be such that

$$
\rho_{k} \int_{\mathbb{R}^{m}} \varphi\left(m^{2} k^{2} x \cdot x\right) \mathrm{d} x=1
$$

We put

$$
\varphi_{k}(x)=\rho_{k} \varphi\left(m^{2} k^{2} x \cdot x\right), \quad x \in \mathbb{R}^{m}, k \in \mathbb{N} .
$$

Obviously, a) and c) are valid. It is known that

$$
\|x\|^{2} \leq m^{2}(x \cdot x), \quad x \in \mathbb{R}^{m} .
$$

If

$$
\|x\| \geq \frac{1}{k}
$$

then

$$
m^{2} k^{2}(x \cdot x) \geq 1
$$

and, consequently, $\varphi_{k}(x)=0$. Therefore, b$)$ is valid as well.
We define

$$
g_{k}(t, x)=\int_{\mathbb{R}^{m}} \varphi_{k}(y-x) g(t, y) \mathrm{d} y, \quad t \in I, x \in \mathbb{R}^{m}, k \in \mathbb{N} .
$$

The functions g_{k} satisfy the condition 1 . Let $r>0$ and $x \in B[0, r]$ be arbitrarily given. We have

$$
g_{k}(t, x)=\int_{B[0, r+1]} \varphi_{k}(y-x) g(t, y) \mathrm{d} y, \quad t \in I, k \in \mathbb{N} .
$$

We obtain

$$
\begin{aligned}
\left\|g_{k}(t, x)\right\| & \leq \int_{B[0, r+1]} \varphi_{k}(y-x)\|g(t, y)\| \mathrm{d} y \\
& \leq h_{r+1}(t) \int_{B[0, r+1]} \varphi_{k}(y-x) \mathrm{d} y \\
& \leq h_{r+1}(t) \int_{\mathbb{R}^{m}} \varphi_{k}(y) \mathrm{d} y=h_{r+1}(t), \quad t \in I, k \in \mathbb{N},
\end{aligned}
$$

which gives the condition 2.
It remains to prove the condition 3 . Let $r>0$ and $x \in B[0, r]$ be arbitrarily given. Since

$$
\int_{\mathbb{R}^{m}} \varphi_{k}(y-x) \mathrm{d} y=1, \quad k \in \mathbb{N}
$$

we have

$$
g(t, x)=g(t, x) \int_{\mathbb{R}^{m}} \varphi_{k}(y-x) \mathrm{d} y=\int_{\mathbb{R}^{m}} \varphi_{k}(y-x) g(t, x) \mathrm{d} y, \quad t \in I, k \in \mathbb{N} .
$$

Therefore,

$$
\begin{align*}
g_{k}(t, x)-g(t, x) & =\int_{\mathbb{R}^{m}} \varphi_{k}(y-x)[g(t, y)-g(t, x)] \mathrm{d} y \\
& =\int_{B\left[x, \frac{1}{k}\right]} \varphi_{k}(y-x)[g(t, y)-g(t, x)] \mathrm{d} y, \quad t \in I, k \in \mathbb{N} . \tag{1.1}
\end{align*}
$$

Due to Lemma 1.4, there exists a function $\omega_{r+1} \in K\left(I \times \mathbb{R}_{+}, \mathbb{R}_{+}\right)$which is non-decreasing in the second variable, $\omega_{r+1}(-, 0) \equiv 0$, and

$$
\left\|g\left(t, y_{1}\right)-g\left(t, y_{2}\right)\right\| \leq \omega_{r+1}\left(t,\left\|y_{1}-y_{2}\right\|\right), \quad t \in I, y_{1}, y_{2} \in B[0, r+1]
$$

Therefore,

$$
\|g(t, x)-g(t, y)\| \leq \omega_{r+1}\left(t, \frac{1}{k}\right), \quad t \in I, y \in B\left[x, \frac{1}{k}\right] .
$$

From (1.1), we have

$$
\begin{aligned}
\left\|g_{k}(t, x)-g(t, x)\right\| & \leq \int_{B\left[x, \frac{1}{k}\right]} \varphi_{k}(y-x)\|g(t, y)-g(t, x)\| \mathrm{d} y \\
& \leq \omega_{r+1}\left(t, \frac{1}{k}\right) \int_{B\left[x, \frac{1}{k}\right]} \varphi_{k}(y-x) \mathrm{d} y \\
& \leq \omega_{r+1}\left(t, \frac{1}{k}\right) \int_{\mathbb{R}^{m}} \varphi_{k}(y-x) \mathrm{d} y=\omega_{r+1}\left(t, \frac{1}{k}\right), \quad t \in I, k \in \mathbb{N} .
\end{aligned}
$$

Thus, 3. is valid.

1.3 Absolute continuity

Definition 1.3. We say that a function $x:[a, b] \rightarrow \mathbb{R}^{m}$ is absolutely continuous on $[a, b]$ if, for every $\varepsilon>0$, there exists $\delta>0$ such that, for any finite system of pairwise disjoint subintervals

$$
\left(a_{k}, b_{k}\right) \subseteq[a, b], \quad k \in\{1, \ldots, n\},
$$

satisfying

$$
\sum_{k=1}^{n}\left(b_{k}-a_{k}\right)<\delta
$$

it holds

$$
\sum_{k=1}^{n}\left\|x\left(b_{k}\right)-x\left(a_{k}\right)\right\|<\varepsilon
$$

We recall that the set of all absolutely continuous functions $x:[a, b] \rightarrow \mathbb{R}^{m}$ is denoted by

$$
\tilde{C}\left([a, b], \mathbb{R}_{m}\right) .
$$

Theorem 1.1. A function $x:[a, b] \rightarrow \mathbb{R}^{m}$ is called absolutely continuous if and only if the following conditions:

1. the function x is differentiable almost everywhere in $[a, b]$;
2. the derivative

$$
x^{\prime} \in L\left([a, b], \mathbb{R}^{m}\right)
$$

3. it holds

$$
\int_{\alpha}^{\beta} x^{\prime}(s) \mathrm{d} s=x(\beta)-x(\alpha), \quad \alpha, \beta \in[a, b],
$$

are satisfied.

Remark 1.4. Let $t_{0} \in[a, b]$ be arbitrarily given. If $h \in L\left([a, b], \mathbb{R}^{m}\right)$, then the function $x:[a, b] \rightarrow \mathbb{R}^{m}$ given by

$$
x(t)=\int_{t_{0}}^{t} h(s) \mathrm{d} s, \quad t \in[a, b],
$$

is absolutely continuous and $x^{\prime}(t)=h(t)$ for almost all $t \in[a, b]$.

2. Existence of solutions

Let us consider the equation

$$
\begin{equation*}
x^{\prime}=f(t, x) \tag{2.1}
\end{equation*}
$$

where $f \in K_{\text {loc }}\left(I \times \mathbb{R}^{n}, \mathbb{R}^{n}\right)$.
Definition 2.1. Let $I_{0} \subseteq I$ be an interval. We say that a function $x: I_{0} \rightarrow \mathbb{R}^{n}$ is a solution of Eq. (2.1) if:

1. $x \in \tilde{C}_{l o c}\left(I_{0}, \mathbb{R}^{n}\right)$;
2. it holds

$$
x^{\prime}(t)=f(t, x(t))
$$

for almost all $t \in I_{0}$.
Let $t_{0} \in I_{0}, c_{0} \in \mathbb{R}^{n}$. A solution $x: I_{0} \rightarrow \mathbb{R}^{n}$ of Eq. (2.1) satisfying the condition

$$
\begin{equation*}
x\left(t_{0}\right)=c_{0} \tag{2.2}
\end{equation*}
$$

is called the solution of the Cauchy problem (2.1), (2.2).
Definition 2.2. Let A, B be sets of functions $x: I \rightarrow \mathbb{R}^{n}$ and let $t_{0} \in I$. An operator $T: A \rightarrow B$ is called t_{0}-Volterra if, for all $x, y \in A$ and all $t \in I$ such that

$$
x(s)=y(s), \quad \min \left\{t_{0}, t\right\} \leq s \leq \max \left\{t_{0}, t\right\},
$$

it holds

$$
T(x)(t)=T(y)(t) .
$$

Lemma 2.1. Let $t_{0} \in[a, b], c_{0} \in \mathbb{R}^{n}, r>0$, and let

$$
T: C\left([a, b], B\left[c_{0}, r\right]\right) \rightarrow C\left([a, b], B\left[c_{0}, r\right]\right)
$$

be a continuous t_{0}-Volterra operator such that $T\left(c_{0}\right)\left(t_{0}\right)=c_{0}$. Let there exist a function $\omega \in C\left([0, b-a], \mathbb{R}_{+}\right)$such that $\omega(0)=0$ and that

$$
\|T(x)(t)-T(x)(s)\| \leq \omega(|t-s|), \quad t, s \in[a, b], x \in C\left([a, b], B\left[c_{0}, r\right]\right)
$$

Then, the operator T has at least one fixed point, i.e., there exists a function

$$
x \in C\left([a, b], B\left[c_{0}, r\right]\right)
$$

such that

$$
T(x)(t)=x(t), \quad t \in[a, b] .
$$

Proof. Without loss of generality, we can assume that the function ω is non-decreasing. We denote

$$
I_{k, j}=\left[t_{0}-\frac{j\left(t_{0}-a\right)}{k}, t_{0}+\frac{j\left(b-t_{0}\right)}{k}\right], \quad j \in\{1, \ldots, k-1\}, k \in \mathbb{N} .
$$

For $k \in \mathbb{N}$ and $t \in[a, b]$, we define

$$
s_{k}(t)= \begin{cases}t+\frac{t_{0}-a}{k}, & t<t_{0}-\frac{t_{0}-a}{k} \\ t_{0}, & t \in I_{k, 1} ; \\ t-\frac{b-t_{0}}{k}, & t>t_{0}+\frac{b-t_{0}}{k}\end{cases}
$$

Obviously, the functions $s_{k}:[a, b] \rightarrow[a, b], k \in \mathbb{N}$, are continuous and

$$
\left|s_{k}(t)-s_{k}(\tau)\right| \leq|t-\tau|, \quad t, \tau \in[a, b], k \in \mathbb{N} .
$$

For $t \in[a, b]$, we denote

$$
y_{k, 0}(t)=c_{0}
$$

and

$$
y_{k, j}(t)=T\left(y_{k, j-1}\right)\left(s_{k}(t)\right), \quad j \in\{1, \ldots, k-1\}, k \in \mathbb{N} .
$$

We show that

$$
\begin{equation*}
y_{k, j}(t)=y_{k, j-1}(t), \quad t \in I_{k, j}, j \in\{1, \ldots, k-1\}, k \geq 2, k \in \mathbb{N} . \tag{2.3}
\end{equation*}
$$

For an arbitrarily given integer $k \geq 2$, using the induction, we prove that the identity

$$
\begin{equation*}
y_{k, j}(t)=y_{k, j-1}(t), \quad t \in I_{k, j} \tag{2.4}
\end{equation*}
$$

is valid for all $j \in\{1, \ldots, k-1\}$. Obviously,

$$
y_{k, 1}(t)=T\left(y_{k, 0}\right)\left(s_{k}(t)\right)=T\left(c_{0}\right)\left(s_{k}(t)\right)=T\left(c_{0}\right)\left(t_{0}\right)=c_{0}=y_{k, 0}(t), \quad t \in I_{k, 1} .
$$

We assume that (2.4) is valid for some $j \in\{1, \ldots, k-2\}$. We show that (2.4) is also valid for $j+1$. If $t \in I_{k, j+1}$, then $s_{k}(t) \in I_{k, j}$. Therefore,

$$
y_{k, j+1}(t)=T\left(y_{k, j}\right)\left(s_{k}(t)\right)=T\left(y_{k, j-1}\right)\left(s_{k}(t)\right)=y_{k, j}(t), \quad t \in I_{k, j+1} .
$$

Hence, (2.4) is valid for all $j \in\{1, \ldots, k-1\}$. By the induction, we have proved (2.3)
We denote

$$
x_{k}(t)=y_{k, k-1}(t), \quad t \in[a, b], k \in \mathbb{N} .
$$

One can see that

$$
x_{k} \in C\left([a, b], B\left[c_{0}, r\right]\right), \quad k \in \mathbb{N},
$$

and that (see (2.3))

$$
x_{k}(t)=y_{k, k-2}(t), \quad t \in I_{k, k-1}, k \geq 2, k \in \mathbb{N} .
$$

Since

$$
s_{k}(t) \in I_{k, k-1}, \quad t \in[a, b], k \geq 2, k \in \mathbb{N}
$$

we obtain

$$
\begin{equation*}
x_{k}(t)=T\left(y_{k, k-2}\right)\left(s_{k}(t)\right)=T\left(x_{k}\right)\left(s_{k}(t)\right), \quad t \in[a, b], k \geq 2, k \in \mathbb{N} . \tag{2.5}
\end{equation*}
$$

Next, we get

$$
\begin{aligned}
\left\|x_{k}(t)-x_{k}(\tau)\right\| & =\left\|T\left(x_{k}\right)\left(s_{k}(t)\right)-T\left(x_{k}\right)\left(s_{k}(\tau)\right)\right\| \\
& \leq \omega\left(\left|s_{k}(t)-s_{k}(\tau)\right|\right) \\
& \leq \omega(|t-\tau|), \quad t, \tau \in[a, b], k \geq 2, k \in \mathbb{N} .
\end{aligned}
$$

Therefore, the functions $x_{k}, k \geq 2, k \in \mathbb{N}$, are uniformly bounded and equicontinuous. We can use the Arzelà-Ascoli theorem.

Without loss of generality, we can assume that

$$
\lim _{k \rightarrow \infty} x_{k}(t)=x(t)
$$

uniformly for $t \in[a, b]$, where

$$
x \in C\left([a, b], B\left[c_{0}, r\right]\right) .
$$

We have

$$
\begin{aligned}
\left\|T\left(x_{k}\right)\left(s_{k}(t)\right)-T(x)(t)\right\| & \leq\left\|T\left(x_{k}\right)\left(s_{k}(t)\right)-T\left(x_{k}\right)(t)\right\|+\left\|T\left(x_{k}\right)(t)-T(x)(t)\right\| \\
& \leq \omega\left(\left|s_{k}(t)-t\right|\right)+\left\|T\left(x_{k}\right)(t)-T(x)(t)\right\|
\end{aligned}
$$

for all $t \in[a, b], k \in \mathbb{N}$. Since the operator T is continuous, $\omega(0)=0$, and since

$$
\lim _{k \rightarrow \infty} s_{k}(t)=t, \quad t \in[a, b],
$$

we obtain (see (2.5))

$$
x(t)=\lim _{k \rightarrow \infty} T\left(x_{k}\right)\left(s_{k}(t)\right)=T(x)(t), \quad t \in[a, b],
$$

i.e., x is a fixed point of the operator T.

Theorem 2.1. Let $r>0$ and $[a, b] \subseteq I$ be such that $t_{0} \in[a, b]$ and

$$
\left|\int_{t_{0}}^{t} f_{c_{0}}^{\star}(s, r) \mathrm{d} s\right| \leq r, \quad t \in[a, b],
$$

where

$$
f_{c_{0}}^{\star}(t, r)=\sup \left\{\|f(t, x)\| ; x \in B\left[c_{0}, r\right]\right\}, \quad t \in[a, b] .
$$

Then, the problem (2.1), (2.2) has a solution on $[a, b]$.
Proof. The problem (2.1), (2.2) is equivalent with the equation

$$
x(t)=c_{0}+\int_{t_{0}}^{t} f(\tau, x(\tau)) \mathrm{d} \tau, \quad t \in[a, b] .
$$

Especially, if $x \in C\left([a, b], \mathbb{R}^{n}\right)$ satisfies this integral equation, then $x \in \tilde{C}\left([a, b], \mathbb{R}^{n}\right)$. Therefore, it suffices to prove that there exists a function $x \in C\left([a, b], \mathbb{R}^{n}\right)$ satisfying this integral equation.

We define

$$
T(x)(t)=c_{0}+\int_{t_{0}}^{t} f(\tau, x(\tau)) \mathrm{d} \tau, \quad t \in[a, b], x \in C\left([a, b], B\left[c_{0}, r\right]\right)
$$

It is obvious that the operator

$$
T: C\left([a, b], B\left[c_{0}, r\right]\right) \rightarrow C\left([a, b], \mathbb{R}^{n}\right)
$$

is t_{0}-Volterra. According to Lemma 1.5, the operator T is continuous. For

$$
x \in C\left([a, b], B\left[c_{0}, r\right]\right),
$$

we have

$$
\left\|T(x)(t)-c_{0}\right\| \leq\left|\int_{t_{0}}^{t} f_{c_{0}}^{\star}(\tau, r) \mathrm{d} \tau\right| \leq r, \quad t \in[a, b]
$$

i.e.,

$$
T(x)(t) \in B\left[c_{0}, r\right], \quad t \in[a, b] .
$$

Thus,

$$
T: C\left([a, b], B\left[c_{0}, r\right]\right) \rightarrow C\left([a, b], B\left[c_{0}, r\right]\right)
$$

Further,

$$
\|T(x)(t)-T(x)(s)\| \leq\left|\int_{s}^{t} f_{c_{0}}^{\star}(\tau, r) \mathrm{d} \tau\right|, \quad s, t \in[a, b], x \in C\left([a, b], B\left[c_{0}, r\right]\right) .
$$

We denote

$$
\omega(\boldsymbol{\delta})=\max \left\{\int_{t}^{t+\delta} f_{c_{0}}^{\star}(\tau, r) \mathrm{d} \tau ; t \in[a, b-\delta]\right\}, \quad \delta \in[0, b-a] .
$$

The function $\omega:[0, b-a] \rightarrow \mathbb{R}_{+}$is continuous, $\omega(0)=0$, and

$$
\|T(x)(t)-T(x)(s)\| \leq \omega(|t-s|), \quad s, t \in[a, b], x \in C\left([a, b], B\left[c_{0}, r\right]\right)
$$

Due to Lemma 2.1, there exists a function $x \in C\left([a, b], B\left[c_{0}, r\right]\right)$ with the required property.

