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1. Auxiliary results

1.1 Notations

Blxo, ]

sgnx
[a,b]
(a,b)
m(A)
int(A)
JdA

C(I,R™)

Croc(I,R™)
C([a,0],R"™)
Cl()c(la Rm)
C"([a,b],R)

toc (I, R)

L(I,R™)

Lloc (17 Rm)

non-negative real numbers
column vectors with coordinates x1, ..., X,
the space of real vectors x = (x;)L; with the norm

m
[l =Y, bl
i=1

the closed ball with the centre xy € R™ and the radius r > 0, i.e.,

Blxo,r] = {x € R"™; [lx —xo|| < r}

the Euclidean inner product of vectors x,y € R™

the inequality between vectors x = (x;)i~;,y = (yi)ir; € R™ such
thatx; <y;, i € {l,...,m}

the vector (sgnx;)?,

the closed interval

the open interval

the Lebesgue measure of a set A C R™

the interior of a set A C R™

the boundary of a set A C R"”

a real interval, which is not degenerated to a point

the space of continuous and bounded vector functions u: I — R™
with the norm

lulle = sup {{Ju(®)[ ;2 € 1}

the set of continuous vector functions u: I — R"

the set of absolutely continuous vector functions u: [a,b] — R"
the set of vector functions u: I — R™, which are absolutely conti-
nuous on any compact subinterval [a,b] C I

the set of all functions u: [a,b] — R, whose n-th derivatives are
absolutely continuous

the set of all functions u: I — R such that u € C"([a,b],R) for all
interval [a,b] C I

the space of all vector functions u: I — R” which are strongly in-
tegrable in the Lebesgue sense with the norm

Jul, = [ ) ds

the set of all vector functions u: I — R™ such that u € L([a,b],R™)
for all interval [a,b] C I



Other notations are given by the range of considered values. For example, L(I,D)
is the set
{u: 1= D;ueL(I,R™)},

where D C R™.

1.2 Carathéodory class

Definition 1.1. Let A C R™ and D C R" be given. We say that a vector function
g: I x A — D belongs to the Carathéodory class and we write g € K(I x A,D) if the
following conditions:

1. the function g(¢,—): A — D is continuous for almost all z € I;
2. the function g(—,x): I — D is measurable for all x € A;

3. for all r > 0, there exists &, € L(I,R ) such that

llg(z,x)|| < h(2), tel,x e ANB[O,r],

are satisfied.
Definition 1.2. We say that a vector function g: I x R™ — R" is from the set
Kioe (I x R™,R")
if
g € K([a,b] x R™ R")
for all [a,b] C I.
Lemma 1.1. If g € K(I x R™,R") and if x € Cj,.(I,R™), then the vector function
t— g(t,x(1)), tel,
is measurable.

Lemma 1.2. Let g € K(I x R™R") be given and let A C R™ be bounded. Let
g (1) =sup{llg(t,x);x €A}, 1€l
Then, g* € L(I,R,).

Lemma 1.3. Let g € K(I x R™ R"). Then, there exists a function h € L(I,R ) and a
non-decreasing function @ € Cj,. (R4, Ry ) such that

g0l <h(@)e(llx]), — rel,xeR™

Lemma 1.4. Let g € K(I xR™,R"). Forall r > 0, there exists a function h, € L(I,R )
and a non-decreasing function @, € Cjoc(Ry,Ry) such that ¢,(0) =0 and

le(t,x) =@V < (@) @r(lx=yl), 7€l x5y €BlO,r].



Lemma 1.5. Let g € K(I x R™,R"). The operator
F) (=) =g(=x(=)),  xeC{R"),
maps the space C(I,R™) into the space L(I,R") continuously.

Proof. Forall x € C(I,R™), the function F(x): I — R" is measurable (see Lemma 1.1).
According to Definition 1.1, we have that F(x) € L(I,R"). Thus, the operator maps the
space C(I,R™) into the space L(I,R").

Let {x¢};_, € C(I,R™) and x € C(1,R™) satisfy

]}g{l [l —x[|c = 0.
Let r > 0 be such that
@) <r, x| <r, telkeN.
Therefore, there exists a function 4, € L(I, R} ) such that (see Lemma 1.4)
(. () —g(t,x(@)| <he(r),  1€l,kEN,

i.e.,
IIF () (2) = F(x)(2)]] < hy(2), tel,keN.

Since the function g(z,—): R™ — R" is continuous for almost all 7 € I, it holds

lim [F (x¢)(t) — F (x)(1)] = 0

k—yoo

for almost all # € 1. By the Lebesgue theorem, we have

||F(Xk)*F(X)||L:/HF(xk)(S)*F(X)(S)ll ds — 0 as k— oo
1

Thus, the operator F is continuous. O

Lemma 1.6. Ler g € K(I x R™,R"). For arbitrary r > 0, let a function h, € L(I,R )

satisfy
g, x)[ <he(2), 1€l xeB0,r].

Then, there exist functions g : I X R™ — R" for k € N such that:

1. all functions g have all partial derivatives with respect to the last m variables
and all functions g, and their partial derivatives belong to the class

K(I xR™ R");
2. forall r > 0, the inequality
gk (t,x)|| < hryr (1), tel,xeBl0,r],keN,
holds;
3. for almost allt € I and all r > 0, it holds
Jim gy (1,x) = g(t,x)

uniformly in B[0, 7).



Remark 1.1. If
lg(t,x)| <h(r), tel,xeR™,

then one can assume that 4, = & for all » > 0.

Remark 1.2. The functions g; from the statement of Lemma 1.6 have continuous partial
derivatives. Therefore, they are locally Lipschitz, i.e., for all » > 0 and k € N, there
exists a function /., € L(I,R. ) such that

Hgk(tvx) _gk(tvy)H < lr.,k(t) ||x_y||’ re [? X,y € B[O,I"]

Remark 1.3. The functions g; from Lemma 1.6 can be chosen in such a way that they
have the following property. For all > 0, there exists a function @, € K(I x R, R )
which is non-decreasing with respect to the second variable, ®,(—,0) =0, and

1
lert.0) -0 < on sl + o (1.7 ). relxy B kEN

Proof of Lemma 1.6. Let ¢;: R™ — R for k € N be functions satisfying the following
conditions:

a) the functions ¢ have continuous all partial derivatives on R";

b) the functions ¢ satisfy
m 1
or(x) =0, xeR ,||x||2%,kEN;

¢) it holds
/(pk(x)dle, keN.
Rm

Such functions can be constructed as follows. Let

e*ﬁ, 0<s<1;
0, s> 1.

Let px > 0, k € N, be such that
Pk /(p(m2k2x~x) dx=1.
Rm

We put
o (x) :pk(p(mzkzx-x)7 xeR™ keN.

Obviously, a) and c) are valid. It is known that
x]*> < m?(x-x), xeR™

If
Er
~k
then
m?k?(x-x) > 1



and, consequently, ¢ (x) = 0. Therefore, b) is valid as well.
‘We define

s(t.)= [ @O-Dgey)d  relxeR" keN.
Rm

The functions g satisfy the condition 1. Let r > 0 and x € B[0, ] be arbitrarily given.
We have

at)= [ @O-vglendn  relkeN.
B[0,r+1]

We obtain

st 0l < [ @y =) llg(e.n)l dy

B[0,r+1]
<ha(®) [ ab-xd
Bl0,r+1]
< hyr (1) / o) dy=hy1 (1),  telkeN,
Rm

which gives the condition 2.
It remains to prove the condition 3. Let r > 0 and x € B[0, r] be arbitrarily given.
Since

[ab-0d=1.  ken,
Rm
we have

g(f»X)=g(t7X)/<Pk(y—x)dy=/qvk(y—x)g@,x)dx rel,keN.
RWI Rm

Therefore,
8u(t.9) ~8(0) = [ ouly =) [g(y) — g(r.2)] dy

Rl"

(1.1)
= / or(y—x)[g(t,y) —g(t,x)]dy, tel,keN.
Bx.1]

Due to Lemma 1.4, there exists a function @, € K(I x Ry, R, ) which is non-decrea-
sing in the second variable, ®,41(—,0) =0, and

llg(t,y1) —gt, )l < @1 (2, |ly1 —y2ll),  t€1,y1,y2 € B0, r+1].

Therefore,

1 1
et~ st 00 (11 ). relyeB|ug].



From (1.1), we have

lex(t. 0=t 0 < [ @ly=x)8(r.3) = g(e5)] v

Blx.7]
< Wt < ) / (Pk y— x
5]
1
<a),+1< )/goky x)dy = a),_H(t k) tel,keN.
Thus, 3. is valid. O

1.3 Absolute continuity

Definition 1.3. We say that a function x: [a,b] — R™ is absolutely continuous on [a, b]
if, for every € > 0, there exists § > 0 such that, for any finite system of pairwise disjoint
subintervals

(ag,bx) C [a,b], ke{l,...,n},
satisfying

Z bk—ak
it holds
Z llx(br) — x(ar)|| < &.

We recall that the set of all absolutely continuous functions x: [a,b] — R™ is de-
noted by
C([a7b]aRm)'

Theorem 1.1. A function x: [a,b] — R™ is called absolutely continuous if and only if
the following conditions:

1. the function x is differentiable almost everywhere in [a,b];

2. the derivative

x' € L([a,b],R™);

3. it holds

are satisfied.



Remark 1.4. Let ty € [a,b] be arbitrarily given. If h € L([a,b],R™), then the function
x: [a,b] — R™ given by

x(r) = /h(s) ds, t € [a,b],

is absolutely continuous and x'(t) = h(t) for almost all ¢ € [a, b].



2. Existence of solutions

Let us consider the equation

X = f(t,x), (2.1)
where f € Kj,.(I x R",R").

Definition 2.1. Let Iy C I be an interval. We say that a function x: Iy — R" is a solution
of Eq. (2.1) if:

1. x € Cppelo,R™);

2. it holds
X (1) = f(t,x(1))

for almost all 7 € Ij.
Let g € Iy, co € R™. A solution x: Iy — R" of Eq. (2.1) satisfying the condition
x(t9) = co (2.2)
is called the solution of the Cauchy problem (2.1), (2.2).

Definition 2.2. Let A, B be sets of functions x: I — R” and let y € I. An operator
T: A — Bis called 7-Volterra if, for all x,y € A and all ¢ € I such that

x(s) = y(s), min{7y,7} <s < max{z,t},

it holds
T(x)(1) =T (y)().

Lemma 2.1. Let 1y € [a,b], co € R", r >0, and let
T: C(|a,b],B|co,r]) = C([a,b],B|co,7])

be a continuous ty-Volterra operator such that T (co)(to) = co. Let there exist a function
o € C([0,b—a],Ry) such that ®(0) = 0 and that

IT(x)(1) =T () () < @(le—sl), .5 €a,b],x € C(la,b], Blco, r]).
Then, the operator T has at least one fixed point, i.e., there exists a function
x € C([a,b],Blco,r])

such that
T (x)(t) = x(1), t € [a,b)].

Proof. Without loss of generality, we can assume that the function @ is non-decreasing.
We denote

jlto—a) jb—1)

I , je{l,....k—1},keN.
k o+ k J { }

Ii,j = |to—



For k € Nand ¢ € [a,b], we define

th—a th—a
r+ Ok , 1 <Itp— Ok ;

si(t) = § 1o, 1€ I
b—t b—1ty

T t>1y+

Obviously, the functions sy : [a,b] — [a,b], k € N, are continuous and
se) s <t —7l,  rrefablkeN,

For 1 € [a, D], we denote
Yio(t) = co
and
Yij) =T (j—1)(sx(@)),  je{l,....k—1},keN.
We show that
Vi, j(t) = Y j-1(t), tel,jed{l,....k—1},k>2,keN. (2.3)

For an arbitrarily given integer k > 2, using the induction, we prove that the identity

Yij(t) =i j-1(t), €I, 24
is valid for all j € {1,...,k— 1}. Obviously,

Vi1 (1) =T (yr0) (s (1)) = T (co) (s(2)) = T (co)(t0) = co =yko(t), 1€l
We assume that (2.4) is valid for some j € {1,...,k—2}. We show that (2.4) is also
valid for j+ 1. If t € Iy j;1, then s¢(¢) € I ;. Therefore,

Vi ji1 () =T (9, ) (sk(t)) = T (k,j—1) (5 (1)) = i, (1), 1€l jp

Hence, (2.4) is valid for all j € {1,... ,k— 1}. By the induction, we have proved (2.3).
We denote
(1) = yir—1(2), t € a,b], ke N.