Corollary 2.1. For arbitrary $t_{0} \in I$ and $c_{0} \in \mathbb{R}^{n}$, there exists an interval $I_{0} \subseteq I$ such that $t_{0} \in I_{0}$ and the problem (2.1), (2.2) has at least one solution on the interval I_{0}. Moreover, if t_{0} is an interior point of I, then the interval I_{0} can be chosen so that t_{0} is an interior point of I_{0}.

Proof. The statement of the corollary follows from Theorem 2.1.
Now, we consider the equation

$$
\begin{equation*}
u^{(n)}=f\left(t, u, u^{\prime}, \ldots, u^{(n-1)}\right), \tag{2.6}
\end{equation*}
$$

where $f \in K_{l o c}\left(I \times \mathbb{R}^{n}, \mathbb{R}\right)$.
Definition 2.3. Let $I_{0} \subseteq I$ be an interval. We say that a function $u: I_{0} \rightarrow \mathbb{R}$ is a solution of Eq. (2.6) on I_{0} if

1. $u \in \tilde{C}_{\text {loc }}^{n-1}\left(I_{0}, \mathbb{R}\right)$;
2. it holds

$$
u^{(n)}(t)=f\left(t, u(t), u^{\prime}(t), \ldots, u^{(n-1)}(t)\right)
$$

for almost all $t \in I_{0}$.

Let $t_{0} \in I, c_{i} \in \mathbb{R}, i \in\{0,1, \ldots, n-1\}$. A solution $u: I_{0} \rightarrow \mathbb{R}$ of Eq. (2.6) satisfying the condition

$$
\begin{equation*}
u^{(i)}\left(t_{0}\right)=c_{i}, \quad i \in\{0,1, \ldots, n-1\}, \tag{2.7}
\end{equation*}
$$

is called the solution of the Cauchy problem (2.6), (2.7).
Corollary 2.2. For arbitrary $t_{0} \in I$ and $c_{i} \in \mathbb{R}, i \in\{0,1, \ldots, n-1\}$, there exists an interval $I_{0} \subseteq I$ such that $t_{0} \in I_{0}$ and that the problem (2.6), (2.7) has at least one solution on I_{0}. Moreover, if t_{0} is an interior point of I, then the interval I_{0} can be chosen so that t_{0} is an interior point of I_{0}.

Proof. The statement of the corollary follows from Corollary 2.1.

3. Extendability of solutions

We consider the Cauchy problem

$$
\begin{align*}
x^{\prime} & =f(t, x), \tag{3.1}\\
x\left(t_{0}\right) & =c_{0}, \tag{3.2}
\end{align*}
$$

where $f \in K_{\text {loc }}\left(I \times \mathbb{R}^{n}, \mathbb{R}^{n}\right)$, $t_{0} \in I, c_{0} \in \mathbb{R}^{n}$.
Definition 3.1. Let x be a solution of Eq. (3.1) on an interval $(a, b) \subseteq I$. We say that the solution x is right-extendable if there exist $b_{1}>b, b_{1} \in I$, and a solution y of Eq. (3.1) on the interval $\left(a, b_{1}\right) \subseteq I$ such that $y(t)=x(t), t \in(a, b)$. The solution y is called a right-extension of the solution x. If any right-extension of the solution x does not exist, then we say that the solution x is not right-extendable.

Analogously, left-extendable solutions (and solutions which are not left-extendable) are defined. We say that a solution x is extendable if it is right-extendable or left-extendable. In the opposite case, we say that x is non-extendable.
Lemma 3.1. Let $(\alpha, \beta) \subseteq I, r>0, \delta \geq 0, c \in \mathbb{R}^{n}$, and let

$$
\delta+\int_{\alpha}^{\beta} f_{c}^{\star}(\tau, r) \mathrm{d} \tau<r
$$

where

$$
f_{c}^{\star}(t, r)=\sup \{\|f(t, x)\| ; x \in B[c, r]\}, \quad t \in(\alpha, \beta)
$$

Let x be a solution of Eq. (3.1) on (α, β) satisfying

$$
\inf \{\|x(t)-c\| ; t \in(\alpha, \beta)\} \leq \delta
$$

Then,

$$
\|x(t)-c\|<r, \quad t \in(\alpha, \beta)
$$

and the limits

$$
\lim _{t \rightarrow \alpha^{+}} x(t), \quad \lim _{t \rightarrow \beta^{-}} x(t)
$$

exist.
Proof. We prove the lemma by contradiction. There exists a point $t_{0} \in(\alpha, \beta)$ such that

$$
\begin{equation*}
\left\|x\left(t_{0}\right)-c\right\|+\int_{\alpha}^{\beta} f_{c}^{\star}(\tau, r) \mathrm{d} \tau<r . \tag{3.3}
\end{equation*}
$$

In addition, there exists $\left[\alpha_{0}, \beta_{0}\right] \subseteq(\alpha, \beta)$ such that $t_{0} \in\left[\alpha_{0}, \beta_{0}\right]$ and that

$$
\begin{equation*}
\max \left\{\|x(t)-c\| ; t \in\left[\alpha_{0}, \beta_{0}\right]\right\}=r \tag{3.4}
\end{equation*}
$$

From (3.1), we obtain

$$
x(t)-c=x\left(t_{0}\right)-c+\int_{t_{0}}^{t} f(s, x(s)) \mathrm{d} s, \quad t \in(\alpha, \beta) .
$$

Therefore,

$$
\begin{equation*}
\|x(t)-c\| \leq\left\|x\left(t_{0}\right)-c\right\|+\int_{\alpha_{0}}^{\beta_{0}} f_{c}^{\star}(s, r) \mathrm{d} s, \quad t \in\left[\alpha_{0}, \beta_{0}\right] . \tag{3.5}
\end{equation*}
$$

From (3.3) and (3.5), it follows that

$$
\|x(t)-c\|<r, \quad t \in\left[\alpha_{0}, \beta_{0}\right] .
$$

This is a contradiction with (3.4).
It remains to prove the existence of the limits. Since

$$
f(-, x(-)) \in L\left((\alpha, \beta), \mathbb{R}^{n}\right)
$$

the existence of the limits comes from

$$
x(t)=x\left(t_{0}\right)+\int_{t_{0}}^{t} f(s, x(s)) \mathrm{d} s, \quad t \in(\alpha, \beta) .
$$

Theorem 3.1. Let x be a solution of Eq. (3.1) on an interval $(a, b) \subseteq I$. Then, x is right-extendable if and only if $b<\sup I$ and

$$
\liminf _{t \rightarrow b^{-}}\|x(t)\|<\infty .
$$

Proof. Let $b<\sup I$ and let

$$
\lim _{t \rightarrow b^{-}}\|x(t)\| \neq \infty
$$

There exists $c \in \mathbb{R}^{n}$ such that

$$
\liminf _{t \rightarrow b^{-}}\|x(t)-c\|=0
$$

We put $r=1, \delta=0$, and $\beta=b$. Let $\alpha \in(a, \beta)$ be such that the conditions of Lemma 3.1 are satisfied. Hence,

$$
\lim _{t \rightarrow b^{-}} x(t)=c .
$$

We consider the Cauchy problem

$$
x^{\prime}=f(t, x), \quad x(b)=c .
$$

From Corollary 2.1, it follows the existence of $b_{1}>b, b_{1}<\sup I$, and the existence of a solution \bar{x} of the considered Cauchy problem on the interval $\left[b, b_{1}\right]$. We put

$$
y(t)= \begin{cases}x(t), & t \in(a, b) ; \\ \bar{x}(t), & t \in\left[b, b_{1}\right) .\end{cases}
$$

Obviously,

$$
y \in \tilde{C}_{l o c}\left(\left(a, b_{1}\right), \mathbb{R}^{n}\right)
$$

and y is a solution of Eq. (3.1) on the interval $\left(a, b_{1}\right)$, i.e., y is a right-extension of the solution x.

We consider the opposite implication. If x is a right-extendable solution and if $y:\left(a, b_{1}\right) \rightarrow \mathbb{R}^{n}$ is a right-extension of x, then

$$
b<b_{1} \leq \sup I
$$

and

$$
\liminf _{t \rightarrow b^{-}}\|x(t)\|=\|y(b)\|<\infty .
$$

Theorem 3.2. Let x be a solution of Eq. (3.1) on an interval $(a, b) \subseteq I$. Then, x is left-extendable if and only if $a>\inf I$ and

$$
\liminf _{t \rightarrow a^{+}}\|x(t)\|<\infty .
$$

Proof. Theorem 3.2 can be proved analogously as Theorem 3.1.
Theorem 3.3. The problem (3.1), (3.2) has a non-extendable solution.
Proof. We suppose that $t_{0}<\sup I$. We show that the problem (3.1), (3.2) has a solution which is not right-extendable. Similarly, one can show the second case.

We consider an increasing sequence $\left\{b_{k}\right\}_{k=1}^{\infty} \subset\left(t_{0}, \sup I\right)$ with the property that

$$
\lim _{k \rightarrow \infty} b_{k}=\sup I
$$

For $c \in \mathbb{R}^{n}$ and $r>0$, we define

$$
f_{c}^{\star}(t, r)=\sup \{\|f(t, x)\| ; x \in B[c, r]\}, \quad t \in I .
$$

Obviously, there exists $t_{1} \in\left(t_{0}, b_{1}\right]$ such that

$$
\int_{t_{0}}^{t_{1}} f_{c_{0}}^{\star}(s, 1) \mathrm{d} s \leq 1
$$

According to Theorem 2.1, the problem (3.1), (3.2) has a solution x_{0} on the interval $\left[t_{0}, t_{1}\right]$. We define

$$
c_{1}=x_{0}\left(t_{1}\right)
$$

and

$$
r_{1}=\max \left\{\left\|x_{0}(t)-c_{0}\right\| ; t \in\left[t_{0}, t_{1}\right]\right\} .
$$

If

$$
\int_{t_{1}}^{b_{2}} f_{c_{0}}^{\star}\left(s, r_{1}+1\right) \mathrm{d} s \leq 1
$$

then we put $t_{2}=b_{2}$. Otherwise, we choose $t_{2} \in\left(t_{1}, b_{2}\right)$ such that

$$
\int_{t_{1}}^{t_{2}} f_{c_{0}}^{\star}\left(s, r_{1}+1\right) \mathrm{d} s=1
$$

We have

$$
\int_{t_{1}}^{t_{2}} f_{c_{1}}^{\star}(s, 1) \mathrm{d} s \leq \int_{t_{1}}^{t_{2}} f_{c_{0}}^{\star}\left(s, r_{1}+1\right) \mathrm{d} s \leq 1 .
$$

According to Theorem 2.1, the problem

$$
x^{\prime}=f(t, x), \quad x\left(t_{1}\right)=c_{1}
$$

has a solution x_{1} on the interval $\left[t_{1}, t_{2}\right]$.
We continue in this process. We obtain the sequences $\left\{t_{k}\right\}_{k=1}^{\infty},\left\{x_{k}\right\}_{k=0}^{\infty},\left\{c_{k}\right\}_{k=1}^{\infty}$, $\left\{r_{k}\right\}_{k=1}^{\infty}$ for which:

1. $t_{k} \in\left(t_{k-1}, b_{k}\right], k \in \mathbb{N}$;
2. $c_{k}=x_{k-1}\left(t_{k}\right), k \in \mathbb{N}$;
3. x_{k} for $k \in \mathbb{N} \cup\{0\}$ is a solution of the problem

$$
x^{\prime}=f(t, x), \quad x\left(t_{k}\right)=c_{k}
$$

on the interval $\left[t_{k}, t_{k+1}\right]$;
4. it holds

$$
r_{k}=\max \left\{\left\|x_{k-1}(t)-c_{0}\right\| ; t \in\left[t_{k-1}, t_{k}\right]\right\}, \quad k \in \mathbb{N}
$$

5. if

$$
\int_{t_{k}}^{t_{k+1}} f_{c_{0}}^{\star}\left(s, r_{k}+1\right) \mathrm{d} s<1
$$

for some $k \in \mathbb{N}$, then $t_{k+1}=b_{k+1}$.
We put

$$
b=\lim _{k \rightarrow \infty} t_{k}
$$

and

$$
x(t)=x_{k}(t), \quad t \in\left[t_{k}, t_{k+1}\right), k \in \mathbb{N} \cup\{0\} .
$$

Considering 3., we see that x is a solution of the problem (3.1), (3.2) on the interval $\left[t_{0}, b\right)$.

By contradiction, we show that the solution x is not right-extendable. We assume that the finite limit

$$
\lim _{t \rightarrow b^{-}} x(t)
$$

exists and that

$$
b<\sup I .
$$

The function x is bounded, i.e.,

$$
r=\sup \left\{\left\|x(t)-c_{0}\right\| ; t \in\left[t_{0}, b\right)\right\}<\infty .
$$

According to 4 .,

$$
r_{k} \leq r, \quad k \in \mathbb{N}
$$

Thus,

$$
\int_{t_{k}}^{t_{k+1}} f_{c_{0}}^{\star}\left(s, r_{k}+1\right) \mathrm{d} s \leq \int_{t_{k}}^{b} f_{c_{0}}^{\star}(s, r+1) \mathrm{d} s \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty .
$$

Therefore, there exists $k_{0} \in \mathbb{N}$ such that

$$
\int_{t_{k}}^{t_{k+1}} f_{c_{0}}^{\star}\left(s, r_{k}+1\right) \mathrm{d} s<1, \quad k \geq k_{0}, k \in \mathbb{N} .
$$

Now, from 5., it follows that

$$
t_{k+1}=b_{k+1}, \quad k \geq k_{0}, k \in \mathbb{N}
$$

Hence,

$$
b=\sup I
$$

The obtained contradiction proves that the solution x is not right-extendable.

4. Set of solutions

We consider the Cauchy problem

$$
\begin{align*}
x^{\prime} & =f(t, x), \tag{4.1}\\
x\left(t_{0}\right) & =c_{0}, \tag{4.2}
\end{align*}
$$

where $f \in K_{\text {loc }}\left(I \times \mathbb{R}^{n}, \mathbb{R}^{n}\right), t_{0} \in I, c_{0} \in \mathbb{R}^{n}$.
Lemma 4.1. Let $r_{0} \geq 0, r>0, t_{0} \leq a_{0}<b_{0}$, where $b_{0} \in I$, be such that

$$
\int_{a_{0}}^{b_{0}} f_{0}^{\star}\left(s, r_{0}+r\right) \mathrm{d} s<r
$$

where

$$
f_{0}^{\star}(t, r)=\sup \{\|f(t, x)\| ; x \in B[0, r]\}, \quad t \in I
$$

Then, for all solution x of Eq. (4.1) on the interval $\left[t_{0}, b_{0}\right)$ which satisfies

$$
\|x(t)\| \leq r_{0}, \quad t \in\left[t_{0}, a_{0}\right]
$$

it holds

$$
\|x(t)\|<r_{0}+r, \quad t \in\left[t_{0}, b_{0}\right) .
$$

Moreover, the limit

$$
\lim _{t \rightarrow b_{0}^{-}}\|x(t)\|
$$

exists.
Proof. We prove the lemma by contradiction. We suppose that there exist a solution x of Eq. (4.1) on the interval $\left[t_{0}, b_{0}\right)$ and $t_{1} \in\left(a_{0}, b_{0}\right)$ such that

$$
\begin{gathered}
\|x(t)\| \leq r_{0}, \quad t \in\left[t_{0}, a_{0}\right], \\
\|x(t)\|<r_{0}+r, \quad t \in\left[a_{0}, t_{1}\right),
\end{gathered}
$$

and that

$$
\left\|x\left(t_{1}\right)\right\|=r_{0}+r .
$$

The contradiction comes from

$$
\left\|x\left(t_{1}\right)\right\| \leq\left\|x\left(a_{0}\right)\right\|+\int_{a_{0}}^{t_{1}}\|f(s, x(s))\| \mathrm{d} s \leq r_{0}+\int_{a_{0}}^{t_{1}} f_{0}^{\star}\left(s, r_{0}+r\right) \mathrm{d} s<r_{0}+r .
$$

Note that the obtained statement guarantees

$$
f(-, x(-)) \in L\left(\left[a_{0}, b_{0}\right), \mathbb{R}^{n}\right) .
$$

Therefore, the existence of the limit

$$
\lim _{t \rightarrow b_{0}^{-}}\|x(t)\|
$$

follows from

$$
x(t)=x\left(a_{0}\right)+\int_{a_{0}}^{t} f(s, x(s)) \mathrm{d} s, \quad t \in\left[a_{0}, b_{0}\right) .
$$

Theorem 4.1. Let $[a, b] \subseteq I, t_{0} \in[a, b]$, and let any non-extendable solution of the problem (4.1), (4.2) exist on $[a, b]$. Let $X_{[a, b]}$ be the set of the restrictions of all nonextendable solutions of the problem (4.1), (4.2) to the interval $[a, b]$. Then, the set $X_{[a, b]}$ is bounded in the space $C\left([a, b], \mathbb{R}^{n}\right)$.

Proof. We assume that $t_{0}<b$. We show that the set $X_{\left[t_{0}, b\right]}$ is bounded in the space $C\left(\left[t_{0}, b\right], \mathbb{R}^{n}\right)$. For $t_{0}>a$, one can similarly show that the set $X_{\left[a, t_{0}\right]}$ is bounded in the space $C\left(\left[a, t_{0}\right], \mathbb{R}^{n}\right)$.