One can see that
xx € C([a,b],B[co, 1), keN,

and that (see (2.3))
x(t) =ykx—2(t), t€hp-1,k>2,keN.

Since
si(t) € I, t€la,bl,k>2,keN,

we obtain
x(t) =T (p—2) (sx (1)) = T (xe) (sx (1)), 1€ la,bl,k=2,keN. (2.5)
Next, we get
[k () =2 ()| = (1T (o) (se(£)) — T () (s () |

< o(|sk(r) = sk(7)])
< o(|t—1l), t,T€[a,b],k>2,keN.



Therefore, the functions xi, k > 2, k € N, are uniformly bounded and equicontinuous.
We can use the Arzela—Ascoli theorem.
Without loss of generality, we can assume that

]}i;gcxk(f) =x(1)

uniformly for ¢ € [a,b], where
x € C(la,b],B|co,r]).
We have
17 Goe) (s (1)) = T )OI < 1T (o) (s (1)) = T ) (O + 1T (o) (1) = T () ()|
< o(fsi (1) = 2]) + [T (i) (1) = T (x) (1) |
for all 7 € [a,b], k € N. Since the operator T is continuous, ®(0) = 0, and since

lim s (¢) =1, t € [a,b],
k—o0

we obtain (see (2.5))
x(t) = Jim T()(5(0)) = T()(0), 1 €[a,b),

i.e., x is a fixed point of the operator 7. O
Theorem 2.1. Let r > 0 and [a,b] C I be such that t € [a,b] and

t

/f;;(s,r)ds <r, t € [a,b],

fo

where
1 (t,r) =sup{||f(t.x)[|;x € Bleo,r]},  t€la,b].
Then, the problem (2.1), (2.2) has a solution on [a,b].

Proof. The problem (2.1), (2.2) is equivalent with the equation
t
(1) = co+ / f(rx(e)dt, 1€ ab].
to

Especially, if x € C([a,b],R") satisfies this integral equation, then x € C([a,b],R").
Therefore, it suffices to prove that there exists a function x € C([a,b],R") satisfying
this integral equation.

We define

T(x)(r)= co—i—/f(r,x(r))df, t € [a,b],x € C([a,b],B[co,r])-

It is obvious that the operator

T: C(|a,b],B|co,7]) = C([a,b],R")

10



is fo-Volterra. According to Lemma 1.5, the operator 7 is continuous. For

x € C([a,b],Bco,7]),

we have )
1T ()(1) = col| < /ﬁo(f,r)dr <r  telab),
T()() € Bleo,r], 1€ [a,b].
Thus,
T: C([a,b],B|co,r]) = C([a,b],B[co,]).
Further,
IT()() =T () (s)]] < /fc*o(r,r)dr . st€lab],x e C(ja,b],Blco,r]).
We denote
t+6
o(8) = max /fc’:)(nr)d’c;te[a,b—ﬂ . §el0,b—ad.

The function @: [0,b —a] — R is continuous, ©(0) =0, and
ITx) (@) =Tx)(s)| < o(lt=s]), 5,2 €[a,b], x € C([a, b], B[co, ]).

Due to Lemma 2.1, there exists a function x € C([a, b], B[co, r]) with the required pro-
perty. O

Corollary 2.1. For arbitrary ty € I and ¢y € R", there exists an interval Iy C I such
that ty € Iy and the problem (2.1), (2.2) has at least one solution on the interval I.
Moreover, if ty is an interior point of I, then the interval Iy can be chosen so that t is
an interior point of I.

Proof. The statement of the corollary follows from Theorem 2.1. O

Now, we consider the equation
u™ =f (Lu,u/,...,u(”*l)) , (2.6)

where f € Kj,.(I x R",R).

Definition 2.3. Let Iy C I be an interval. We say that a function u: Iy — R is a solution
of Eq. (2.6) on [ if

1. ueC™Y(1,R);

loc

2. it holds

for almost all ¢ € Ij.

11



Lettipel,c;eR,ie€{0,1,...,n—1}. A solution u: Iy — R of Eq. (2.6) satisfying the
condition ‘
WD) =c;,  i€{0,1,....n—1}, 2.7)

is called the solution of the Cauchy problem (2.6), (2.7).

Corollary 2.2. For arbitrary ty € I and ¢; € R, i € {0,1,...,n— 1}, there exists an
interval Iy C I such that ty € Iy and that the problem (2.6), (2.7) has at least one solution
on ly. Moreover, if ty is an interior point of I, then the interval Iy can be chosen so that
to is an interior point of Iy.

Proof. The statement of the corollary follows from Corollary 2.1. O

12



3. Extendability of solutions

We consider the Cauchy problem

X = f(t,x), (3.1
x(to) = ¢, (3.2)

where f € Kj,(I xR",R"), 1y € I, ¢p € R".

Definition 3.1. Let x be a solution of Eq. (3.1) on an interval (a,b) C I. We say that the
solution x is right-extendable if there exist by > b, by € I, and a solution y of Eq. (3.1)
on the interval (a,b;) C I such that y(¢t) = x(¢), ¢ € (a,b). The solution y is called a
right-extension of the solution x. If any right-extension of the solution x does not exist,
then we say that the solution x is not right-extendable.

Analogously, left-extendable solutions (and solutions which are not left-extend-
able) are defined. We say that a solution x is extendable if it is right-extendable or
left-extendable. In the opposite case, we say that x is non-extendable.

Lemma 3.1. Let (a,B) C 1, r>0,6 >0, c€R", and let

5
6+/fc*(r,r)dr <r
o

where
fE@r) =sup{|[f(t.x)|l;x € Ble,r]}, 1€ (a,B).
Let x be a solution of Eq. (3.1) on (o, B) satisfying

inf {||x(t) — || 3 € (t, B)} < 8.

Then,
[x(t) —cll<r,  te(ap),

and the limits

lim x(z), lim x(z
t—>oc+x< ) t—>ﬁ*x( )

exist.

Proof. 'We prove the lemma by contradiction. There exists a point #p € (¢, ) such that

B
(o) — ¢ + / Fr () de<r (3.3)

In addition, there exists [0, o] C (e, B) such that #y € [a, o] and that
max {|[x(#) —c||;t € [at0, fo]} = . (3.4)

From (3.1), we obtain

x(t)—c:x(to)—c—i—/f(s,x(s))ds, re(a,B).

13



Therefore,

Bo
)=l < ) =l + [ £ ds. refonBl G
%

From (3.3) and (3.5), it follows that
lx(t) —cll <r, 1 €ow,Bo]-

This is a contradiction with (3.4).
It remains to prove the existence of the limits. Since

f(=x(=)) € L((a, B),R"),

the existence of the limits comes from
t
x(0) =x() + [ fls.x()ds, 1€ (op)
fo

O

Theorem 3.1. Let x be a solution of Eq. (3.1) on an interval (a,b) C 1. Then, x is
right-extendable if and only if b < supl and

liminf ||x(¢)|| < eo.
t—b~
Proof. Let b < supl and let
lim {|x(z)]] # ee.
t—b
There exists ¢ € R" such that
liminf||x(¢) —¢|| = 0.
t—b~
Weputr=1,0=0,and f =b. Let o € (a, ) be such that the conditions of Lemma 3.1

are satisfied. Hence,

lim x(7) =c.
t—b~

We consider the Cauchy problem
X = f(t,x), x(b) =c.

From Corollary 2.1, it follows the existence of by > b, by < sup/, and the existence of
a solution ¥ of the considered Cauchy problem on the interval [b,b;]. We put

_Jx(t), te(ab);
y(t)_{x(t), r€[boby).

Obviously, 5
y S Cloc((aabl )7Rn)

and y is a solution of Eq. (3.1) on the interval (a,b;), i.e., y is a right-extension of the
solution x.

14



We consider the opposite implication. If x is a right-extendable solution and if
y: (a,b;) = R" is a right-extension of x, then

b < by <supl

and
liminf x(0)]| = [y(6)]] < o
t—b

O

Theorem 3.2. Let x be a solution of Eq. (3.1) on an interval (a,b) C I. Then, x is
left-extendable if and only if a > infl and

liminf||x(7) || < oe.
t—at

Proof. Theorem 3.2 can be proved analogously as Theorem 3.1. O
Theorem 3.3. The problem (3.1), (3.2) has a non-extendable solution.

Proof. We suppose that o < supl. We show that the problem (3.1), (3.2) has a solution
which is not right-extendable. Similarly, one can show the second case.
We consider an increasing sequence {by};_, C (o, supI) with the property that

lim by = supl.
k—>o0
For ¢ € R" and r > 0, we define

fE@r) =suwpllf (e, x)[[;x € Ble,r]},  rel

Obviously, there exists #; € (fy,b;] such that

3|
/fc*o(s,l)dsgl.
0

According to Theorem 2.1, the problem (3.1), (3.2) has a solution xy on the interval
[f0,21]. We define

C1l Z)C()(l‘l)

and
r1 = max {||xo(t) — col| ;7 € [to,11]}-
If

by
/ﬁo(s,rl—i—l)dsg 1,
|

then we put r, = b,. Otherwise, we choose t; € (¢1,b,) such that

I

/f;*o(s,rl-i-l)ds: 1.

|

15



We have

[5)

15}
/f;(s,l)dsgffc’;(s,rl—l—l)dsg1.
n

3|

According to Theorem 2.1, the problem

¥ = f(t,x), x(n) =c

has a solution x; on the interval [t;,#].
We continue in this process. We obtain the sequences {f },_;, {xk}r_o> {¢k}rets
{ri}r—, for which:

1.t € (tk—1,bi]), k €N;
2. cp=xp1 (%), kEN;
3. x; for k € NU{0} is a solution of the problem
X =fltx),  x(n)=cx
on the interval [t;,711];

4. it holds

Tk :max{ka_l(t)fco NS [tk—htk]}; keN;
Tkt1

/fc’:](s,rk+l)ds<l

Ik

for some k € N, then #3| = by .

We put

b= lim
k—ro0

and
x(t):xk(t), tE[tk,tk+1),k€NU{O}.
Considering 3., we see that x is a solution of the problem (3.1), (3.2) on the interval
[to,b).
By contradiction, we show that the solution x is not right-extendable. We assume
that the finite limit

lim x(¢
t—b~ ()

exists and that
b < supl.

The function x is bounded, i.e.,
r=sup{||x(¢) —co||;t € [to,b)} < .

According to 4.,
re <, keN.

16



Thus,

Tkt 1 b

/f;)(smk—i—l)dsg/fc*o(s,r—l—l)ds—>0 as  k— oo
Tk Ik

Therefore, there exists kg € N such that

Ty 1

/fg:](smk—i—l)ds<l, k> ko, k€ N.
T

Now, from 5., it follows that
tir1 = biya, k> ko, k € N.

Hence,
b =supl.

The obtained contradiction proves that the solution x is not right-extendable.
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4. Set of solutions

We consider the Cauchy problem
X = f(t,x), 4.1)
x(to) = co, (4.2)
where f € Kjoe(I x R",R"), 19 € I, ¢g € R".

Lemmad.1. Letryg >0, r >0, tog < ag < by, where by € I, be such that

by
/fg(s,ro—l—r)ds <
ap

where
Jo(t,r) =sup{|[f(t,x)[:x€BO,r]}, 1€l
Then, for all solution x of Eq. (4.1) on the interval [ty, by) which satisfies
Xl <ro, 1€ to,a0],

it holds
lx(®)]| < ro+m t € [to,bo).
Moreover, the limit
lim [|x(z)]|

t—b,

exists.