We put

$$
\rho(t)=\sup \left\{\|x(s)\| ; s \in\left[t_{0}, t\right], x \in X_{\left[t_{0}, b\right]}\right\}, \quad t \in\left[t_{0}, b\right] .
$$

We choose $t_{1} \in\left(t_{0}, b\right]$ such that

$$
\int_{t_{0}}^{t_{1}} f_{0}^{\star}\left(s,\left\|c_{0}\right\|+1\right) \mathrm{d} s<1
$$

where f_{0}^{\star} is from Lemma 4.1. According to Lemma 4.1, we have

$$
\rho(t) \leq \rho\left(t_{1}\right) \leq\left\|c_{0}\right\|+1, \quad t \in\left[t_{0}, t_{1}\right] .
$$

We show that $\rho(b)<\infty$. By contradiction, we assume that $\rho(b)=\infty$. Then, $t_{1}<b$ and there exists $t^{\star} \in\left(t_{1}, b\right]$ such that

$$
\rho(t)=\infty, \quad t \in\left(t^{\star}, b\right],
$$

and that

$$
\rho(t)<\infty, \quad t \in\left[t_{0}, t^{\star}\right) .
$$

We assume the existence of a sequence $\left\{\tau_{k}\right\}_{k=1}^{\infty} \subset\left[t_{0}, t^{\star}\right)$ and a sequence $\left\{x_{k}\right\}_{k=1}^{\infty}$ of solutions of the problem (4.1), (4.2) on the interval $\left[t_{0}, t^{\star}\right]$ such that

$$
\lim _{k \rightarrow \infty}\left\|x_{k}\left(\tau_{k}\right)\right\|=\infty
$$

In addition, for all $\beta \in\left[t_{0}, t^{\star}\right)$, we have

$$
\left\|x_{k}(t)\right\| \leq \rho(\beta), \quad t \in\left[t_{0}, \beta\right], k \in \mathbb{N} .
$$

It is obvious that the functions $x_{k}, k \in \mathbb{N}$, are uniformly bounded on any compact subinterval of the interval $\left[t_{0}, t^{\star}\right)$. At the same time, for any $\beta \in\left[t_{0}, t^{\star}\right)$, we have

$$
\begin{aligned}
\left\|x_{k}(t)-x_{k}(s)\right\| & \leq\left|\int_{s}^{t}\left\|f\left(\xi, x_{k}(\xi)\right)\right\| \mathrm{d} \xi\right| \\
& \leq\left|\int_{s}^{t} f_{0}^{\star}(\xi, \rho(\beta)) \mathrm{d} \xi\right|, \quad s, t \in\left[t_{0}, \beta\right], k \in \mathbb{N} .
\end{aligned}
$$

Therefore, the functions $x_{k}, k \in \mathbb{N}$, are also equicontinuous on any compact subinterval of the interval $\left[t_{0}, t^{\star}\right)$. Due to the Arzelà-Ascoli theorem, without loss of generality, we can assume that the sequence $\left\{x_{k}\right\}_{k=1}^{\infty}$ is uniformly convergent on any compact subinterval of the interval $\left[t_{0}, t^{\star}\right)$. We put

$$
\lim _{k \rightarrow \infty} x_{k}(t)=x(t), \quad t \in\left[t_{0}, t^{\star}\right) .
$$

By the Lebesgue theorem, one can verify that x is a solution of the problem (4.1), (4.2) on the interval $\left[t_{0}, t^{\star}\right)$. Since $t^{\star} \leq b$ and since any non-extendable solution of the problem (4.1), (4.2) exists on the interval $\left[t_{0}, b\right]$, the finite limit

$$
\lim _{t \rightarrow t^{\star-}}\|x(t)\|
$$

exists. Hence,

$$
\begin{equation*}
r_{0}=\sup \left\{\|x(t)\| ; t \in\left[t_{0}, t^{\star}\right)\right\}<\infty . \tag{4.3}
\end{equation*}
$$

We choose $t_{\star} \in\left[t_{0}, t^{\star}\right)$ so that

$$
\int_{t_{\star}}^{t^{\star}} f_{0}^{\star}\left(s, r_{0}+2\right) \mathrm{d} s<1 .
$$

From the construction of the solution x and from (4.3), it follows the existence of $k_{0} \in \mathbb{N}$ with the property that

$$
\left\|x_{k}(t)\right\| \leq r_{0}+1, \quad t \in\left[t_{0}, t_{\star}\right], k \geq k_{0}, k \in \mathbb{N} .
$$

Therefore, considering Lemma 4.1, we obtain

$$
\left\|x_{k}(t)\right\|<r_{0}+2, \quad t \in\left[t_{0}, t^{\star}\right), k \geq k_{0}, k \in \mathbb{N} .
$$

Hence,

$$
\rho\left(t^{\star}\right)<\infty .
$$

Now, it is enough to consider again Lemma 4.1 (for $r_{0}+3$).
Remark 4.1. From the Arzelà-Ascoli theorem, from the proof of Theorem 4.1, and from the Lebesgue theorem, it follows that the set $X_{[a, b]}$ from the statement of Theorem 4.1 is even compact in $C\left([a, b], \mathbb{R}^{n}\right)$.

5. Upper and lower solutions

We consider the Cauchy problem

$$
\begin{align*}
x^{\prime} & =f(t, x), \tag{5.1}\\
x\left(t_{0}\right) & =c_{0}, \tag{5.2}
\end{align*}
$$

where $f \in K_{\text {loc }}\left(I \times \mathbb{R}^{n}, \mathbb{R}^{n}\right), t_{0} \in I, c_{0} \in \mathbb{R}^{n}$.
Definition 5.1. Let $f: I \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, where $f=\left(f_{i}\right)_{i=1}^{n}$. We say that f is quasi non-decreasing in the last n variables if, for all $i \in\{1, \ldots, n\}$ and almost all $t \in I$, it holds

$$
f_{i}\left(t, x_{1}, \ldots, x_{n}\right) \leq f_{i}\left(t, y_{1}, \ldots, y_{n}\right), \quad x_{k} \leq y_{k}, k \in\{1, \ldots, n\}, k \neq i, x_{i}=y_{i} .
$$

Lemma 5.1. Let the map

$$
(t, x) \mapsto f(t, x) \operatorname{sgn}\left(t-t_{0}\right), \quad(t, x) \in I \times \mathbb{R}^{n},
$$

be quasi non-decreasing in the last n variables. Let $[a, b] \subseteq I, t_{0} \in[a, b]$, and let any non-extendable solution of the problem (5.1), (5.2) exist on the interval $[a, b]$. Then, for any function $y \in \tilde{C}\left([a, b], \mathbb{R}^{n}\right)$ satisfying

$$
y\left(t_{0}\right) \leq c_{0}
$$

and

$$
\left[y^{\prime}(t)-f(t, y(t))\right] \operatorname{sgn}\left(t-t_{0}\right) \leq 0
$$

for almost all $t \in[a, b]$, there exists a solution x of the problem (5.1), (5.2) on the interval $[a, b]$ such that

$$
y(t) \leq x(t), \quad t \in[a, b] .
$$

Proof. Let $y \in \tilde{C}\left([a, b], \mathbb{R}^{n}\right)$ be an arbitrary function from the statement of the lemma. We suppose that $t_{0}<b$. We prove the existence of a solution x of the problem (5.1), (5.2) on the interval $\left[t_{0}, b\right]$ with the property that

$$
y(t) \leq x(t), \quad t \in\left[t_{0}, b\right] .
$$

In the second case, we can proceed analogously.
For all $i \in\{1, \ldots, n\}$, we put

$$
\chi_{i}(t, z)=\left\{\begin{array}{ll}
y_{i}(t), & z \leq y_{i}(t) ; \\
z, & z>y_{i}(t) ;
\end{array} \quad t \in\left[t_{0}, b\right], z \in \mathbb{R}\right.
$$

We define

$$
\chi(t, x)=\left(\chi_{i}\left(t, x_{i}\right)\right)_{i=1}^{n}, \quad t \in\left[t_{0}, b\right], x=\left(x_{i}\right)_{i=1}^{n} \in \mathbb{R}^{n}
$$

and

$$
\tilde{f}(t, x)=f(t, \chi(t, x)), \quad t \in\left[t_{0}, b\right], x \in \mathbb{R}^{n} .
$$

Obviously,

$$
\tilde{f} \in K\left(\left[t_{0}, b\right] \times \mathbb{R}^{n}, \mathbb{R}^{n}\right)
$$

We consider the Cauchy problem

$$
x^{\prime}=\tilde{f}(t, x), \quad x\left(t_{0}\right)=c_{0}
$$

We consider that $x=\left(x_{i}\right)_{i=1}^{n}$ is a solution of this problem, which is not right-extendable, and that $\left[t_{0}, b_{0}\right) \subseteq\left[t_{0}, b\right]$ is the maximal interval, where the solution x exists (see Theorem 3.3). Let $i \in\{1, \ldots, n\}$ be arbitrarily given. We prove that

$$
y_{i}(t) \leq x_{i}(t), \quad t \in\left[t_{0}, b_{0}\right) .
$$

Let us consider the opposite, i.e., let there exist $[\alpha, \beta] \subseteq\left[t_{0}, b_{0}\right)$ such that

$$
y_{i}(\alpha)=x_{i}(\alpha)
$$

and that

$$
y_{i}(t)>x_{i}(t), \quad t \in(\alpha, \beta] .
$$

We define

$$
u(t)=y_{i}(t)-x_{i}(t), \quad t \in[\alpha, \beta] .
$$

Obviously, $u(\alpha)=0$ and

$$
u(t)>0, \quad t \in(\alpha, \beta]
$$

We have

$$
\begin{aligned}
u^{\prime}(t) & =y_{i}^{\prime}(t)-x_{i}^{\prime}(t) \\
& \leq f_{i}(t, y(t))-\tilde{f}_{i}(t, x(t)) \\
& =f_{i}\left(t, y_{1}(t), \ldots, y_{n}(t)\right)-f_{i}\left(t, \chi_{1}\left(t, x_{1}(t)\right), \ldots, \chi_{n}\left(t, x_{n}(t)\right)\right)
\end{aligned}
$$

for almost all $t \in(\alpha, \beta)$. From the definition of the function χ, it follows that

$$
y_{i}(t)=\chi_{i}\left(t, x_{i}(t)\right), \quad t \in[\alpha, \beta]
$$

and that

$$
y_{k}(t) \leq \chi_{k}\left(t, x_{k}(t)\right), \quad t \in[\alpha, \beta], k \neq i .
$$

Since the map

$$
(t, x) \mapsto f(t, x) \operatorname{sgn}\left(t-t_{0}\right), \quad(t, x) \in I \times \mathbb{R}^{n},
$$

is quasi non-decreasing in the last n variables, $u^{\prime}(t) \leq 0$ for almost all $t \in(\alpha, \beta)$, which gives a contradiction. The contradiction (together with the arbitrariness of $i \in\{1, \ldots, n\}$) proves that

$$
y(t) \leq x(t), \quad t \in\left[t_{0}, b_{0}\right)
$$

Thus,

$$
\tilde{f}(t, x(t))=f(t, x(t)), \quad t \in\left[t_{0}, b_{0}\right)
$$

i.e., x is a solution of the problem (5.1), (5.2) on $\left[t_{0}, b_{0}\right)$.

Now, we prove that $b_{0}=b$. Let $b_{0}<b$. Since x is a solution of the problem

$$
x^{\prime}=\tilde{f}(t, x), \quad x\left(t_{0}\right)=c_{0}
$$

on the interval $\left[t_{0}, b_{0}\right)$, which is not right-extendable, from Theorem 3.1, it follows

$$
\lim _{t \rightarrow b_{0}^{-}}\|x(t)\|=\infty
$$

At the same time, from Theorem 3.1, it follows a contradiction with an assumption of the lemma. Thus, we have proved that $b_{0}=b$, i.e.,

$$
y(t) \leq x(t), \quad t \in\left[t_{0}, b\right) .
$$

Due to the assumptions of the lemma, there exists the finite limit

$$
\lim _{t \rightarrow b^{-}} x(t),
$$

i.e., x is a solution of the problem (5.1), (5.2) on $\left[t_{0}, b\right]$ and

$$
y(t) \leq x(t), \quad t \in\left[t_{0}, b\right] .
$$

Lemma 5.2. Let the map

$$
(t, x) \mapsto f(t, x) \operatorname{sgn}\left(t-t_{0}\right), \quad(t, x) \in I \times \mathbb{R}^{n}
$$

be quasi non-decreasing in the last n variables. Let $[a, b] \subseteq I, t_{0} \in[a, b]$, and let any non-extendable solution of the problem (5.1), (5.2) exist on the interval $[a, b]$. Then, for any function $y \in \tilde{C}\left([a, b], \mathbb{R}^{n}\right)$ satisfying

$$
y\left(t_{0}\right) \geq c_{0}
$$

and

$$
\left[y^{\prime}(t)-f(t, y(t))\right] \operatorname{sgn}\left(t-t_{0}\right) \geq 0
$$

for almost all $t \in[a, b]$, there exists a solution x of the problem (5.1), (5.2) on the interval $[a, b]$ with the property that

$$
y(t) \geq x(t), \quad t \in[a, b] .
$$

Proof. The lemma is possible to prove analogously as Lemma 5.1.
Definition 5.2. Let x^{\star} be a solution of the problem (5.1), (5.2) on the interval $I_{0} \subseteq I$, where $t_{0} \in I_{0}$. We say that x^{\star} is the upper (lower) solution of the problem (5.1), (5.2) on the interval $I_{0} \subseteq I$ if, for all interval $I_{1} \subseteq I_{0}$, where $t_{0} \in I_{1}$, and any solution x of the problem (5.1), (5.2) on the interval I_{1}, it holds

$$
x(t) \leq x^{\star}(t) \quad\left(x(t) \geq x^{\star}(t)\right), \quad t \in I_{1}
$$

Theorem 5.1. Let the map

$$
(t, x) \mapsto f(t, x) \operatorname{sgn}\left(t-t_{0}\right), \quad(t, x) \in I \times \mathbb{R}^{n}
$$

be quasi non-decreasing in the last n variables. Let $[a, b] \subseteq I, t_{0} \in[a, b]$, and let any non-extendable solution of the problem (5.1), (5.2) exist on the interval $[a, b]$. Then, the problem (5.1), (5.2) has the upper solution and the lower solution on the interval $[a, b]$.
Proof. We prove only the existence of the upper solution on the interval $[a, b]$. In the second case, it is possible to proceed analogously. As X, we denote the set of all solutions of the problem (5.1), (5.2) on the interval $[a, b]$. We define

$$
x_{i}^{\star}(t)=\sup \left\{x_{i}(t) ;\left(x_{k}\right)_{k=1}^{n} \in X\right\}, \quad t \in[a, b], i \in\{1, \ldots, n\} .
$$

According to Theorem 4.1, the set X is bounded in the space $C\left([a, b], \mathbb{R}^{n}\right)$. Therefore,

$$
x_{i}^{\star}(t)<\infty, \quad t \in[a, b], i \in\{1, \ldots, n\} .
$$

We show that $x^{\star}=\left(x_{i}^{\star}\right)_{i=1}^{n}$ is the upper solution of the problem (5.1), (5.2) on the interval $[a, b]$. It is obvious that

$$
x(t) \leq x^{\star}(t), \quad t \in[a, b], x \in X
$$

Firstly, we prove that the function x^{\star} is absolutely continuous. Since the set X is bounded in $C\left([a, b], \mathbb{R}^{n}\right)$, there exists a function $h \in L\left([a, b], \mathbb{R}_{+}\right)$with the property that

$$
\|f(t, x)\| \leq h(t), \quad t \in[a, b], x \in X
$$

Let $s, t \in[a, b], s<t$. Then,

$$
\begin{aligned}
x_{i}(t) & =x_{i}(s)+\int_{s}^{t} f_{i}(\tau, x(\tau)) \mathrm{d} \tau \\
& \leq x_{i}(s)+\int_{s}^{t} h(\tau) \mathrm{d} \tau \\
& \leq x_{i}^{\star}(s)+\int_{s}^{t} h(\tau) \mathrm{d} \tau, \quad x=\left(x_{i}\right)_{i=1}^{n} \in X, i \in\{1, \ldots, n\},
\end{aligned}
$$

i.e.,

$$
x_{i}^{\star}(t) \leq x_{i}^{\star}(s)+\int_{s}^{t} h(\tau) \mathrm{d} \tau, \quad i \in\{1, \ldots, n\} .
$$

Analogously, one can obtain

$$
x_{i}^{\star}(s) \leq x_{i}^{\star}(t)+\int_{s}^{t} h(\tau) \mathrm{d} \tau, \quad i \in\{1, \ldots, n\},
$$

which gives

$$
\left|x_{i}^{\star}(t)-x_{i}^{\star}(s)\right| \leq\left|\int_{s}^{t} h(\tau) \mathrm{d} \tau\right|, \quad i \in\{1, \ldots, n\}, s, t \in[a, b] .
$$

Therefore, $x^{\star} \in \tilde{C}\left([a, b], \mathbb{R}^{n}\right)$.
Now, we show that x^{\star} is a solution of the problem (5.1), (5.2). We know that one can find $r_{0}>0$ such that

$$
\|x(t)\| \leq r_{0}, \quad t \in[a, b], x \in X
$$

According to Lemma 1.4, for r_{0}, there exist a function $h_{0} \in L\left([a, b], \mathbb{R}_{+}\right)$and a non-decreasing function $\omega_{0} \in C_{l o c}\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$such that $\omega_{0}(0)=0$ and

$$
\|f(t, x)-f(t, y)\| \leq h_{0}(t) \omega_{0}(\|x-y\|), \quad t \in[a, b], x, y \in B\left[0, r_{0}\right] .
$$

As I_{0}, we denote the set of all $s \in[a, b]$ for which the following conditions:

1. there exists $\left(x^{\star}\right)^{\prime}(s)$;
2. there exists $v^{\prime}(s)$ and

$$
v^{\prime}(s)=f\left(s, x^{\star}(s)\right),
$$

where

$$
v(t)=\int_{t_{0}}^{t} f\left(\tau, x^{\star}(\tau)\right) \mathrm{d} \tau, \quad t \in[a, b] ;
$$

3. there exists $v_{0}^{\prime}(s)$ and

$$
v_{0}^{\prime}(s)=h_{0}(s),
$$

where

$$
v_{0}(t)=\int_{t_{0}}^{t} h_{0}(\tau) \mathrm{d} \tau, \quad t \in[a, b]
$$

are valid. Obviously, $m\left(I_{0}\right)=b-a$. Let $i \in\{1, \ldots, n\}$ and $s \in I_{0}$, where $s>t_{0}$, be arbitrary. Due to Remark 4.1, X is a compact set in the space $C\left([a, b], \mathbb{R}^{n}\right)$. Therefore, there exists $\tilde{x}=\left(\tilde{x}_{k}\right)_{k=1}^{n} \in X$ such that $\tilde{x}_{i}(s)=x_{i}^{\star}(s)$. We put

$$
\varepsilon(t)=\max \left\{\left|\tilde{x}_{i}(\tau)-x_{i}^{\star}(\tau)\right| ; t \leq \tau \leq s\right\}, \quad t \in\left[t_{0}, s\right] .
$$

It is seen that the function $\varepsilon:\left[t_{0}, s\right] \rightarrow \mathbb{R}_{+}$is continuous, non-increasing, and $\varepsilon(s)=0$. We have

$$
\begin{aligned}
f_{i}(t, \tilde{x}(t)) & \leq f_{i}\left(t, x_{1}^{\star}(t), \ldots, x_{i-1}^{\star}(t), \tilde{x}_{i}(t), x_{i+1}^{\star}(t), \ldots, x_{n}^{\star}(t)\right) \\
& =f_{i}\left(t, x^{\star}(t)\right)+f_{i}\left(t, x_{1}^{\star}(t), \ldots, x_{i-1}^{\star}(t), \tilde{x}_{i}(t), x_{i+1}^{\star}(t), \ldots, x_{n}^{\star}(t)\right)-f_{i}\left(t, x^{\star}(t)\right) \\
& \leq f_{i}\left(t, x^{\star}(t)\right)+h_{0}(t) \omega_{0}\left(\left|\tilde{x}_{i}(t)-x_{i}^{\star}(t)\right|\right) \\
& \leq f_{i}\left(t, x^{\star}(t)\right)+h_{0}(t) \omega_{0}(\varepsilon(t)), \quad t \in\left(t_{0}, s\right] .
\end{aligned}
$$

Hence $\left(\right.$ consider $\left.\tilde{x}_{i}(s)=x_{i}^{\star}(s)\right)$, we obtain

$$
\begin{aligned}
x_{i}^{\star}(s) & =\tilde{x}_{i}(s)=\tilde{x}_{i}(t)+\int_{t}^{s} f_{i}(\tau, \tilde{x}(\tau)) \mathrm{d} \tau \\
& \leq x_{i}^{\star}(t)+\int_{t}^{s} f_{i}\left(\tau, x^{\star}(\tau)\right) \mathrm{d} \tau+\int_{t}^{s} h_{0}(\tau) \omega_{0}(\varepsilon(\tau)) \mathrm{d} \tau \\
& \leq x_{i}^{\star}(t)+\int_{t}^{s} f_{i}\left(\tau, x^{\star}(\tau)\right) \mathrm{d} \tau+\omega_{0}(\varepsilon(t)) \int_{t}^{s} h_{0}(\tau) \mathrm{d} \tau, \quad t \in\left(t_{0}, s\right] .
\end{aligned}
$$

Therefore,

$$
\frac{x_{i}^{\star}(s)-x_{i}^{\star}(t)}{s-t} \leq \frac{1}{s-t} \int_{t}^{s} f_{i}\left(\tau, x^{\star}(\tau)\right) \mathrm{d} \tau+\frac{1}{s-t} \omega_{0}(\varepsilon(t)) \int_{t}^{s} h_{0}(\tau) \mathrm{d} \tau, \quad t \in\left(t_{0}, s\right) .
$$

Since $s \in I_{0}$ is arbitrary and $\omega_{0}(\varepsilon(s))=0$, we obtain

$$
\left(x_{i}^{\star}\right)^{\prime}(s) \leq f_{i}\left(s, x^{\star}(s)\right), \quad s \in I_{0}, s>t_{0} .
$$

Analogously, one can show

$$
\left(x_{i}^{\star}\right)^{\prime}(s) \geq f_{i}\left(s, x^{\star}(s)\right), \quad s \in I_{0}, s<t_{0} .
$$

Thus,

$$
\left[\left(x^{\star}\right)^{\prime}(t)-f\left(t, x^{\star}(t)\right)\right] \operatorname{sgn}\left(t-t_{0}\right) \leq 0
$$

for almost all $t \in[a, b]$. According to Lemma 5.1, there exists $x_{0} \in X$ such that

$$
x^{\star}(t) \leq x_{0}(t), \quad t \in[a, b] .
$$

At the same time,

$$
\begin{equation*}
x(t) \leq x^{\star}(t), \quad t \in[a, b], x \in X \tag{5.3}
\end{equation*}
$$

which gives

$$
x_{0}(t) \leq x^{\star}(t), \quad t \in[a, b] .
$$

Therefore, $x^{\star} \equiv x_{0}$ and x^{\star} is a solution of the problem (5.1), (5.2). Moreover, (5.3) means that x^{\star} is the upper solution of this problem on the interval $[a, b]$.

Corollary 5.1. Let the map

$$
(t, x) \mapsto f(t, x) \operatorname{sgn}\left(t-t_{0}\right), \quad(t, x) \in I \times \mathbb{R}^{n},
$$

be quasi non-decreasing in the last n variables. Let $[a, b] \subseteq I, t_{0} \in[a, b]$, and let any non-extendable solution of the problem (5.1), (5.2) exist on the interval $[a, b]$.

1. For any function $y \in \tilde{C}\left([a, b], \mathbb{R}^{n}\right)$ satisfying

$$
y\left(t_{0}\right) \leq c_{0}
$$

and

$$
\left[y^{\prime}(t)-f(t, y(t))\right] \operatorname{sgn}\left(t-t_{0}\right) \leq 0
$$

for almost all $t \in[a, b]$, it holds

$$
y(t) \leq x^{\star}(t), \quad t \in[a, b],
$$

where x^{\star} is the upper solution of the problem (5.1), (5.2) on the interval $[a, b]$.
2. For any function $y \in \tilde{C}\left([a, b], \mathbb{R}^{n}\right)$ satisfying

$$
y\left(t_{0}\right) \geq c_{0}
$$

and

$$
\left[y^{\prime}(t)-f(t, y(t))\right] \operatorname{sgn}\left(t-t_{0}\right) \geq 0
$$

for almost all $t \in[a, b]$, it holds

$$
y(t) \geq x_{\star}(t), \quad t \in[a, b],
$$

where x_{\star} is the lower solution of the problem (5.1), (5.2) on the interval $[a, b]$.
Proof. The corollary follows directly from Lemmas 5.1 and 5.2 and from Theorem 5.1.

Definition 5.3. Let $f: I \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be given. We say that f is non-decreasing in the last n variables if

$$
f(t, x) \leq f(t, y), \quad t \in I, x \leq y .
$$

Corollary 5.2. Let the map

$$
(t, x) \mapsto f(t, x) \operatorname{sgn}\left(t-t_{0}\right), \quad(t, x) \in I \times \mathbb{R}^{n},
$$

be non-decreasing in the last n variables. Let $[a, b] \subseteq I, t_{0} \in[a, b]$, and let any non-extendable solution of the problem (5.1), (5.2) exist on the interval $[a, b]$.

1. For any function $y \in C\left([a, b], \mathbb{R}^{n}\right)$ satisfying

$$
y(t) \leq c_{0}+\int_{t_{0}}^{t} f(s, y(s)) \mathrm{d} s, \quad t \in[a, b]
$$

it holds

$$
y(t) \leq x^{\star}(t), \quad t \in[a, b],
$$

where x^{\star} is the upper solution of the problem (5.1), (5.2) on the interval $[a, b]$.
2. For any function $y \in C\left([a, b], \mathbb{R}^{n}\right)$ satisfying

$$
y(t) \geq c_{0}+\int_{t_{0}}^{t} f(s, y(s)) \mathrm{d} s, \quad t \in[a, b]
$$

it holds

$$
y(t) \geq x_{\star}(t), \quad t \in[a, b],
$$

where x_{\star} is the lower solution of the problem (5.1), (5.2) on the interval $[a, b]$.
Proof. We prove only the first part. The second part can be proved analogously. We put

$$
z(t)=c_{0}+\int_{t_{0}}^{t} f(s, y(s)) \mathrm{d} s, \quad t \in[a, b]
$$

Obviously,

$$
z \in \tilde{C}\left([a, b], \mathbb{R}^{n}\right)
$$

and

$$
y(t) \leq z(t), \quad t \in[a, b] .
$$

The identity

$$
z^{\prime}(t)=f(t, y(t))
$$

holds for almost all $t \in[a, b]$. We have

$$
\begin{aligned}
z^{\prime}(t) \operatorname{sgn}\left(t-t_{0}\right) & =f(t, y(t)) \operatorname{sgn}\left(t-t_{0}\right) \\
& \leq f(t, z(t)) \operatorname{sgn}\left(t-t_{0}\right)
\end{aligned}
$$

for almost all $t \in[a, b]$, i.e.,

$$
\left[z^{\prime}(t)-f(t, z(t))\right] \operatorname{sgn}\left(t-t_{0}\right) \leq 0
$$

for almost all $t \in[a, b]$. According to Corollary 5.1, we obtain

$$
z(t) \leq x^{\star}(t), \quad t \in[a, b],
$$

where x^{\star} is the upper solution of the problem (5.1), (5.2) on the interval $[a, b]$. Finally, the inequality

$$
y(t) \leq z(t), \quad t \in[a, b],
$$

gives

$$
y(t) \leq x^{\star}(t), \quad t \in[a, b] .
$$

6. Wintner theorem

We consider the Cauchy problem

$$
\begin{align*}
x^{\prime} & =f(t, x), \tag{6.1}\\
x\left(t_{0}\right) & =c_{0}, \tag{6.2}
\end{align*}
$$

where $f \in K_{\text {loc }}\left(I \times \mathbb{R}^{n}, \mathbb{R}^{n}\right), t_{0} \in I, c_{0} \in \mathbb{R}^{n}$.
Theorem 6.1 (Wintner). Let there exist a function $h \in K_{\text {loc }}\left(I \times \mathbb{R}_{+}, \mathbb{R}_{+}\right)$such that

$$
f(t, x) \cdot \operatorname{sgn}\left(\left(t-t_{0}\right) x\right) \leq h(t,\|x\|), \quad(t, x) \in I \times \mathbb{R}^{n}
$$

where the problem

$$
\begin{align*}
\rho^{\prime} & =h(t, \rho) \operatorname{sgn}\left(t-t_{0}\right), \tag{6.3}\\
\rho\left(t_{0}\right) & =\left\|c_{0}\right\| \tag{6.4}
\end{align*}
$$

has the upper solution on the interval I. Then, the problem (6.1), (6.2) has a solution on I. Moreover, all non-extendable solutions of the problem (6.1), (6.2) exist on I.

Proof. We suppose that $t_{0} \in \operatorname{int}(I)$. If t_{0} is an endpoint of the interval I, then one can proceed analogously.

From Theorem 3.3, it follows that there exists at least one non-extendable solution of the problem (6.1), (6.2) on a subinterval J of I. Let x be an arbitrary non-extendable solution of the problem (6.1), (6.2) on $\operatorname{int}(J)=(a, b) \subseteq I$. We show that $a=\inf I$, $b=\sup I$. We denote

$$
u(t)=\|x(t)\|, \quad t \in(a, b) .
$$

Obviously,

$$
\begin{gathered}
u \in \tilde{C}_{l o c}\left((a, b), \mathbb{R}_{+}\right), \\
u\left(t_{0}\right)=\left\|c_{0}\right\|
\end{gathered}
$$

and

$$
u^{\prime}(t)=x^{\prime}(t) \cdot \operatorname{sgn} x(t)
$$

for almost all $t \in(a, b)$. Therefore,

$$
u^{\prime}(t) \operatorname{sgn}\left(t-t_{0}\right) \leq h(t, u(t))
$$

for almost all $t \in(a, b)$. Thus,

$$
\begin{equation*}
\left[u^{\prime}(t)-h(t, u(t)) \operatorname{sgn}\left(t-t_{0}\right)\right] \operatorname{sgn}\left(t-t_{0}\right) \leq 0 \tag{6.5}
\end{equation*}
$$

for almost all $t \in(a, b)$. Since the problem (6.3), (6.4) has the upper solution on I, all non-extendable solutions of the problem (6.3), (6.4) exist on I. Therefore, considering $u\left(t_{0}\right)=\left\|c_{0}\right\|$ together with (6.5), from Corollary 5.1, it follows that

$$
u(t) \leq \rho^{\star}(t), \quad t \in(a, b)
$$

where ρ^{\star} is the upper solution of the problem (6.3), (6.4) on the interval I. Using Theorems 3.1 and 3.2, we obtain

$$
a=\inf I, \quad b=\sup I
$$

If $a \notin I, b \notin I$, then the proof is done. Let us consider that

$$
a \in I \quad \text { or } \quad b \in I
$$

We show that the finite limit

$$
\lim _{t \rightarrow a^{+}} x(t) \quad \text { or } \quad \lim _{t \rightarrow b^{-}} x(t)
$$

exists. We know that

$$
f \in K\left(\left[a, t_{0}\right] \times \mathbb{R}^{n}, \mathbb{R}^{n}\right) \quad \text { or } \quad f \in K\left(\left[t_{0}, b\right] \times \mathbb{R}^{n}, \mathbb{R}^{n}\right)
$$

Therefore, from

$$
u(t) \leq \rho^{\star}(t), \quad t \in(a, b)
$$

and from the fact that ρ^{\star} is the upper solution of the problem (6.3), (6.4) on I, it follows

$$
f(-, x(-)) \in L\left(\left[a, t_{0}\right], \mathbb{R}^{n}\right) \quad \text { or } \quad f(-, x(-)) \in L\left(\left[t_{0}, b\right], \mathbb{R}^{n}\right)
$$

The existence of the limit

$$
\lim _{t \rightarrow a^{+}} x(t) \quad \text { or } \quad \lim _{t \rightarrow b^{-}} x(t)
$$

comes from

$$
x(t)=c_{0}+\int_{t_{0}}^{t} f(s, x(s)) \mathrm{d} s, \quad t \in(a, b)
$$

Corollary 6.1. Let $h_{0} \in L_{\text {loc }}\left(I, \mathbb{R}_{+}\right)$and let $\omega \in C_{\text {loc }}\left(\mathbb{R}_{+},(0, \infty)\right)$ satisfy

$$
\int_{0}^{\infty} \frac{\mathrm{d} s}{\omega(s)}=\infty
$$

If the inequality

$$
f(t, x) \cdot \operatorname{sgn}\left(\left(t-t_{0}\right) x\right) \leq h_{0}(t) \omega(\|x\|)
$$

holds on the set $I \times \mathbb{R}^{n}$, then the problem (6.1), (6.2) has a solution on I. Moreover, all non-extendable solutions of the problem (6.1), (6.2) exist on I.

Proof. Since the problem

$$
\begin{aligned}
\rho^{\prime} & =h_{0}(t) \omega(\rho) \operatorname{sgn}\left(t-t_{0}\right), \\
\rho\left(t_{0}\right) & =\left\|c_{0}\right\|
\end{aligned}
$$

has the upper solution on the interval I, the statement of the corollary comes directly from Theorem 6.1.

7. Uniqueness of solutions

We consider the Cauchy problem

$$
\begin{align*}
x^{\prime} & =f(t, x), \tag{7.1}\\
x\left(t_{0}\right) & =c_{0}, \tag{7.2}
\end{align*}
$$

where $f \in K_{\text {loc }}\left(I \times \mathbb{R}^{n}, \mathbb{R}^{n}\right), t_{0} \in I, c_{0} \in \mathbb{R}^{n}$.
Definition 7.1. We say that the problem (7.1), (7.2) is uniquely solvable if, for arbitrary solutions x_{1} and x_{2} on intervals I_{1} and I_{2}, respectively, it holds

$$
x_{1}(t)=x_{2}(t), \quad t \in I_{1} \cap I_{2} .
$$

Definition 7.2. We say that a function $g: I \backslash\left\{t_{0}\right\} \times \mathbb{R}_{+} \rightarrow \mathbb{R}$ is an element of the set $K_{\text {loc }}\left(I \backslash\left\{t_{0}\right\} \times \mathbb{R}_{+}, \mathbb{R}\right)$ if $g \in K\left(I_{0} \times \mathbb{R}_{+}, \mathbb{R}\right)$ for any compact interval $I_{0} \subseteq I \backslash\left\{t_{0}\right\}$.