Proof. We prove the lemma by contradiction. We suppose that there exist a solution x
of Eq. (4.1) on the interval [to,bp) and #; € (ag,bp) such that

|x(t)|| <ro, 1€ [to,a0],

lx(®)|| <ro+m t € lag,t1),

and that
[x(t)|| =ro+r

The contradiction comes from

o)1 < @)l + [ 17sx(s)) ds < ro [ f(ssrr)ds < o

ag aop
Note that the obtained statement guarantees

f(=x(=)) € L([ao, bo),R").
Therefore, the existence of the limit

lim [|x(z)]|
t—b,
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follows from

x(1) = x(ao) + / F(six(s)ds, 1€ [ao,bo).

ap

O

Theorem 4.1. Let [a,b] C I, ty € [a,b], and let any non-extendable solution of the
problem (4.1), (4.2) exist on [a,b]. Let X[a,p] be the set of the restrictions of all non-
extendable solutions of the problem (4.1), (4.2) to the interval [a,b]. Then, the set Xiap]
is bounded in the space C([a,b],R").

Proof. We assume that 7o < b. We show that the set X, ;) is bounded in the space
C([to,b],R"). For ty > a, one can similarly show that the set X[, is bounded in the
space C([a,t0],R").

We put

p (1) = sup {[|x(s)]|ss € [t0,2],x € Xy 4 } » t € [to,b].

We choose 11 € (fo,b] such that

f
/ﬁ)*(s,||c0H+l)ds< 1,
fo

where fo* is from Lemma 4.1. According to Lemma 4.1, we have
p(t) <p(n) <leol|+1,  1€to,n].

We show that p(b) < eo. By contradiction, we assume that p(b) = . Then, #; < b and
there exists t* € (¢1,b] such that

plt)=o, 1€ (0],

and that
p(t) < oo, t € [to,1").

We assume the existence of a sequence {7 },_, C [fo,t*) and a sequence {x;};_, of
solutions of the problem (4.1), (4.2) on the interval [ty,#*] such that

lim [|xe () [| = ee.
k—yo0
In addition, for all 8 € [ty,1*), we have

|lxe()]| <p(B),  t€t,B],keN.

It is obvious that the functions xi, k € N, are uniformly bounded on any compact subin-
terval of the interval [fy,*). At the same time, for any 8 € [t,1”), we have

ek (8) — i (s) || < /Ilf(é,xk(é))ll dg

IN

[fiEpB)eE],  sieloplken.
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Therefore, the functions x;, k € N, are also equicontinuous on any compact subinterval
of the interval [fy,7*). Due to the Arzela—Ascoli theorem, without loss of generality,
we can assume that the sequence {x;},_, is uniformly convergent on any compact
subinterval of the interval [fy,*). We put

lim x; (1) = x(¢), t € [to,1").
k—yo0
By the Lebesgue theorem, one can verify that x is a solution of the problem (4.1),
(4.2) on the interval [to,7*). Since t* < b and since any non-extendable solution of the
problem (4.1), (4.2) exists on the interval [y, b], the finite limit

lim{lx(2)]]
—t
exists. Hence,
o= sup {J(1) [ € [i0,1*)} < oo 43)
We choose 1, € [to,1*) so that
t‘)(
/fo*(s,ro—l—Z)ds < 1.

Ty

From the construction of the solution x and from (4.3), it follows the existence of kyp € N
with the property that

Il ()] < ro+1, t € [to, 1), k > ko, k € N.
Therefore, considering Lemma 4.1, we obtain
||xk(t)||<r0+2a te[t(),t*),ka(),kGN.

Hence,
p(r7) <eo.

Now, it is enough to consider again Lemma 4.1 (for o+ 3). O

Remark 4.1. From the Arzela—Ascoli theorem, from the proof of Theorem 4.1, and
from the Lebesgue theorem, it follows that the set X[, ; from the statement of Theo-
rem 4.1 is even compact in C([a,b], R").
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5. Upper and lower solutions

We consider the Cauchy problem
X = f(t.x), (5.1
x(t()) = ¢, (5.2)
where f € Kjoe(I x R",R"), 19 € I, ¢g € R".

Definition 5.1. Let f: I x R" — R", where f = (f;)’_,. We say that f is quasi non-de-
creasing in the last n variables if, for all i € {1,...,n} and almost all ¢ € I, it holds

ﬁ(t;x1;~~~7xn) Sﬁ(tvyla"'vyn)v Xk Sykvke {1,...,!’1},](#1.,)61‘ =i
Lemma 5.1. Let the map
(t7x) — f(t7x) Sgn(t _t0)7 (I,X) elx Rn7

be quasi non-decreasing in the last n variables. Let [a,b] C I, ty € [a,b], and let any
non-extendable solution of the problem (5.1), (5.2) exist on the interval [a,b]. Then, for
any function y € C(la,b],R") satisfying

y(to) < co
and
[ (t) = f(£,5(t))] sgn(t —19) <0

for almost all t € [a,b], there exists a solution x of the problem (5.1), (5.2) on the
interval |a,b] such that
y(t) < x(1), t € [a,b].

Proof. Lety € C([a,b],R") be an arbitrary function from the statement of the lemma.
We suppose that o < b. We prove the existence of a solution x of the problem (5.1),
(5.2) on the interval [fy,b] with the property that

y(t) < x(1), t € [to,b].

In the second case, we can proceed analogously.
Forallie€ {1,...,n}, we put

xi(t,z):{yi<t)’ z=il); t €[to,b],z € R.

z, 2> yi(t);
We define
X(t,x) = (Xi(tvxi))?zlv re [t()vb]v X = (xi)zn:l € an
and
ft,x)=f(t,x(t,x)),  t€ltw,b],xeR"
Obviously,

f € K(Jto,b] x R",R").
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We consider the Cauchy problem
X = f(t,x), x(19) = co.

We consider that x = (x;)7_; is a solution of this problem, which is not right-extendable,
and that [fp, bo) C [fo, )] is the maximal interval, where the solution x exists (see Theo-
rem 3.3). Leti € {1,...,n} be arbitrarily given. We prove that

yi(t) §xl-(t), te [t(),bo).