Definition 7.3. Let $g \in K_{l o c}\left(I \backslash\left\{t_{0}\right\} \times \mathbb{R}_{+}, \mathbb{R}\right)$ and let $I_{0} \subseteq I$ be such that $t_{0} \in I_{0}$. We say that a function $x: I_{0} \backslash\left\{t_{0}\right\} \rightarrow \mathbb{R}_{+}$is a solution of the equation $x^{\prime}=g(t, x)$ if the following conditions:

1. $x \in \tilde{C}(J, \mathbb{R})$ for any compact interval $J \subseteq I_{0} \backslash\left\{t_{0}\right\}$;
2. $x^{\prime}(t)=g(t, x(t))$ for almost all $t \in I_{0}$
are fulfilled.
Lemma 7.1. Let $\Delta>0, \lambda \in[0,1), h \in L\left(\left[t_{0}, t_{0}+\Delta\right],(0, \infty)\right)$, and let a function $\varphi \in$ $C_{\text {loc }}\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$be such that

$$
\lim _{s \rightarrow 0^{+}} \frac{\varphi(s)}{s^{\lambda}}=0
$$

If a function $u \in C\left(\left[t_{0}, t_{0}+\Delta\right], \mathbb{R}_{+}\right)$satisfies

$$
u(t) \leq \int_{t_{0}}^{t} h(\tau) \varphi(u(\tau)) \mathrm{d} \tau, \quad t \in\left[t_{0}, t_{0}+\Delta\right]
$$

then

$$
\lim _{t \rightarrow t_{0}^{+}} \frac{[u(t)]^{1-\lambda}}{\int_{t_{0}}^{t} h(s) \mathrm{d} s}=0
$$

Proof. It is seen that $u\left(t_{0}\right)=0$. Let $\varepsilon>0$ be arbitrary. There exists $t_{\varepsilon} \in\left(t_{0}, t_{0}+\Delta\right]$ with the property that

$$
\varphi(u(\tau)) \leq \varepsilon[u(\tau)]^{\lambda}, \quad \tau \in\left[t_{0}, t_{\varepsilon}\right] .
$$

Next, we obtain

$$
\begin{equation*}
u(t) \leq \varepsilon \int_{t_{0}}^{t} h(\tau)[u(\tau)]^{\lambda} \mathrm{d} \tau, \quad t \in\left[t_{0}, t_{\varepsilon}\right] \tag{7.3}
\end{equation*}
$$

We denote

$$
v(t)=\left(\varepsilon(1-\lambda) \int_{t_{0}}^{t} h(\tau) \mathrm{d} \tau\right)^{\frac{1}{1-\lambda}}, \quad t \in\left[t_{0}, t_{\varepsilon}\right]
$$

One can directly verify that v is "the unique positive solution" of the Cauchy problem

$$
v^{\prime}=\varepsilon h(t) v^{\lambda}, \quad v\left(t_{0}\right)=0
$$

for $t \in\left[t_{0}, t_{\varepsilon}\right]$. Therefore, Corollary 5.2 and (7.3) give

$$
u(t) \leq v(t), \quad t \in\left[t_{0}, t_{\varepsilon}\right]
$$

Thus,

$$
\limsup _{t \rightarrow t_{0}^{+}} \frac{[u(t)]^{1-\lambda}}{\int_{t_{0}}^{t} h(s) \mathrm{d} s} \leq \limsup _{t \rightarrow t_{0}^{+}} \frac{\varepsilon(1-\lambda) \int_{t_{0}}^{t} h(s) \mathrm{d} s}{\int_{t_{0}}^{t} h(s) \mathrm{d} s} \leq \varepsilon
$$

Now, it suffices to consider the arbitrariness of $\varepsilon>0$.
Lemma 7.2. Let $\Delta>0, \lambda \in[0,1), h \in L\left(\left[t_{0}-\Delta, t_{0}\right],(0, \infty)\right)$, and let a function $\varphi \in$ $C_{\text {loc }}\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$be such that

$$
\lim _{s \rightarrow 0^{+}} \frac{\varphi(s)}{s^{\lambda}}=0
$$

If a function $u \in C\left(\left[t_{0}-\Delta, t_{0}\right], \mathbb{R}_{+}\right)$satisfies

$$
u(t) \leq \int_{t}^{t_{0}} h(\tau) \varphi(u(\tau)) \mathrm{d} \tau, \quad t \in\left[t_{0}-\Delta, t_{0}\right]
$$

then

$$
\lim _{t \rightarrow t_{0}^{-}} \frac{[u(t)]^{1-\lambda}}{\int_{t}^{t_{0}} h(s) \mathrm{d} s}=0 .
$$

Proof. The lemma can be proved analogously as Lemma 7.1.
Theorem 7.1. Let $\delta>0$ and $\varepsilon>0$ be such that

$$
[f(t, x)-f(t, y)] \cdot \operatorname{sgn}\left[\left(t-t_{0}\right)(x-y)\right] \leq h(t) \varphi(\|x-y\|), \quad t \in J, x, y \in B\left[c_{0}, \delta\right],
$$

where $J=\left[t_{0}-\varepsilon, t_{0}+\varepsilon\right] \cap I, h \in L_{\text {loc }}(J,(0, \infty))$, and $\varphi \in C\left([0,2 \delta], \mathbb{R}_{+}\right)$has the property that

$$
\lim _{s \rightarrow 0^{+}} \frac{\varphi(s)}{s^{\lambda}}=0
$$

for some $\lambda \in[0,1)$. If, for any $r>0$, there exists a function

$$
\omega_{r} \in K_{l o c}\left(I \backslash\left\{t_{0}\right\} \times \mathbb{R}_{+}, \mathbb{R}\right)
$$

such that

$$
\omega_{r}(-, 0) \equiv 0
$$

and that
$[f(t, x)-f(t, y)] \cdot \operatorname{sgn}\left[\left(t-t_{0}\right)(x-y)\right] \leq \omega_{r}(t,\|x-y\|), \quad t \in I \backslash\left\{t_{0}\right\}, x, y \in B\left[c_{0}, r\right]$,
and if the problem

$$
\rho^{\prime}=\omega_{r}(t, \rho) \operatorname{sgn}\left(t-t_{0}\right), \quad \lim _{t \rightarrow t_{0}} \frac{[\rho(t)]^{1-\lambda}}{\int_{t_{0}}^{t} h(s) \mathrm{d} s}=0
$$

has only the zero solution, then the problem (7.1), (7.2) is uniquely solvable.
Proof. Let x_{1} and x_{2} be non-extendable solutions of the problem (7.1), (7.2) on intervals I_{1} and I_{2}, respectively. Our aim is to prove

$$
x_{1}(t)=x_{2}(t), \quad t \in I_{1} \cap I_{2} .
$$

We denote

$$
u(t)=\left\|x_{1}(t)-x_{2}(t)\right\|, \quad t \in I_{1} \cap I_{2} .
$$

We consider that there exists $t_{1} \in I_{1} \cap I_{2}$ such that $u\left(t_{1}\right) \neq 0$. Without loss of generality, we can assume that $t_{1}>t_{0}$. It is obvious that

$$
u \in \tilde{C}\left(\left[t_{0}, t_{1}\right], \mathbb{R}_{+}\right)
$$

and that

$$
\begin{equation*}
u^{\prime}(t)=\left[x_{1}^{\prime}(t)-x_{2}^{\prime}(t)\right] \cdot \operatorname{sgn}\left(x_{1}(t)-x_{2}(t)\right) \tag{7.4}
\end{equation*}
$$

for almost all $t \in\left[t_{0}, t_{1}\right]$. Thus, we obtain

$$
u(t)=\int_{t_{0}}^{t} u^{\prime}(\tau) \mathrm{d} \tau \leq \int_{t_{0}}^{t} h(\tau) \varphi(u(\tau)) \mathrm{d} \tau, \quad t \in\left[t_{0}, t_{0}+\Delta\right],
$$

where $\Delta>0$ is sufficiently small. According to Lemma 7.1, we have

$$
\lim _{t \rightarrow t_{0}^{+}} \frac{[u(t)]^{1-\lambda}}{\int_{t_{0}}^{t} h(s) \mathrm{d} s}=0 .
$$

Next, we denote

$$
r=\max \left\{\left\|x_{1}(t)-c_{0}\right\|+\left\|x_{2}(t)-c_{0}\right\| ; t \in\left[t_{0}, t_{1}\right]\right\} .
$$

For this number r, there exists a function $\omega_{r} \in K_{l o c}\left(I \backslash\left\{t_{0}\right\} \times \mathbb{R}_{+}, \mathbb{R}\right)$ from the statement of the theorem. From (7.4), it follows

$$
u^{\prime}(t) \leq \omega_{r}(t, u(t))
$$

for almost all $t \in\left(t_{0}, t_{1}\right]$. We put

$$
\bar{\omega}_{r}(t, y)=\left\{\begin{array}{ll}
\omega_{r}(t, u(t)), & y>u(t) ; \\
\omega_{r}(t, y), & 0 \leq y \leq u(t) ; \\
0, & y<0
\end{array} \quad t \in\left(t_{0}, t_{1}\right], y \in \mathbb{R} .\right.
$$

Evidently,

$$
\bar{\omega}_{r} \in K_{l o c}\left(\left(t_{0}, t_{1}\right] \times \mathbb{R}, \mathbb{R}\right) .
$$

From Theorem 3.3, it follows that there exist $a \in\left[t_{0}, t_{1}\right)$ and a non-extendable solution ρ of the problem

$$
\rho^{\prime}=\bar{\omega}_{r}(t, \rho), \quad \rho\left(t_{1}\right)=\frac{1}{2} u\left(t_{1}\right)
$$

on the interval $\left(a, t_{1}\right]$.
We show that

$$
\rho(t) \leq u(t), \quad t \in\left(a, t_{1}\right] .
$$

By contradiction, we assume that there exist $t_{2}, t_{3} \in\left(a, t_{1}\right)$, where $t_{2}<t_{3}$, such that

$$
\rho(t)>u(t), \quad t \in\left[t_{2}, t_{3}\right),
$$

and that

$$
\rho\left(t_{3}\right)=u\left(t_{3}\right) .
$$

From the definition of $\bar{\omega}_{r}$, it follows

$$
\rho^{\prime}(t)=\omega_{r}(t, u(t))
$$

for almost all $t \in\left[t_{2}, t_{3}\right]$. From the inequality

$$
u^{\prime}(t) \leq \omega_{r}(t, u(t))
$$

which is valid for almost all $t \in\left(t_{0}, t_{1}\right]$, we obtain

$$
\rho(t) \leq u(t), \quad t \in\left[t_{2}, t_{3}\right] .
$$

We have a contradiction.
Now, we show that

$$
\rho(t)>0, \quad t \in\left(a, t_{1}\right] .
$$

By contradiction, we assume that there exists $t_{4} \in\left(a, t_{1}\right)$ for which

$$
\rho(t)>0, \quad t \in\left(t_{4}, t_{1}\right]
$$

and for which

$$
\rho\left(t_{4}\right)=0 .
$$

We recall that

$$
\rho(t) \leq u(t), \quad t \in\left(a, t_{1}\right] .
$$

Due to the definition of $\bar{\omega}_{r}$, the function

$$
\bar{\rho}(t)= \begin{cases}0, & t \in\left(t_{0}, t_{4}\right] ; \\ \rho(t), & t \in\left(t_{4}, t_{1}\right]\end{cases}
$$

is a non-zero solution of the problem

$$
\begin{equation*}
\rho^{\prime}(t)=\omega_{r}(t, \rho) \operatorname{sgn}\left(t-t_{0}\right), \quad \lim _{t \rightarrow t_{0}} \frac{[\rho(t)]^{1-\lambda}}{\int_{t_{0}}^{t} h(s) \mathrm{d} s}=0 \tag{7.5}
\end{equation*}
$$

on the interval $\left(t_{0}, t_{1}\right]$, which is a contradiction.
We have proved that

$$
0<\rho(t) \leq u(t), \quad t \in\left(a, t_{1}\right] .
$$

From Theorem 3.2, it follows that $a=t_{0}$, i.e.,

$$
0<\rho(t) \leq u(t), \quad t \in\left(t_{0}, t_{1}\right] .
$$

Due to the definition of $\bar{\omega}_{r}$, we have a non-zero solution of the problem (7.5) on the interval $\left(t_{0}, t_{1}\right]$, which is a contradiction with the assumption of the theorem.

Corollary 7.1 (Osgood). If there exist functions $l_{r} \in L\left(I, \mathbb{R}_{+}\right)$and $\eta_{r} \in C_{\text {loc }}\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$ for any $r>0$ such that

$$
\eta_{r}(0)=0, \quad \eta_{r}(s)>0, \quad s>0, \quad \int_{0}^{2 r} \frac{\mathrm{~d} s}{\eta_{r}(s)}=\infty,
$$

and that

$$
[f(t, x)-f(t, y)] \cdot \operatorname{sgn}\left[\left(t-t_{0}\right)(x-y)\right] \leq l_{r}(t) \eta_{r}(\|x-y\|), \quad t \in I, x, y \in B\left[c_{0}, r\right],
$$

then the problem (7.1), (7.2) is uniquely solvable.
Proof. We put

$$
\begin{gathered}
\delta=1, \quad J=I, \quad \lambda=0, \\
h(t)=l_{1}(t)+1, \quad t \in J, \\
\varphi(x)=\eta_{1}(x), \quad x \in[0,2],
\end{gathered}
$$

and

$$
\omega_{r}(t, x)=l_{r}(t) \eta_{r}(x), \quad t \in I, x \in \mathbb{R}_{+}, r>0
$$

One can directly verify that all conditions of Theorem 7.1 are fulfilled. Note that, for any $r>0$, the problem

$$
\rho^{\prime}=l_{r}(t) \eta_{r}(\rho) \operatorname{sgn}\left(t-t_{0}\right), \quad \rho\left(t_{0}\right)=0
$$

has only the zero solution. Thus, for any $r>0$, the problem

$$
\rho^{\prime}=l_{r}(t) \eta_{r}(\rho) \operatorname{sgn}\left(t-t_{0}\right), \quad \lim _{t \rightarrow t_{0}} \frac{\rho(t)}{\int_{t_{0}}^{t} h(s) \mathrm{d} s}=0
$$

has only the zero solution as well. Therefore, the corollary follows from Theorem 7.1.

Corollary 7.2 (Nagumo-Perron). Let $t_{0} \in \operatorname{int}(I)$. Let $h \in L_{\text {loc }}(I,(0, \infty))$ be such that the function

$$
f_{0}(t, x)=\frac{f(t, x)}{h(t)}, \quad(t, x) \in I \times \mathbb{R}^{n}
$$

is continuous in a neighbourhood of $\left[t_{0}, c_{0}\right]$. If the inequality

$$
[f(t, x)-f(t, y)] \cdot \operatorname{sgn}\left[\left(t-t_{0}\right)(x-y)\right] \leq \frac{h(t)}{\left|\int_{t_{0}}^{t} h(\tau) \mathrm{d} \tau\right|}\|x-y\|, \quad t \neq t_{0}
$$

is valid on the set $I \times \mathbb{R}^{n}$, then the problem (7.1), (7.2) is uniquely solvable.

Proof. We put $\lambda=0$ and

$$
\omega_{r}(t, x)=\frac{h(t) x}{\left|\int_{t_{0}}^{t} h(\tau) \mathrm{d} \tau\right|}, \quad t \neq t_{0}, t \in I, x \in \mathbb{R}_{+}, r>0
$$

Since the function f_{0} is continuous in some neighbourhood of the point $\left[t_{0}, c_{0}\right]$, there exist

$$
\varepsilon, \delta \in\left(0, \frac{1}{2}\right)
$$

such that the function f_{0} is uniformly continuous on $\left[t_{0}-\varepsilon, t_{0}+\varepsilon\right] \times B\left[c_{0}, \delta\right]$. Let $J=\left[t_{0}-\varepsilon, t_{0}+\varepsilon\right]$. For $s \in[0,2 \boldsymbol{\delta}] \subseteq[0,1]$, we put

$$
\varphi(s)=\max \left\{\left\|f_{0}(t, x)-f_{0}(t, y)\right\| ; t \in J, x, y \in B\left[c_{0}, \delta\right],\|x-y\| \leq s\right\}
$$

Obviously, $\varphi \in C\left([0,2 \delta], \mathbb{R}_{+}\right)$and $\varphi(0)=0$. One can easily verify that all conditions of Theorem 7.1 are fulfilled. For example, by a direct computation, one can verify that the problem

$$
\rho^{\prime}=\frac{h(t)}{\int_{t_{0}}^{t} h(\tau) \mathrm{d} \tau} \rho, \quad \lim _{t \rightarrow t_{0}} \frac{\rho(t)}{\int_{t_{0}}^{t} h(\tau) \mathrm{d} \tau}=0
$$

has only the zero solution. Therefore, the corollary also follows from Theorem 7.1.

8. Krein theorem

Let I be a compact interval. Now, we consider the Cauchy problem

$$
\begin{align*}
x^{\prime} & =f_{0}(t, x), \tag{8.1.0}\\
x\left(t_{0}\right) & =c_{0}, \tag{8.2.0}
\end{align*}
$$

where $f_{0} \in K\left(I \times \mathbb{R}^{n}, \mathbb{R}^{n}\right), t_{0} \in I, c_{0} \in \mathbb{R}^{n}$.
For $m \in \mathbb{N}$, together with the problem (8.1.0), (8.2.0), we consider the perturbed problem

$$
\begin{align*}
x^{\prime} & =f_{m}(t, x), \tag{8.1.m}\\
x\left(t_{m}\right) & =c_{m}, \tag{8.2.m}
\end{align*}
$$

where $f_{m} \in K\left(I \times \mathbb{R}^{n}, \mathbb{R}^{n}\right), t_{m} \in I, c_{m} \in \mathbb{R}^{n}$.
For $m \in \mathbb{N} \cup\{0\}$, by the symbol $X\left(f_{m}, t_{m}, c_{m}\right)$, we denote the set of all non-extendable solutions of the problem (8.1.m), (8.2.m).

Definition 8.1. Let $Y \subseteq C\left(I, \mathbb{R}^{n}\right)$. Then, the ε-neighbourhood of the set Y is the set

$$
Y_{\varepsilon}=\bigcup_{y \in Y} B(y, \varepsilon),
$$

where

$$
B(y, \varepsilon)=\left\{x \in C\left(I, \mathbb{R}^{n}\right) ;\|x-y\|_{C}<\varepsilon\right\} .
$$

Definition 8.2. Let $Y \subseteq C\left(I, \mathbb{R}^{n}\right)$ and let $Y^{m} \subseteq C\left(I, \mathbb{R}^{n}\right)$ for all sufficiently large $m \in \mathbb{N}$. If, for any $\varepsilon>0$, there exists $m_{0} \in \mathbb{N}$ such that

$$
Y^{m} \subseteq Y_{\mathcal{E}}, \quad m \geq m_{0},
$$

then we write

$$
\lim _{m \rightarrow \infty} Y^{m} \subseteq Y
$$

Lemma 8.1. Let the following conditions:
$\overline{1}$. for all $x \in \mathbb{R}^{n}$, it holds

$$
\lim _{m \rightarrow \infty} \int_{t_{0}}^{t} f_{m}(\tau, x) \mathrm{d} \tau=\int_{t_{0}}^{t} f_{0}(\tau, x) \mathrm{d} \tau
$$

uniformly on I;
$\overline{2}$. for any $r>0$, there exists $\omega_{r} \in K\left(I \times \mathbb{R}_{+}, \mathbb{R}_{+}\right)$such that

$$
\omega_{r}(-, 0) \equiv 0
$$

and that

$$
\left\|f_{m}(t, x)-f_{m}(t, y)\right\| \leq \omega_{r}(t,\|x-y\|), \quad t \in I, x, y \in B[0, r], m \in \mathbb{N}
$$

be fulfilled. If $\left\{x_{m}\right\}_{m=0}^{\infty}$ is a sequence of functions from the space $C\left(I, \mathbb{R}^{n}\right)$ such that

$$
\lim _{m \rightarrow \infty} x_{m}(t)=x_{0}(t)
$$

uniformly on I, then

$$
\lim _{m \rightarrow \infty} \int_{t_{0}}^{t} f_{m}\left(\tau, x_{m}(\tau)\right) \mathrm{d} \tau=\int_{t_{0}}^{t} f_{0}\left(\tau, x_{0}(\tau)\right) \mathrm{d} \tau
$$

uniformly on I.
Proof. Since the sequence $\left\{x_{m}\right\}_{m=1}^{\infty}$ is uniformly convergent, $\left\{\left\|x_{m}\right\|_{C}\right\}_{m=1}^{\infty}$ is bounded. Let $r \in \mathbb{R}$ satisfy

$$
1+\left\|x_{m}\right\|_{C} \leq r, \quad m \in \mathbb{N} \cup\{0\} .
$$

Let ω_{r} be from the condition $\overline{2}$. Without loss of generality, we can assume that the function ω_{r} is non-decreasing in the second variable. Using Lemma 1.4, we can also assume that

$$
\left\|f_{0}(t, x)-f_{0}(t, y)\right\| \leq \omega_{r}(t,\|x-y\|), \quad t \in I, x, y \in B[0, r] .
$$