Let us consider the opposite, i.e., let there exist [¢t, B] C [fy,bo) such that

yi(a) =xi(a)
and that
yi(t) > xi(t), (. B]
We define
u(t) = yi(t) —xi(t), [ex, B]

Obviously, u(o) = 0 and

‘We have
u' (1)

Yi(t) —xi(t)
< filt.y(0)) = filt,x(r))
f( yl( ) 7yn( ))7fi(t’x1 (tvxl(t))v"'7xn(t7xﬂ(t)))

t
for almost all 7 € (¢, B). From the definition of the function , it follows that

yi(t) = xi(t,xi(1), 1€ e, B,

1

and that
yk(t)gxk(tvxk(t))a te[a,ﬁ},k;«éi.
Since the map
(t,x)'—>f(t,x)sgn(t—t0), (I,X) EIXan

is quasi non-decreasing in the last n variables, u'(t) < 0 for almost all ¢ € (a, ),
which gives a contradiction. The contradiction (together with the arbitrariness of
i € {1,...,n}) proves that

y(t) < x(t), t € [to,bo).

Thus,
Ft,x(t)) = f(2.x(r)), 1€ [to,bo),

i.e., x is a solution of the problem (5.1), (5.2) on [, bo).
Now, we prove that by = b. Let by < b. Since x is a solution of the problem

X =f.x),  x(to) =co
on the interval [ty, bp), which is not right-extendable, from Theorem 3.1, it follows

lim [Jx(z)[| = ee.
t—by
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At the same time, from Theorem 3.1, it follows a contradiction with an assumption of
the lemma. Thus, we have proved that by = b, i.e.,

y(t) <x(t),  t€lt,b).
Due to the assumptions of the lemma, there exists the finite limit

lim x(¢),
t—b~

i.e., x is a solution of the problem (5.1), (5.2) on [fy,b] and

y(r) < x(1), t € [to,b].

Lemma 5.2. Let the map
(tvx)Hf(tvx) Sgn(t_t())v (t7x) EIXR"7

be quasi non-decreasing in the last n variables. Let [a,b] C I, ty € [a,b], and let any
non-extendable solution of the problem (5.1), (5.2) exist on the interval |a,b]. Then, for
any function 'y € C([a,b],R") satisfying

y(to) > co

and
[V () = f(t,¥(1))] sen(t—19) >0

Jor almost all t € [a,b], there exists a solution x of the problem (5.1), (5.2) on the
interval |a,b] with the property that

y(t) > x(t), t € [a,b].
Proof. The lemma is possible to prove analogously as Lemma 5.1. O

Definition 5.2. Let x* be a solution of the problem (5.1), (5.2) on the interval Iy C I,
where o € Iy. We say that x* is the upper (lower) solution of the problem (5.1), (5.2)
on the interval Iy C [ if, for all interval I} C Iy, where o € I, and any solution x of the
problem (5.1), (5.2) on the interval I1, it holds

x(t) <x*(t) (x(t) >x*(1)), rel.
Theorem 5.1. Let the map
(t7x)’_>f(t7x) Sgn(t_t())v (I,X) GIXR",

be quasi non-decreasing in the last n variables. Let [a,b] C I, ty € [a,b], and let any
non-extendable solution of the problem (5.1), (5.2) exist on the interval [a,b]. Then, the
problem (5.1), (5.2) has the upper solution and the lower solution on the interval [a,b).

Proof. We prove only the existence of the upper solution on the interval [a,b]. In the
second case, it is possible to proceed analogously. As X, we denote the set of all
solutions of the problem (5.1), (5.2) on the interval [a,b]. We define

x; (1) = sup{x;(¢); (xk )y € X}, t€la,bl,ic{l,...,n}.
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According to Theorem 4.1, the set X is bounded in the space C([a,b],R"). Therefore,
X7 (1) < oo, t€la,bl,ic{l,...,n}.

We show that x* = (x})7_, is the upper solution of the problem (5.1), (5.2) on the

i
interval [a,b]. It is obvious that

x(t) <x*(1), t€la,bl,x€X.

Firstly, we prove that the function x* is absolutely continuous. Since the set X is
bounded in C([a,b],R"), there exists a function & € L([a,b],R) with the property that

IF@0l <n@),  t€labl,xeX.

Let s, € [a,b], s <t. Then,

xi(t) = xi(s) + / Fi(z,x(0))dr

éxl-*(s)—i—/h(r)dr, x= (), €X,ie{l,....n},

i.e.,

X () < x(s) +/h(r)dr, ie{l,...,n}.

x;(s)gx,.*(r)+/h(f)dr, ie{l,...n},
which gives

() =27 (s)| < /h(r)dr, i€ {l,...,n}, 5,1 €ab].

Therefore, x* € C([a,b],R").
Now, we show that x* is a solution of the problem (5.1), (5.2). We know that one
can find ry > 0 such that

[x(®)]| <ro,  t€lab],xEX.

According to Lemma 1.4, for ry, there exist a function kg € L([a,b],R) and a non-de-
creasing function wy € Cjo(R+, Ry ) such that wy(0) = 0 and

£ (t,x) = f (e 9)] < ko) o (llx—y[), € [a,b], x,y € B[O, ro].

As Iy, we denote the set of all s € [a, b] for which the following conditions:
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1. there exists (x*)' (s);

2. there exists V/(s) and

where

3. there exists vj(s) and

where .
N=[m(@dr,  reabl
fo

are valid. Obviously, m(lp) =b —a. Leti € {1,...,n} and s € Iy, where s > 19, be
arbitrary. Due to Remark 4.1, X is a compact set in the space C([a,b], R"). Therefore,
there exists ¥ = (%);_; € X such that £;(s) = x] (s). We put

e(r) = max {|%;(t) —x}(7)|;t < T < s}, t € [f,s].

It is seen that the function €: [fo,s] — R is continuous, non-increasing, and £(s) = 0.
We have

[t %(0)) < fi (667 (0), x50, 25 (1), x5 (0)

:fl(tv)C*(t))+ (taxjf(t)a ? 1(1),fi(l),x?+1(l‘),...7)62(1‘)) *ﬁ(tvx’((t))
< filt,x(£)) + ho(¢) (| z(t) x; (1))
< filt,x* (1)) +ho(t) s (e(t)), 1 € (t0,5].