We denote

$$
y_{m}(t)=\int_{t_{0}}^{t} f_{m}\left(\tau, x_{m}(\tau)\right) \mathrm{d} \tau-\int_{t_{0}}^{t} f_{0}\left(\tau, x_{0}(\tau)\right) \mathrm{d} \tau, \quad t \in I, m \in \mathbb{N} .
$$

Let $\varepsilon>0$ be arbitrarily given. We choose $\eta \in(0,1]$ so that (see also Lemma 4.1)

$$
\int_{I} \omega_{r}(\tau, \eta) \mathrm{d} \tau<\frac{\varepsilon}{2}
$$

Since the function x_{0} is continuous on the compact interval, there exists a system $\left\{t_{i}\right\}_{i=1}^{k}(k \geq 2, k \in \mathbb{N})$ of points of the interval I such that

$$
\min I=t_{1}<t_{2}<\cdots<t_{k}=\max I
$$

and that

$$
\left\|x_{0}(t)-x_{0}\left(t_{i}\right)\right\|<\frac{\eta}{2}, \quad t \in\left[t_{i}, t_{i+1}\right], i \in\{1, \ldots, k-1\} .
$$

We put

$$
\tilde{x}(t)=x_{0}\left(t_{i}\right), \quad t \in\left[t_{i}, t_{i+1}\right), i \in\{1, \ldots, k-1\},
$$

and

$$
\tilde{x}\left(t_{k}\right)=x_{0}\left(t_{k-1}\right)
$$

Obviously,

$$
\left\|\tilde{x}(t)-x_{0}(t)\right\|<\frac{\eta}{2}, \quad t \in I .
$$

There exists $m_{0} \in \mathbb{N}$ with the property that

$$
\left\|x_{m}-x_{0}\right\|_{C}<\frac{\eta}{2}, \quad m \geq m_{0}, m \in \mathbb{N} .
$$

Therefore,

$$
\left\|x_{m}(t)-\tilde{x}(t)\right\|<\eta, \quad t \in I, m \geq m_{0}, m \in \mathbb{N} .
$$

Next, we obtain

$$
\begin{aligned}
\left\|y_{m}(t)\right\| \leq & \left|\int_{t_{0}}^{t}\left\|f_{m}\left(\tau, x_{m}(\tau)\right)-f_{m}(\tau, \tilde{x}(\tau))\right\| \mathrm{d} \tau\right| \\
& +\left\|\int_{t_{0}}^{t} f_{m}(\tau, \tilde{x}(\tau))-f_{0}(\tau, \tilde{x}(\tau)) \mathrm{d} \tau\right\| \\
& +\left|\int_{t_{0}}^{t}\left\|f_{0}(\tau, \tilde{x}(\tau))-f_{0}\left(\tau, x_{0}(\tau)\right)\right\| \mathrm{d} \tau\right| \\
\leq & \left\|\int_{t_{0}}^{t} f_{m}(\tau, \tilde{x}(\tau))-f_{0}(\tau, \tilde{x}(\tau)) \mathrm{d} \tau\right\|+2 \int_{I} \omega_{r}(\tau, \eta) \mathrm{d} \tau
\end{aligned}
$$

for all $t \in I, m \geq m_{0}, m \in \mathbb{N}$. We define

$$
\gamma_{i, m}=\max \left\{\left\|\int_{t_{0}}^{t} f_{m}\left(\tau, x_{0}\left(t_{i}\right)\right)-f_{0}\left(\tau, x_{0}\left(t_{i}\right)\right) \mathrm{d} \tau\right\| ; t \in I\right\}
$$

for all $i \in\{1, \ldots, k-1\}, m \in \mathbb{N}$.
Using the condition $\overline{1}$, one can easily verify that

$$
\lim _{m \rightarrow \infty} \gamma_{i, m}=0, \quad i \in\{1, \ldots, k-1\} .
$$

Since

$$
\int_{I} \omega_{r}(\tau, \eta) \mathrm{d} \tau<\frac{\varepsilon}{2}
$$

the definitions of \tilde{x} and $\gamma_{i, m}$ give

$$
\left\|y_{m}(t)\right\| \leq \varepsilon+\sum_{i=1}^{k-1} \gamma_{i, m}, \quad t \in I, m \geq m_{0}, m \in \mathbb{N} .
$$

From this inequality, we obtain the statement of the lemma. It is enough to consider the arbitrariness of $\varepsilon>0$ and

$$
\lim _{m \rightarrow \infty} \gamma_{i, m}=0, \quad i \in\{1, \ldots, k-1\} .
$$

Theorem 8.1 (Krein). If the following conditions:

1. it holds

$$
\lim _{m \rightarrow \infty} t_{m}=t_{0}, \quad \lim _{m \rightarrow \infty} c_{m}=c_{0}
$$

2. for all $x \in \mathbb{R}^{n}$, it holds

$$
\lim _{m \rightarrow \infty} \int_{t_{0}}^{t} f_{m}(\tau, x) \mathrm{d} \tau=\int_{t_{0}}^{t} f_{0}(\tau, x) \mathrm{d} \tau
$$

uniformly on I;
3. for any $r>0$, there exists a function $\omega_{r} \in K\left(I \times \mathbb{R}_{+}, \mathbb{R}_{+}\right)$such that

$$
\omega_{r}(-, 0) \equiv 0
$$

and that

$$
\left\|f_{m}(t, x)-f_{m}(t, y)\right\| \leq \omega_{r}(t,\|x-y\|), \quad t \in I, x, y \in B[0, r], m \in \mathbb{N}
$$

4. every non-extendable solution of the problem (8.1.0), (8.2.0) exists on I, i.e.,

$$
X\left(f_{0}, t_{0}, c_{0}\right) \subset C\left(I, \mathbb{R}^{n}\right)
$$

are fulfilled, then there exists $m_{0} \in \mathbb{N}$ such that, for all $m>m_{0}, m \in \mathbb{N}$, all non-extendable solution of the problem (8.1.m), (8.2.m) exists on I and

$$
\lim _{m \rightarrow \infty} X\left(f_{m}, t_{m}, c_{m}\right) \subseteq X\left(f_{0}, t_{0}, c_{0}\right)
$$

Proof. According to Theorem 4.1, the set $X\left(f_{0}, t_{0}, c_{0}\right)$ is bounded in the space $C\left(I, \mathbb{R}^{n}\right)$. Thus, there exists $r_{0}>0$ such that

$$
\|x\|_{C} \leq r_{0}, \quad x \in X\left(f_{0}, t_{0}, c_{0}\right)
$$

We define the function

$$
\chi(x)= \begin{cases}x, & \|x\| \leq r_{0}+1, x \in \mathbb{R}^{n} \\ \left(r_{0}+1\right) \frac{x}{\|x\|}, & \|x\|>r_{0}+1, x \in \mathbb{R}^{n}\end{cases}
$$

and we put

$$
\tilde{f}_{m}(t, x)=f_{m}(t, \chi(x)), \quad(t, x) \in I \times \mathbb{R}^{n}, m \in \mathbb{N} \cup\{0\}
$$

It is obvious that

$$
\tilde{f}_{m} \in K\left(I \times \mathbb{R}^{n}, \mathbb{R}^{n}\right), \quad m \in \mathbb{N} \cup\{0\}
$$

and that

$$
\left\|\tilde{f}_{m}(t, x)\right\| \leq f_{m}^{\star}(t), \quad t \in I, x \in \mathbb{R}^{n}, m \in \mathbb{N} \cup\{0\}
$$

where

$$
f_{m}^{\star}(t)=\sup \left\{\left\|f_{m}(t, x)\right\| ; x \in B\left[0, r_{0}+1\right]\right\}, \quad t \in I
$$

Due to Lemma 1.2, $f_{m}^{\star}(t) \in L\left(I, \mathbb{R}_{+}\right)$for all considered m. For all $m \in \mathbb{N} \cup\{0\}$, we consider the equation

$$
\begin{equation*}
x^{\prime}=\tilde{f}_{m}(t, x) \tag{8.3.m}
\end{equation*}
$$

As $X\left(\tilde{f}_{m}, t_{m}, c_{m}\right)$, we denote the set of all non-extendable solutions of the problem (8.3.m), (8.2.m).

Now, we show that

$$
X\left(\tilde{f}_{0}, t_{0}, c_{0}\right)=X\left(f_{0}, t_{0}, c_{0}\right)
$$

Obviously,

$$
X\left(f_{0}, t_{0}, c_{0}\right) \subseteq X\left(\tilde{f}_{0}, t_{0}, c_{0}\right)
$$

We assume the existence of $\tilde{x} \in X\left(\tilde{f}_{0}, t_{0}, c_{0}\right)$ such that $\tilde{x} \notin X\left(f_{0}, t_{0}, c_{0}\right)$. We have

$$
\|\tilde{x}\|_{C}>r_{0}+1, \quad\left\|\tilde{x}\left(t_{0}\right)\right\|=\left\|c_{0}\right\|<r_{0}+1
$$

Therefore, there exists an interval $I_{0} \subset I$ such that $t_{0} \in I_{0}$ and that

$$
\sup \left\{\|\tilde{x}(t)\| ; t \in I_{0}\right\}=r_{0}+1
$$

Now, it is seen that the function \tilde{x} is a solution of (8.1.0), (8.2.0) on the interval I_{0}. Due to 4 . from the statement of the theorem, we know that there exists an extension y of the solution \tilde{x} to I. Then,

$$
y \in X\left(f_{0}, t_{0}, c_{0}\right)
$$

and

$$
\|y\|_{C} \geq r_{0}+1
$$

This is a contradiction which proves

$$
X\left(\tilde{f}_{0}, t_{0}, c_{0}\right) \subseteq X\left(f_{0}, t_{0}, c_{0}\right)
$$

Since

$$
\left\|\tilde{f}_{m}(t, x)\right\| \leq f_{m}^{\star}(t), \quad t \in I, x \in \mathbb{R}^{n}, m \in \mathbb{N}
$$

according to Corollary 6.1 , for arbitrary $m \in \mathbb{N}$, any element of the set $X\left(\tilde{f}_{m}, t_{m}, c_{m}\right)$ exists on I, i.e.,

$$
X\left(\tilde{f}_{m}, t_{m}, c_{m}\right) \subset C\left(I, \mathbb{R}^{n}\right), \quad m \in \mathbb{N}
$$

Next, we prove that

$$
\lim _{m \rightarrow \infty} X\left(\tilde{f}_{m}, t_{m}, c_{m}\right) \subseteq X\left(f_{0}, t_{0}, c_{0}\right)
$$

We assume the opposite. Then, there exist $\varepsilon_{0}>0$, an increasing sequence $\left\{m_{k}\right\}_{k=1}^{\infty}$ of positive integers, and a sequence $\left\{x_{k}\right\}_{k=1}^{\infty}$ of functions from the space $C\left(I, \mathbb{R}^{n}\right)$ such that

$$
x_{k} \in X\left(\tilde{f}_{m_{k}}, t_{m_{k}}, c_{m_{k}}\right), \quad k \in \mathbb{N}
$$

and that

$$
x_{k} \notin X_{\varepsilon_{0}}\left(f_{0}, t_{0}, c_{0}\right), \quad k \in \mathbb{N} .
$$

Evidently,

$$
x_{k}(t)=c_{m_{k}}+y_{k}(t)+z_{k}(t), \quad t \in I, k \in \mathbb{N},
$$

where

$$
y_{k}(t)=\int_{t_{m_{k}}}^{t} \tilde{f}_{m_{k}}\left(\tau, x_{k}(\tau)\right)-f_{m_{k}}(\tau, 0) \mathrm{d} \tau, \quad t \in I, k \in \mathbb{N},
$$

and

$$
z_{k}(t)=\int_{t_{m_{k}}}^{t} f_{m_{k}}(\tau, 0) \mathrm{d} \tau, \quad t \in I, k \in \mathbb{N}
$$

From the condition 3., we obtain

$$
\begin{aligned}
\left\|\tilde{f}_{m}(t, x)-f_{m}(t, 0)\right\| & =\left\|f_{m}(t, \chi(x))-f_{m}(t, 0)\right\| \\
& \leq \omega_{r_{0}+1}(t,\|\chi(x)\|) \\
& \leq \omega_{r_{0}+1}\left(t, r_{0}+1\right), \quad t \in I, x \in \mathbb{R}^{n}, m \in \mathbb{N},
\end{aligned}
$$

because, without loss of generality, we can assume that the function $\omega_{r_{0}+1}$ is non-decreasing in the second variable. Thus,

$$
\left\|y_{k}^{\prime}(t)\right\| \leq \omega_{r_{0}+1}\left(t, r_{0}+1\right)
$$

for almost all $t \in I, k \in \mathbb{N}$. Hence, the functions $y_{k}, k \in \mathbb{N}$, are equicontinuous. Moreover, we have

$$
\begin{aligned}
\left\|y_{k}(t)\right\| & \leq\left|\int_{t_{m_{k}}}^{t}\left\|y_{k}^{\prime}(\tau)\right\| \mathrm{d} \tau\right| \\
& \leq \int_{I} \omega_{r_{0}+1}\left(\tau, r_{0}+1\right) \mathrm{d} \tau, \quad t \in I, k \in \mathbb{N},
\end{aligned}
$$

i.e., the functions $y_{k}, k \in \mathbb{N}$, are uniformly bounded. According to the Arzelà-Ascoli theorem, without loss of generality, we can assume that the sequence $\left\{y_{k}\right\}_{k=1}^{\infty}$ is uniformly convergent.

At the same time, for $t \in I, k \in \mathbb{N}$, we have

$$
\begin{aligned}
\left\|z_{k}(t)-\int_{t_{0}}^{t} f_{0}(\tau, 0) \mathrm{d} \tau\right\| \leq & \left\|\int_{t_{0}}^{t_{m_{k}}} f_{m_{k}}(\tau, 0) \mathrm{d} \tau\right\|+\left\|\int_{t_{0}}^{t} f_{m_{k}}(\tau, 0) \mathrm{d} \tau-\int_{t_{0}}^{t} f_{0}(\tau, 0) \mathrm{d} \tau\right\| \\
\leq & \left\|\int_{t_{0}}^{t_{m_{k}}} f_{m_{k}}(\tau, 0) \mathrm{d} \tau-\int_{t_{0}}^{t_{m_{k}}} f_{0}(\tau, 0) \mathrm{d} \tau\right\|+\left\|\int_{t_{0}}^{t_{m_{k}}} f_{0}(\tau, 0) \mathrm{d} \tau\right\| \\
& \quad+\left\|\int_{t_{0}}^{t} f_{m_{k}}(\tau, 0) \mathrm{d} \tau-\int_{t_{0}}^{t} f_{0}(\tau, 0) \mathrm{d} \tau\right\| \\
\leq & \int_{t_{0}}^{t_{m_{k}}}\left\|f_{0}(\tau, 0)\right\| \mathrm{d} \tau \\
& +2 \max \left\{\left\|\int_{t_{0}}^{s} f_{m_{k}}(\tau, 0) \mathrm{d} \tau-\int_{t_{0}}^{s} f_{0}(\tau, 0) \mathrm{d} \tau\right\| ; s \in I\right\} .
\end{aligned}
$$

Thus, from the conditions 1. and 2., we obtain

$$
\lim _{k \rightarrow \infty} z_{k}(t)=\int_{t_{0}}^{t} f_{0}(\tau, 0) \mathrm{d} \tau
$$

uniformly on I. From

$$
x_{k}(t)=c_{m_{k}}+y_{k}(t)+z_{k}(t), \quad t \in I, k \in \mathbb{N},
$$

from the condition 1., and from the uniform convergences of the sequences $\left\{y_{k}\right\}_{k=1}^{\infty}$ and $\left\{z_{k}\right\}_{k=1}^{\infty}$ obtained above, it follows that there exists $\tilde{x} \in C\left(I, \mathbb{R}^{n}\right)$ such that

$$
\lim _{k \rightarrow \infty} x_{k}(t)=\tilde{x}(t)
$$

uniformly on I.
Now, we show that

$$
\tilde{x} \in X\left(\tilde{f}_{0}, t_{0}, c_{0}\right) .
$$

From

$$
x_{k} \in X\left(\tilde{f}_{m_{k}}, t_{m_{k}}, c_{m_{k}}\right), \quad k \in \mathbb{N},
$$

it follows

$$
\begin{equation*}
x_{k}(t)=x_{k}\left(t_{0}\right)+\int_{t_{0}}^{t} f_{m_{k}}\left(\tau, \chi\left(x_{k}(\tau)\right)\right) \mathrm{d} \tau, \quad t \in I, k \in \mathbb{N} . \tag{8.1}
\end{equation*}
$$

Since

$$
\begin{aligned}
& \left\|x_{k}\left(t_{0}\right)-c_{0}\right\| \leq\left\|x_{k}\left(t_{0}\right)-\tilde{x}\left(t_{0}\right)\right\|+\left\|\tilde{x}\left(t_{0}\right)-\tilde{x}\left(t_{m_{k}}\right)\right\| \\
& \quad+\left\|\tilde{x}\left(t_{m_{k}}\right)-x_{k}\left(t_{m_{k}}\right)\right\|+\left\|x_{k}\left(t_{m_{k}}\right)-c_{0}\right\| \\
& \leq 2\left\|x_{k}-\tilde{x}\right\|_{C}+\left\|\tilde{x}\left(t_{0}\right)-\tilde{x}\left(t_{m_{k}}\right)\right\|+\left\|c_{m_{k}}-c_{0}\right\|
\end{aligned}
$$

for all $k \in \mathbb{N}$, from the condition 1., from the uniform limit

$$
\lim _{k \rightarrow \infty} x_{k}(t)=\tilde{x}(t)
$$

on I, and from the continuity of \tilde{x}, we obtain

$$
\lim _{k \rightarrow \infty} x_{k}\left(t_{0}\right)=c_{0} .
$$

Next,

$$
\lim _{k \rightarrow \infty} \chi\left(x_{k}(t)\right)=\chi(\tilde{x}(t))
$$

uniformly on I. Thus, (8.1) and Lemma 8.1 give

$$
\tilde{x}(t)=c_{0}+\int_{t_{0}}^{t} \tilde{f}_{0}(\tau, \tilde{x}(\tau)) \mathrm{d} \tau, \quad t \in I,
$$

i.e.,

$$
\tilde{x} \in X\left(\tilde{f}_{0}, t_{0}, c_{0}\right) .
$$

Therefore,

$$
\tilde{x} \in X\left(f_{0}, t_{0}, c_{0}\right) .
$$

Since \tilde{x} is the uniform limit of the sequence $\left\{x_{k}\right\}_{k=1}^{\infty}$, there exists $k_{0} \in \mathbb{N}$ such that

$$
\left\|\tilde{x}-x_{k}\right\|_{C}<\varepsilon_{0}, \quad k \geq k_{0}, k \in \mathbb{N}
$$

and, consequently,

$$
x_{k} \in X_{\varepsilon_{0}}\left(f_{0}, t_{0}, c_{0}\right), \quad k \geq k_{0}, k \in \mathbb{N}
$$

which is a contradiction with

$$
x_{k} \notin X_{\varepsilon_{0}}\left(f_{0}, t_{0}, c_{0}\right), \quad k \in \mathbb{N} .
$$

The contradiction proves

$$
\lim _{m \rightarrow \infty} X\left(\tilde{f}_{m}, t_{m}, c_{m}\right) \subseteq X\left(f_{0}, t_{0}, c_{0}\right)
$$

From Definition 8.2, it follows the existence of $m_{0} \in \mathbb{N}$ for which

$$
X\left(\tilde{f}_{m}, t_{m}, c_{m}\right) \subseteq X_{1}\left(f_{0}, t_{0}, c_{0}\right), \quad m \geq m_{0}, m \in \mathbb{N}
$$

Let $m \geq m_{0}(m \in \mathbb{N})$ and $y \in X\left(\tilde{f}_{m}, t_{m}, c_{m}\right)$ be arbitrary. Then, $y \in X_{1}\left(f_{0}, t_{0}, c_{0}\right)$, i.e., there exists $x \in X\left(f_{0}, t_{0}, c_{0}\right)$ such that $\|y-x\|_{C}<1$. Thus,

$$
\|y\|_{C}<\|x\|_{C}+1 \leq r_{0}+1,
$$

i.e.,

$$
y \in X\left(f_{m}, t_{m}, c_{m}\right) .
$$

We have obtained that

$$
X\left(\tilde{f}_{m}, t_{m}, c_{m}\right) \subseteq X\left(f_{m}, t_{m}, c_{m}\right), \quad m \geq m_{0}, m \in \mathbb{N}
$$

The opposite inclusion is also valid, which gives

$$
X\left(\tilde{f}_{m}, t_{m}, c_{m}\right)=X\left(f_{m}, t_{m}, c_{m}\right), \quad m \geq m_{0}, m \in \mathbb{N}
$$

We have proved that

$$
X\left(\tilde{f}_{m}, t_{m}, c_{m}\right) \subset C\left(I, \mathbb{R}^{n}\right), \quad m \in \mathbb{N}
$$

Hence,

$$
X\left(f_{m}, t_{m}, c_{m}\right) \subset C\left(I, \mathbb{R}^{n}\right), \quad m \geq m_{0}, m \in \mathbb{N} .
$$

Now, it is enough to consider

$$
\lim _{m \rightarrow \infty} X\left(\tilde{f}_{m}, t_{m}, c_{m}\right) \subseteq X\left(f_{0}, t_{0}, c_{0}\right)
$$

i.e.,

$$
\lim _{m \rightarrow \infty} X\left(f_{m}, t_{m}, c_{m}\right) \subseteq X\left(f_{0}, t_{0}, c_{0}\right)
$$

Corollary 8.1. Let the assumptions 1.-4. from Theorem 8.1 be valid and let

$$
x_{m} \in X\left(f_{m}, t_{m}, c_{m}\right), \quad m \in \mathbb{N}
$$

Then, the sequence $\left\{x_{m}\right\}_{m=1}^{\infty}$ has a subsequence $\left\{x_{m_{k}}\right\}_{k=1}^{\infty}$ such that

$$
\lim _{k \rightarrow \infty} x_{m_{k}}(t)=x(t)
$$

uniformly on I, where

$$
x \in X\left(f_{0}, t_{0}, c_{0}\right) .
$$

Proof. From Theorem 8.1, it follows the existence of $m_{0} \in \mathbb{N}$ such that

$$
x_{m} \in C\left(I, \mathbb{R}^{n}\right), \quad m \geq m_{0}, m \in \mathbb{N} .
$$

In addition,

$$
\lim _{m \rightarrow \infty} X\left(f_{m}, t_{m}, c_{m}\right) \subseteq X\left(f_{0}, t_{0}, c_{0}\right)
$$

Thus, there exists $r_{0}>0$ for which

$$
\left\|x_{m}(t)\right\| \leq r_{0}, \quad t \in I, m \geq m_{0}, m \in \mathbb{N}
$$

We recall that the set $X\left(f_{0}, t_{0}, c_{0}\right)$ is bounded in the space $C\left(I, \mathbb{R}^{n}\right)$ (due to Theorem 4.1). We have obtained that the functions of the sequence $\left\{x_{m}\right\}_{m=m_{0}}^{\infty}$ are uniformly bounded.

Obviously,

$$
x_{m}(t)=x_{m}\left(t_{0}\right)+y_{m}(t)+z_{m}(t), \quad t \in I, m \geq m_{0}, m \in \mathbb{N},
$$

where

$$
y_{m}(t)=\int_{t_{0}}^{t} f_{m}\left(\tau, x_{m}(\tau)\right)-f_{m}(\tau, 0) \mathrm{d} \tau, \quad t \in I, m \geq m_{0}, m \in \mathbb{N},
$$

and

$$
z_{m}(t)=\int_{t_{0}}^{t} f_{m}(\tau, 0) \mathrm{d} \tau, \quad t \in I, m \geq m_{0}, m \in \mathbb{N}
$$

From the condition 3., we obtain

$$
\begin{aligned}
\left\|f_{m}(t, x)-f_{m}(t, 0)\right\| & \leq \omega_{r_{0}}(t,\|x\|) \\
& \leq \omega_{r_{0}}\left(t, r_{0}\right), \quad t \in I, x \in B\left[0, r_{0}\right], m \geq m_{0}, m \in \mathbb{N},
\end{aligned}
$$

because we can assume (without loss of generality) that the function $\omega_{r_{0}}$ is non-decreasing in the second variable. At the same time, we have

$$
\left\|y_{m}^{\prime}(t)\right\| \leq \omega_{r_{0}}\left(t, r_{0}\right)
$$

for almost all $t \in I$ and all $m \geq m_{0}, m \in \mathbb{N}$. Hence, the functions of the sequence $\left\{y_{m}\right\}_{m=m_{0}}^{\infty}$ are equicontinuous. From the condition 2., we get

$$
\lim _{m \rightarrow \infty} z_{m}(t)=\int_{t_{0}}^{t} f_{0}(\tau, 0) \mathrm{d} \tau
$$

uniformly on I. Thus, the functions of the sequence $\left\{z_{m}\right\}_{m=m_{0}}^{\infty}$ are equicontinuous. Therefore, the functions of the sequence $\left\{x_{m}\right\}_{m=m_{0}}^{\infty}$ are equicontinuous as well.

Using the Arzelà-Ascoli theorem, from the sequence $\left\{x_{m}\right\}_{m=m_{0}}^{\infty}$, one can extract a subsequence $\left\{x_{m_{k}}\right\}_{k=1}^{\infty}$ satisfying

$$
\lim _{k \rightarrow \infty} x_{m_{k}}(t)=x(t)
$$

uniformly on I, where $x \in C\left(I, \mathbb{R}^{n}\right)$.

It remains to prove that $x \in X\left(f_{0}, t_{0}, c_{0}\right)$. Let $\varepsilon>0$ be arbitrary. Then, there exists $k_{0} \in \mathbb{N}$ such that

$$
x_{m_{k_{0}}} \in X_{\frac{\varepsilon}{2}}\left(f_{0}, t_{0}, c_{0}\right)
$$

and that

$$
\left\|x_{m_{k_{0}}}-x\right\|_{C}<\frac{\varepsilon}{2}
$$

Therefore, one can choose $y \in X\left(f_{0}, t_{0}, c_{0}\right)$ satisfying

$$
x_{m_{k_{0}}} \in B\left(y, \frac{\varepsilon}{2}\right),
$$

i.e.,

$$
\left\|y-x_{m_{k_{0}}}\right\|_{C}<\frac{\varepsilon}{2} .
$$

Thus, $x \in B(y, \varepsilon)$. From the arbitrariness of $\varepsilon>0$, it follows that x is an element of the closure of the set $X\left(f_{0}, t_{0}, c_{0}\right)$. This set is closed (see Remark 4.1). Therefore,

$$
x \in X\left(f_{0}, t_{0}, c_{0}\right) .
$$

Remark 8.1. From the proof of Theorem 8.1 and from Corollary 8.1, it follows that the condition 3. can be replaced by the following one:
$\overline{3}$. for any $r>0$, there exists a function $\omega_{r} \in K\left(I \times \mathbb{R}_{+}, \mathbb{R}_{+}\right)$such that

$$
\omega_{r}(-, 0) \equiv 0
$$

and that

$$
\left\|f_{m}(t, x)-f_{m}(t, y)\right\| \leq \omega_{r}(t,\|x-y\|)+\omega_{r}\left(t, \frac{1}{m}\right)
$$

for all $t \in I, x, y \in B[0, r], m \in \mathbb{N}$.

9. Kneser theorem

Let I be a compact interval. We consider the Cauchy problem

$$
\begin{align*}
x^{\prime} & =f(t, x), \tag{9.1}\\
x\left(t_{0}\right) & =c_{0}, \tag{9.2}
\end{align*}
$$

where $f \in K\left(I \times \mathbb{R}^{n}, \mathbb{R}^{n}\right), t_{0} \in I, c_{0} \in \mathbb{R}^{n}$. As $X\left(f, t_{0}, c_{0}\right)$, we denote the set of all non-extendable solutions of the problem (9.1), (9.2).

Theorem 9.1 (Kneser). If any non-extendable solution of the problem (9.1), (9.2) exists on I, then the set $X\left(f, t_{0}, c_{0}\right)$ is compact and connected in the space $C\left(I, \mathbb{R}^{n}\right)$.

Proof. According to Remark 4.1, the set $X\left(f, t_{0}, c_{0}\right)$ is compact in the space $C\left(I, \mathbb{R}^{n}\right)$. We show that it is connected. We suppose the opposite, i.e., let $X\left(f, t_{0}, c_{0}\right)$ be disconnected. Thus, there exist non-empty closed sets $X_{1}, X_{2} \subset X\left(f, t_{0}, c_{0}\right)$ such that

$$
X_{1} \cap X_{2}=\emptyset, \quad X_{1} \cup X_{2}=X\left(f, t_{0}, c_{0}\right) .
$$

We denote

$$
\delta=\inf \left\{\|y-x\|_{C} ; y \in X_{1}, x \in X_{2}\right\}
$$

We know that $\delta>0$. The sets X_{1}, X_{2} are compact. Hence, there exist $x_{1} \in X_{1}, x_{2} \in X_{2}$ such that

$$
\left\|x_{1}-x_{2}\right\|_{C}=\delta
$$

From the compactness of $X\left(f, t_{0}, c_{0}\right)$ in $C\left(I, \mathbb{R}^{n}\right)$, it follows the existence of $r>0$ such that

$$
\|x\|_{C} \leq r-1, \quad x \in X\left(f, t_{0}, c_{0}\right)
$$

Now, we use Lemma 1.6 and Remarks 1.2 and 1.3. There exists a sequence $\left\{f_{m}\right\}_{m=1}^{\infty}$ of functions satisfying the following conditions:
a. it holds

$$
f_{m} \in K\left(I \times \mathbb{R}^{n}, \mathbb{R}^{n}\right), \quad m \in \mathbb{N}
$$

b. for any $\rho>0$ and $m \in \mathbb{N}$, there exists a function $l_{\rho, m} \in L\left(I, \mathbb{R}_{+}\right)$such that

$$
\left\|f_{m}(t, x)-f_{m}(t, y)\right\| \leq l_{\rho, m}(t)\|x-y\|, \quad t \in I, x, y \in B[0, \rho] ;
$$

c. for almost all $t \in I$ and any $\rho>0$, it holds

$$
\lim _{m \rightarrow \infty} f_{m}(t, x)=f(t, x)
$$

uniformly on $B[0, \rho]$;
d. for any $\rho>0$, there exists a function $h_{\rho} \in L\left(I, \mathbb{R}_{+}\right)$such that

$$
\left\|f_{m}(t, x)\right\| \leq h_{\rho}(t), \quad t \in I, x \in B[0, \rho], m \in \mathbb{N}
$$

e. for any $\rho>0$, there exists a function $\omega_{\rho} \in K\left(I \times \mathbb{R}_{+}, \mathbb{R}_{+}\right)$such that

$$
\omega_{\rho}(-, 0) \equiv 0
$$

and that

$$
\left\|f_{m}(t, x)-f_{m}(t, y)\right\| \leq \omega_{\rho}(t,\|x-y\|)+\omega_{\rho}\left(t, \frac{1}{m}\right)
$$

for all $t \in I, x, y \in B[0, \rho], m \in \mathbb{N}$.
For all $\lambda \in[0,1]$ and $m \in \mathbb{N}$, we put

$$
\begin{aligned}
f_{\lambda, m}(t, x)=f_{m}(t, x) & +(1-\lambda)\left[f\left(t, x_{1}(t)\right)-f_{m}\left(t, x_{1}(t)\right)\right] \\
& +\lambda\left[f\left(t, x_{2}(t)\right)-f_{m}\left(t, x_{2}(t)\right)\right], \quad t \in I, x \in \mathbb{R}^{n} .
\end{aligned}
$$

One can easily verify that the functions $f_{\lambda, m}$ satisfy the following conditions:

1. it holds

$$
f_{\lambda, m} \in K\left(I \times \mathbb{R}^{n}, \mathbb{R}^{n}\right), \quad \lambda \in[0,1], m \in \mathbb{N}
$$

2. for any $\rho>0$ and $m \in \mathbb{N}$, there exists a function $l_{\rho, m} \in L\left(I, \mathbb{R}_{+}\right)$such that

$$
\left\|f_{\lambda, m}(t, x)-f_{\lambda, m}(t, y)\right\| \leq l_{\rho, m}(t)\|x-y\|, \quad t \in I, x, y \in B[0, \rho], \lambda \in[0,1] ;
$$

3. for almost all $t \in I$ and any $\rho>0$, it holds

$$
\lim _{m \rightarrow \infty} f_{\lambda, m}(t, x)=f(t, x)
$$

uniformly with respect to $x \in B[0, \rho], \lambda \in[0,1]$;
4. for any $\rho>0$, it holds

$$
\left\|f_{\lambda, m}(t, x)\right\| \leq \tilde{h}_{\rho}(t), \quad t \in I, x \in B[0, \rho], \lambda \in[0,1], m \in \mathbb{N}
$$

where

$$
\tilde{h}_{\rho}(t)=h_{\rho}(t)+h_{r-1}(t)+\left\|f\left(t, x_{1}(t)\right)\right\|+\left\|f\left(t, x_{2}(t)\right)\right\|, \quad t \in I
$$

5. for any $\rho>0$, there exists a function $\omega_{\rho} \in K\left(I \times \mathbb{R}_{+}, \mathbb{R}_{+}\right)$with the property that

$$
\omega_{\rho}(-, 0) \equiv 0
$$

and that

$$
\left\|f_{\lambda, m}(t, x)-f_{\lambda, m}(t, y)\right\| \leq \omega_{\rho}(t,\|x-y\|)+\omega_{\rho}\left(t, \frac{1}{m}\right)
$$

for all $t \in I, x, y \in B[0, \rho], \lambda \in[0,1], m \in \mathbb{N}$.
For all $\lambda \in[0,1]$ and $m \in \mathbb{N}$, we consider the problem

$$
\begin{align*}
x^{\prime} & =f_{\lambda, m}(t, x), \tag{9.3}\\
x\left(t_{0}\right) & =c_{0} . \tag{9.2}
\end{align*}
$$

Due to the condition 2., from Corollary 7.1, it follows that the problem (9.3), (9.2) is uniquely solvable for any $\lambda \in[0,1]$ and $m \in \mathbb{N}$. As $x_{\lambda, m}$, we denote the non-extendable solution of this problem. Since the convergence is uniform with respect to λ in the condition 3. and since the majorants are also independent on λ in the conditions 4 . and 5., the assumptions of Theorem 8.1 (Remark 8.1) are satisfied (uniformly with respect to λ). Thus, there exists $m_{0} \in \mathbb{N}$ such that, for all $m \geq m_{0}, m \in \mathbb{N}$, and $\lambda \in[0,1]$, the solution $x_{\lambda, m}$ exists on the interval I. Moreover, due to the inequality

$$
\|x\|_{C} \leq r-1, \quad x \in X\left(f, t_{0}, c_{0}\right)
$$

the proof of Theorem 8.1 guarantees that, without loss of generality, we can assume the inequality

$$
\left\|x_{\lambda, m}\right\|_{C} \leq r, \quad m \geq m_{0}, m \in \mathbb{N}, \lambda \in[0,1] .
$$

We denote

$$
\eta_{m}(\lambda)=\inf \left\{\left\|x_{\lambda, m}-y\right\|_{C} ; y \in X_{1}\right\}, \quad \lambda \in[0,1], m \geq m_{0}, m \in \mathbb{N}
$$

From the definition of the function $f_{\lambda, m}$ and the uniqueness of the solution $x_{\lambda, m}$, it follows that

$$
x_{0, m} \equiv x_{1}, \quad x_{1, m} \equiv x_{2}, \quad m \in \mathbb{N}
$$

Therefore, $\eta_{m}(0)=0, \eta_{m}(1)=\delta, m \geq m_{0}, m \in \mathbb{N}$. Let $m \geq m_{0}(m \in \mathbb{N})$ be arbitrarily given. Let $\lambda_{0} \in[0,1]$ be also arbitrarily given and let $\left\{\lambda_{k}\right\}_{k=1}^{\infty} \subset[0,1]$ be a sequence for which

$$
\lim _{k \rightarrow \infty} \lambda_{k}=\lambda_{0}
$$

Using Theorem 8.1, one can verify that

$$
\lim _{k \rightarrow \infty} x_{\lambda_{k}, m}(t)=x_{\lambda_{0}, m}(t)
$$

uniformly on I. Since the set X_{1} is compact, from the definition of the function η_{m}, it follows that

$$
\lim _{k \rightarrow \infty} \eta_{m}\left(\lambda_{k}\right)=\eta_{m}\left(\lambda_{0}\right)
$$

i.e., the function η_{m} is continuous on $[0,1]$. Therefore,

$$
\eta_{m}(0)=0, \quad \eta_{m}(1)=\delta, \quad m \geq m_{0}, m \in \mathbb{N}
$$

implies that, for any $m \geq m_{0}, m \in \mathbb{N}$, there exists $\lambda_{m} \in(0,1)$ with the property that

$$
\eta_{m}\left(\lambda_{m}\right)=\frac{\delta}{2}
$$

i.e.,

$$
\inf \left\{\left\|x_{\lambda_{m}, m}-y\right\|_{C} ; y \in X_{1}\right\}=\frac{\delta}{2}, \quad m \geq m_{0}, m \in \mathbb{N}
$$

Due to the condition 4. and

$$
\left\|x_{\lambda, m}\right\|_{C} \leq r, \quad m \geq m_{0}, m \in \mathbb{N}, \lambda_{0} \in[0,1]
$$

the functions of the sequence $\left\{x_{\lambda_{m}, m}\right\}_{m=m_{0}}^{\infty}$ have to be uniformly bounded and equicontinuous. According to the Arzelà-Ascoli theorem, without loss of generality, we can assume that this sequence is convergent, i.e., there exists $\tilde{x} \in C\left(I, \mathbb{R}^{n}\right)$ such that

$$
\lim _{m \rightarrow \infty} x_{\lambda_{m}, m}(t)=\tilde{x}(t)
$$

uniformly on I.
Next, Theorem 8.1 gives

$$
\tilde{x} \in X\left(f, t_{0}, c_{0}\right) .
$$

Since the set X_{1} is compact, we have

$$
\inf \left\{\|\tilde{x}-y\|_{C} ; y \in X_{1}\right\}=\frac{\delta}{2}
$$

Thus, we know that $\tilde{x} \notin X_{1}$ and, consequently, $\tilde{x} \in X_{2}$, which is a contradiction. The contradiction proves that the set $X\left(f, t_{0}, c_{0}\right)$ is connected.