Hence (consider £;(s) = x7(s)), we obtain

0+ / fitee' (@) de+ [ ho(r)an(e(z) de

+/ﬁ 7,27 (1)) dr + (e /ho t € (to, s].
Therefore,
X (s) —x7 (1) 1 1 5
e T/ Ddrt L oy(ew) [ro@ar 1),
! t

Since s € I is arbitrary and ay(€(s)) = 0, we obtain

(x) (s) < fi(s,x*(s)), s €ly, s > to.
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Analogously, one can show
(X;)/(S) Zﬁ(S7X*(S))7 s € ly,s <to.

Thus,
(") (2) = f 2,2 (2))] sgn(t —10) <O

for almost all 7 € [a,b]. According to Lemma 5.1, there exists xo € X such that

x*(1) < xo(t), t € la,b].
At the same time,
x(r) <x*(1), t€la,bl,x€X, (5.3)
which gives
xo(t) §X*(t)7 t € la,b].

Therefore, x* = x¢ and x* is a solution of the problem (5.1), (5.2). Moreover, (5.3)
means that x* is the upper solution of this problem on the interval [a, b]. O

Corollary 5.1. Let the map
(t,x) — f(t,x) sgn(r —19), (t,x) e I xR",

be quasi non-decreasing in the last n variables. Let [a,b] C I, ty € [a,b], and let any
non-extendable solution of the problem (5.1), (5.2) exist on the interval |a,D].

1. For any function y € C([a,b],R") satisfying
¥(to) < co

and
/(1) = f(t.3(1))] sgn(t —10) <0
for almost all t € [a,b), it holds

y() <x*(1),  1€labl,

where x* is the upper solution of the problem (5.1), (5.2) on the interval |a, D).
2. For any function y € C([a,b],R") satisfying
¥(to) > co
and
[ (6) = f(t,5(1))] sgn(t —10) > 0

for almost all t € [a,b], it holds

y(t) > x.(t), t € la,b],
where x, is the lower solution of the problem (5.1), (5.2) on the interval [a,b).

Proof. The corollary follows directly from Lemmas 5.1 and 5.2 and from Theorem 5.1.
O
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Definition 5.3. Let f: I x R" — R" be given. We say that f is non-decreasing in the
last n variables if

ftx) < f(ty), telx<y.
Corollary 5.2. Let the map
(trx)’_)f(trx) Sgn(t_t())a (tax) EIXR”,

be non-decreasing in the last n variables. Let [a,b] C I, to € [a,b)], and let any non-ex-
tendable solution of the problem (5.1), (5.2) exist on the interval [a,b].

1. For any function 'y € C(|a,D],R") satisfying

W(E) < eo+ / Flsy(s)ds, 1€ ab],

it holds
y(t) SX*(t)a re [ava

where x* is the upper solution of the problem (5.1), (5.2) on the interval |a, b).

2. For any function'y € C([a,D],R") satisfying

W) > co+ / Flsy(s)ds, 1€ ab],

it holds
y(t) > x, (1), t € la,b],

where x, is the lower solution of the problem (5.1), (5.2) on the interval |a,b).

Proof. We prove only the first part. The second part can be proved analogously. We
put

z(t) = co—l—/f(s,y(s))ds, t € la,b).

Obviously, N
z € C([a,b],R")
and
y(t) <z(1), t € la,b).
The identity

() = f(1,y(t))
holds for almost all # € [a,b]. We have

2(¢) sgn(t —to) = f(2,(t)) sgn(t — o)
< f(t,2(1)) sgn(r —to)

for almost all 7 € [a, b], i.e.,

[Z/(t) = f(t,2(1))] sen(r —19) <0
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for almost all # € [a,b]. According to Corollary 5.1, we obtain
) <x*(1),  t€ab],

where x* is the upper solution of the problem (5.1), (5.2) on the interval [a,b]. Finally,
the inequality
y(1) <z(t),  r€lab],

gives
y(t) < x*(¢), t € la,b).
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6. Wintner theorem

We consider the Cauchy problem
X = f(t,x), (6.1)
x(to) = co, (6.2)
where f € Kjoe(I x R",R"), 19 € I, ¢y € R".
Theorem 6.1 (Wintner). Lef there exist a function h € Kj,.(I x Ry, R}) such that
f(t,x)-sgn((t —10)x) <h(s,[Ix])),  (1,0) € I xR,
where the problem
p' =h(t,p) sgn(t —19), (6.3)
p (o) = [|coll (6.4)

has the upper solution on the interval 1. Then, the problem (6.1), (6.2) has a solution
on 1. Moreover, all non-extendable solutions of the problem (6.1), (6.2) exist on I.

Proof. 'We suppose that #y € int(I). If 7y is an endpoint of the interval /, then one can
proceed analogously.

From Theorem 3.3, it follows that there exists at least one non-extendable solution
of the problem (6.1), (6.2) on a subinterval J of I. Let x be an arbitrary non-extend-
able solution of the problem (6.1), (6.2) on int(J) = (a,b) C I. We show that a = inf],
b = supl. We denote

u(t) =lx@Il, 1€ (ab).
Obviously, 5
u € Cioe((a,b),Ry),
u(to) = [lcoll
and

W' (t) =x'(t) - sgnx(t)
for almost all # € (a,b). Therefore,
u' (1) sgn(t —19) < h(t,u(r))
for almost all 7 € (a,b). Thus,
[ (1) = h(t,u(r)) sgn(r —10)] sgn(t —19) <0 (6.5)

for almost all ¢ € (a,b). Since the problem (6.3), (6.4) has the upper solution on , all
non-extendable solutions of the problem (6.3), (6.4) exist on I. Therefore, considering
u(ty) = ||co|| together with (6.5), from Corollary 5.1, it follows that

u(t) < p*(1), t € (a,b),
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where p* is the upper solution of the problem (6.3), (6.4) on the interval I. Using
Theorems 3.1 and 3.2, we obtain

a =infl, b =supl.
Ifa ¢ 1, b ¢ I, then the proof is done. Let us consider that
acl or bel
We show that the finite limit

lim x(¢) or lim x(z)
t—at t—b~

exists. We know that
/€ K([a,t0] x R",R") or f € K([to,b] x R",R").
Therefore, from
u(t) < p*(t), t € (a,b),
and from the fact that p* is the upper solution of the problem (6.3), (6.4) on 1, it follows
f(=x(=)) € L(la,00],R")  or  f(=,x(=)) € L([t0, b}, R").