10. Fukuhara theorems

Let I be a compact interval. We consider the Cauchy problem

$$
\begin{align*}
x^{\prime} & =f(t, x), \tag{10.1}\\
x\left(t_{0}\right) & =c_{0}, \tag{10.2}
\end{align*}
$$

where $f \in K\left(I \times \mathbb{R}^{n}, \mathbb{R}^{n}\right), t_{0} \in I, c_{0} \in \mathbb{R}^{n}$. As $X\left(f, t_{0}, c_{0}\right)$, we denote the set of all non-extendable solutions of the problem (10.1), (10.2). For $M \subseteq \mathbb{R}^{m}$, we denote

$$
X\left(f, t_{0}, M\right)=\bigcup_{c \in M} X\left(f, t_{0}, c\right)
$$

Theorem 10.1 (1. Fukuhara). Let M be a closed and connected subset of \mathbb{R}^{n}. If, for any $c_{0} \in M$, all non-extendable solution of the problem (10.1), (10.2) exists on I, then the set $X\left(f, t_{0}, M\right)$ is closed and connected in the space $C\left(I, \mathbb{R}^{n}\right)$. Moreover, if the set M is bounded, then the set $X\left(f, t_{0}, M\right)$ is compact.

Proof. The set $X\left(f, t_{0}, M\right)$ is closed in the space $C\left(I, \mathbb{R}^{n}\right)$. Indeed, it suffices to consider Theorem 8.1 and the fact that the set M is closed.

We show that the set $X\left(f, t_{0}, M\right)$ is connected. We suppose the opposite. Then, there exist non-empty closed sets $X_{1}, X_{2} \subset X\left(f, t_{0}, M\right)$ such that

$$
X_{1} \cap X_{2}=\emptyset, \quad X_{1} \cup X_{2}=X\left(f, t_{0}, M\right) .
$$

Let $c_{0} \in M$ be arbitrary. We denote

$$
Y_{i}=X\left(f, t_{0}, c_{0}\right) \cap X_{i}, \quad i \in\{1,2\} .
$$

If $Y_{1} \neq \emptyset$ and $Y_{2} \neq \emptyset$, then Y_{1} and Y_{2} are non-empty closed subsets of $X\left(f, t_{0}, c_{0}\right)$ such that

$$
Y_{1} \cap Y_{2}=\emptyset, \quad Y_{1} \cup Y_{2}=X\left(f, t_{0}, c_{0}\right) .
$$

Next, from Theorem 9.1, it follows that the set $X\left(f, t_{0}, c_{0}\right)$ is a subset of X_{i} for some $i \in\{1,2\}$. We denote

$$
M_{i}=\left\{c_{0} \in M ; X\left(f, t_{0}, c_{0}\right) \subseteq X_{i}\right\}, \quad i \in\{1,2\} .
$$

Obviously, $M_{1} \neq \emptyset, M_{2} \neq \emptyset, M_{1} \cap M_{2}=\emptyset$, and $M_{1} \cup M_{2}=M$.
We prove that the set M_{1} is closed. Let $\left\{c_{m}\right\}_{m=1}^{\infty} \subseteq M_{1}$ be such that

$$
\lim _{m \rightarrow \infty} c_{m}=c_{0} .
$$

Then, $c_{0} \in M$ (M is closed) and there exists a sequence $\left\{x_{m}\right\}_{m=1}^{\infty} \subseteq X_{1}$ such that

$$
x_{m} \in X\left(f, t_{0}, c_{m}\right), \quad m \in \mathbb{N} .
$$

Without loss of generality (see Corollary 8.1), we can assume that

$$
\lim _{m \rightarrow \infty} x_{m}(t)=\tilde{x}(t)
$$

uniformly on I, where

$$
\tilde{x} \in X\left(f, t_{0}, c_{0}\right) .
$$

Since the set X_{1} is closed, we see that $\tilde{x} \in X_{1}$. Thus, $c_{0} \in M_{1}$, which means that M_{1} is closed.

Analogously, one can prove that M_{2} is closed as well. Hence, we have proved that M_{1}, M_{2} are non-empty closed subsets of the set M satisfying

$$
M_{1} \cap M_{2}=\emptyset, \quad M_{1} \cup M_{2}=M
$$

which is a contradiction with the assumption that M is connected. The contradiction means that the set $X\left(f, t_{0}, M\right)$ is connected.

Now, we consider that the set M is bounded. Let $\left\{x_{m}\right\}_{m=1}^{\infty}$ be a sequence of elements of $X\left(f, t_{0}, M\right)$. Then, there exists a sequence $\left\{c_{m}\right\}_{m=1}^{\infty} \subseteq M$ such that

$$
x_{m} \in X\left(f, t_{0}, c_{m}\right), \quad m \in \mathbb{N} .
$$

Due to the compactness of the set M, without loss of generality, we can assume that

$$
\lim _{m \rightarrow \infty} c_{m}=c_{0}
$$

where $c_{0} \in M$. From Corollary 8.1, it follows the existence of a subsequence $\left\{x_{m_{k}}\right\}_{k=1}^{\infty}$ of the sequence $\left\{x_{m}\right\}_{m=1}^{\infty}$ satisfying

$$
\lim _{k \rightarrow \infty} x_{m_{k}}(t)=x(t)
$$

uniformly on I, where

$$
x \in X\left(f, t_{0}, c_{0}\right)
$$

Since $c_{0} \in M$, we see that

$$
x \in X\left(f, t_{0}, M\right)
$$

i.e., the set $X\left(f, t_{0}, M\right)$ is compact in the space $C\left(I, \mathbb{R}^{n}\right)$.

Let

$$
X\left(f, t_{0}, c_{0}\right) \subseteq C\left(I, \mathbb{R}^{n}\right)
$$

We denote

$$
W\left(f, t_{0}, c_{0}\right)=\left\{(t, x(t)) ; t \in I, x \in X\left(f, t_{0}, c_{0}\right)\right\}
$$

and, for $t \in I$, we put

$$
W_{t}\left(f, t_{0}, c_{0}\right)=\left\{x \in \mathbb{R}^{n} ;(t, x) \in W\left(f, t_{0}, c_{0}\right)\right\} .
$$

Theorem 10.2 (2. Fukuhara). If any non-extendable solution of the problem (10.1), (10.2) exists on I, then, for all $\bar{t} \in I$ and $\bar{c} \in \partial W_{\hat{t}}\left(f, t_{0}, c_{0}\right)$, there exists $\bar{x} \in X\left(f, t_{0}, c_{0}\right)$ such that $\bar{x}(\bar{t})=\bar{c}$ and the graph of the function \bar{x} between t_{0} and \bar{t} is on the boundary of the set $W\left(f, t_{0}, c_{0}\right)$, i.e.,

$$
(t, \bar{x}(t)) \in \partial W\left(f, t_{0}, c_{0}\right), \quad \min \left\{t_{0}, \bar{t}\right\} \leq t \leq \max \left\{t_{0}, \bar{t}\right\} .
$$

Proof. If we use the boundedness of the set $X\left(f, t_{0}, c_{0}\right)$ (see Theorem 4.1), then, without loss of generality, we can assume the existence of a function $h \in L\left(I, \mathbb{R}_{+}\right)$for which

$$
\|f(t, x)\| \leq h(t), \quad t \in I, x \in \mathbb{R}^{n}
$$

We prove the theorem in the case when $\bar{t}>t_{0}$ (in the second case, the proof is analogical). According to Theorem 9.1, $W_{\bar{t}}\left(f, t_{0}, c_{0}\right)$ is a connected and compact subset of \mathbb{R}^{n}. Therefore, there exists a sequence $\left\{c_{k}\right\}_{k=1}^{\infty} \subset \mathbb{R}^{n}$ such that

$$
c_{k} \notin W_{\bar{t}}\left(f, t_{0}, c_{0}\right), \quad k \in \mathbb{N},
$$

and that

$$
\lim _{k \rightarrow \infty} c_{k}=\bar{c}
$$

For $k \in \mathbb{N}$, we consider the problem

$$
\begin{align*}
x^{\prime} & =f(t, x), \tag{10.1}\\
x(\bar{t}) & =c_{k} . \tag{10.3}
\end{align*}
$$

We assume that

$$
\|f(t, x)\| \leq h(t), \quad t \in I, x \in \mathbb{R}^{n}
$$

Therefore, for all $k \in \mathbb{N}$, there exists a solution x_{k} of the problem (10.1), (10.3) on the interval I, where (see also Corollary 6.1)

$$
x_{k} \in X\left(f, \bar{t}, c_{k}\right), \quad k \in \mathbb{N} .
$$

By contradiction, we show that

$$
\left(t, x_{k}(t)\right) \notin W\left(f, t_{0}, c_{0}\right), \quad t \in\left[t_{0}, \vec{t}\right], k \in \mathbb{N} .
$$

If, for some $k \in \mathbb{N}$, there exists $t^{\star} \in\left[t_{0}, \bar{t}\right)$ such that

$$
\left(t^{\star}, x_{k}\left(t^{\star}\right)\right) \in W\left(f, t_{0}, c_{0}\right),
$$

then one can find $\tilde{x} \in X\left(f, t_{0}, c_{0}\right)$ satisfying $\tilde{x}\left(t^{\star}\right)=x_{k}\left(t^{\star}\right)$. We denote

$$
y(t)= \begin{cases}\tilde{x}(t), & t \in\left[\inf I, t^{\star}\right] ; \\ x_{k}(t), & t \in\left(t^{\star}, \sup I\right] .\end{cases}
$$

Obviously,

$$
y \in X\left(f, t_{0}, c_{0}\right)
$$

Therefore,

$$
y(\bar{t}) \in W_{\bar{t}}\left(f, t_{0}, c_{0}\right) .
$$

At the same time,

$$
y(\bar{t})=c_{k} \notin W_{\bar{t}}\left(f, t_{0}, c_{0}\right),
$$

which is a contradiction.
Corollary 6.1 gives that all non-extendable solution of the problem

$$
\begin{align*}
x^{\prime} & =f(t, x), \tag{10.1}\\
x(\bar{t}) & =\bar{c} \tag{10.4}
\end{align*}
$$

exists on the interval I. Therefore, with regard to Corollary 8.1, without loss of generality, we can assume that

$$
\lim _{k \rightarrow \infty} x_{k}(t)=x_{0}(t)
$$

uniformly on I, where

$$
x_{0} \in X(f, \bar{t}, \bar{c}) .
$$

Let $s \in\left(t_{0}, \bar{t}\right)$ be arbitrarily given. We consider the sets $W_{s}\left(f, t_{0}, c_{0}\right)$ and $W_{s}(f, \bar{t}, \bar{c})$. We have proved that $x_{0}(s)$ is not an inner point of the set $W_{s}\left(f, t_{0}, c_{0}\right)$, i.e.,

$$
x_{0}(s) \notin W_{s}\left(f, t_{0}, c_{0}\right) \quad \text { or } \quad x_{0}(s) \in \partial W_{s}\left(f, t_{0}, c_{0}\right) .
$$

But, it is valid that

$$
W_{s}\left(f, t_{0}, c_{0}\right) \cap W_{s}(f, \bar{t}, \bar{c}) \neq \emptyset .
$$

Indeed, since $(\bar{t}, \bar{c}) \in W\left(f, t_{0}, c_{0}\right)$, there exists $\tilde{x} \in X\left(f, t_{0}, c_{0}\right)$ such that $\tilde{x}(\bar{t})=\bar{c}$. This fact means that

$$
\tilde{x} \in X(f, \bar{t}, \bar{c}) .
$$

Thus,

$$
\tilde{x}(s) \in W_{s}\left(f, t_{0}, c_{0}\right) \cap W_{s}(f, \bar{t}, \bar{c}) .
$$

The sets $W_{s}\left(f, t_{0}, c_{0}\right)$ and $W_{s}(f, \bar{t}, \bar{c})$ are connected and closed and they are not disjoint. There exists a point belonging to the set $W_{s}(f, \bar{t}, \bar{c})$ which is not in the interior of the set $W_{s}\left(f, t_{0}, c_{0}\right)$. Therefore, there exists a point $c_{s} \in \mathbb{R}^{n}$ such that

$$
c_{s} \in \partial W_{s}\left(f, t_{0}, c_{0}\right) \cap W_{s}(f, \bar{t}, \bar{c}) .
$$

Hence, there exists a solution \tilde{x}_{1} of the problem (10.1), (10.2) passing through the point $\left[s, c_{s}\right]$ and, at the same time, there exists a solution \tilde{x}_{2} of the problem (10.1), (10.4) passing through the point $\left[s, c_{s}\right]$. If we put

$$
y(t)= \begin{cases}\tilde{x}_{1}(t), & t \in[\inf I, s] ; \\ \tilde{x}_{2}(t), & t \in(s, \sup I],\end{cases}
$$

then

$$
y \in X\left(f, t_{0}, c_{0}\right), \quad y(s)=c_{s}, \quad y(\bar{t})=\bar{c}
$$

We have proved that, for any $s \in\left(t_{0}, \bar{t}\right)$, there exists $y \in X\left(f, t_{0}, c_{0}\right)$ such that

$$
y(\bar{t})=\bar{c}, \quad(s, y(s)) \in \partial W\left(f, t_{0}, c_{0}\right) .
$$

Thus, for an arbitrary set

$$
\left\{s_{1}, \ldots, s_{m}\right\} \subset\left(t_{0}, \bar{t}\right),
$$

there exists $y_{m} \in X\left(f, t_{0}, c_{0}\right)$ with the property that

$$
\begin{equation*}
y_{m}(\bar{t})=\bar{c}, \quad\left(s_{i}, y_{m}\left(s_{i}\right)\right) \in \partial W\left(f, t_{0}, c_{0}\right), \quad i \in\{1, \ldots, m\} . \tag{10.5}
\end{equation*}
$$

Let $\left\{s_{k}\right\}_{k=1}^{\infty}$ be dense in $\left(t_{0}, \bar{t}\right)$. It is obvious that, for any $m \in \mathbb{N}$, there exists $y_{m} \in$ $X\left(f, t_{0}, c_{0}\right)$ satisfying (10.5). Since the set $X\left(f, t_{0}, c_{0}\right)$ is compact in the space $C\left(I, \mathbb{R}^{n}\right)$, without loss of generality, we can assume that the sequence $\left\{y_{m}\right\}_{m=1}^{\infty}$ is convergent, i.e.,

$$
\lim _{m \rightarrow \infty} y_{m}(t)=\bar{x}(t)
$$

uniformly on I, where

$$
\bar{x} \in X\left(f, t_{0}, c_{0}\right) .
$$

Using (10.5), one can easily verify that

$$
(t, \bar{x}(t)) \in \partial W\left(f, t_{0}, c_{0}\right), \quad t \in\left[t_{0}, \bar{z}\right] .
$$

The proof is complete.

REFERENCES

[1] Y. Deng: Lectures, problems and solutions for ordinary differential equations. Hackensack: World Scientific, 2018.
[2] S.P. Hastings: Classical methods in ordinary differential equations: with applications to boundary value problems. Providence: American Mathematical Society, 2012.
[3] D. W. Jordan: Nonlinear ordinary differential equations-problems and solutions: a sourcebook for scientists and engineers. Oxford: Oxford University Press, 2007.
[4] A. K. Nandakumaran, P. S. Datti, R. K. George: Ordinary differential equations: principles and applications. New York: Cambridge University Press, 2017.
[5] C.E. Roberts: Ordinary differential equations: applications, models, and computing. Boca Raton: Chapman and Hall/CRC, 2010.
[6] D. G. Schaeffer: Ordinary differential equations: basics and beyond. New York: Springer, 2016.

[^0]: Tato publikace vznikla v rámci projektu Fond rozvoje Masarykovy univerzity (projekt MUNI/FR/1133/2018) realizovaného v období 1/2019-12/2019.