The existence of the limit

lim x(¢) or lim x(7)
t—at t—b~

comes from

x(t) =co —i—/f(s,x(s))ds, t € (a,b).

Corollary 6.1. Let hy € Ly,.(I,R) and let ® € Cppe (R, (0,00)) satisfy
]o ds

P .
] o)

f(t,x) - sgn((z —10) x) < ho() @([|x])

holds on the set I x R", then the problem (6.1), (6.2) has a solution on I. Moreover, all
non-extendable solutions of the problem (6.1), (6.2) exist on I.

If the inequality

Proof. Since the problem

p' = ho(t) o(p) sgn(r — 1),
p(to) = lleoll

has the upper solution on the interval /, the statement of the corollary comes directly
from Theorem 6.1. O
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7. Uniqueness of solutions

We consider the Cauchy problem
X = f(t,x), (7.1)
x(to) = co, (7.2)
where f € Kjoe(I x R",R"), 19 € I, ¢y € R".

Definition 7.1. We say that the problem (7.1), (7.2) is uniquely solvable if, for arbitrary
solutions x1 and x» on intervals I} and I, respectively, it holds

x1(t) =x2(1), tehnb.

Definition 7.2. We say that a function g: I~ {fo} x Ry — R is an element of the set
Kioe(I~{to} x Ry, R) if g € K(Ip x R4, R) for any compact interval Iy C I\ {rp}.

Definition 7.3. Let g € Kjo. (I~ {to} x R;,R) and let Iy C I be such that #y € I. We
say that a function x: Io ~\ {fo} — R is a solution of the equation x’ = g(¢,x) if the
following conditions:

1. x € C(J,R) for any compact interval J C I~ {to};
2. X' (t) = g(t,x(t)) for almost all € Iy
are fulfilled.

Lemma 7.1. Let A>0, A € [0,1), h € L([to,1 + A],(0,00)), and let a function ¢ €
Cioc(Ry, R, be such that
lim (P(;)
s—0t 8

If a function u € C([to,t0 + A],R) satisfies

=0.

u) < [HEp(u()dr. 1 lnn+al

then L
o )]

PR
O [h(s)ds

fo

=0.

Proof. 1tis seen that u(fy) = 0. Let € > 0 be arbitrary. There exists #¢ € (#,%)+A] with
the property that

o(u(r) <eu(m]*, € t0,L]
Next, we obtain
) < e / h(o) (D) de, 1€ [ro,ze). (7.3)
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We denote 1
t 1-1
v(t) = 8(1—/1)/h(17)d’c Al
1o
One can directly verify that v is “the unique positive solution” of the Cauchy problem
V=gh(tW,  v(g) =0

for r € [1,t¢]. Therefore, Corollary 5.2 and (7.3) give

u(t) <v(t), t € [to,te]-
Thus,
t
-2 e(1—=A1) [h(s)ds
I [u(1)] : 1o
imsup ———— <limsup ————— <¢&.
=g [ h(s)ds 1=ty [ h(s)ds
to fo
Now, it suffices to consider the arbitrariness of € > 0. O

Lemma 7.2. Let A>0, A €[0,1), h € L([to — A,19],(0,00)), and let a function ¢ €
Cioc (R4, R}) be such that

If a function u € C([to — A, 1], R4.) satisfies

un) < [HEp(u()dr. 1 ln—amn],

then L
-
lim 7[;?( IE—Y
" [h(s)ds
t
Proof. The lemma can be proved analogously as Lemma 7.1. O

Theorem 7.1. Let § > 0 and € > 0 be such that

() = f(@,9)]-sgn(t —10) (x=y)] <h(D)o(lx=yl), 1 €J,xy € Beo, 5,

where J = [ty — €,t0+ €N, h € Ly (J,(0,0)), and ¢ € C([0,26],R) has the property
that

for some A € [0,1). If, for any r > 0, there exists a function
W, € Kloc(l\ {ZO} X R+7R)

such that

o,(—,0)=0
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and that

[f(t7x) —f(t,y)]-sgn[(t—to)(x—y)] < wr(tv ||x—yH), rel~ {t0}7x7y EB[C(),V],

and if the problem

p' = w(t,p) sgn(t —19), lim —— X =

has only the zero solution, then the problem (7.1), (7.2) is uniquely solvable.

Proof. Let x1 and x; be non-extendable solutions of the problem (7.1), (7.2) on inter-
vals I} and D, respectively. Our aim is to prove

x1(t) =x2(1), tehNb.

We denote
u(t) = |lx1(t) —x2(1) ], telinkh.

We consider that there exists #; € I; N1, such that u(t;) # 0. Without loss of gene-
rality, we can assume that ¢; > fy. It is obvious that

uc é([l(),ll},R+)

and that
W' (t) = [¥) (1) = x5(1)] - sgn (x1 () —x2(7)) (7.4)

for almost all 7 € [ty,;]. Thus, we obtain
I‘ t
ult) = [W(ar< [@owmde, 1€ lon+a)
i() 1)

where A > 0 is sufficiently small. According to Lemma 7.1, we have

[u(t)]'
=0 [ p(s)ds

fo

=0.

Next, we denote

r=max {||x; () — col| + [[x2(¢) — col| ;7 € [to,11]} -

For this number r, there exists a function @, € Kj,.(I \ {fo} x R4, R) from the state-
ment of the theorem. From (7.4), it follows

W (1) < o (t,u(r))
for almost all 7 € (1, #;]. We put

(Dr(t,u(t)), y>u(t);
@ (t,y) =  0:(t,y), 0<y<u(r); t € (to,11],y €R.
0, y<0;
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Evidently,
o, € Kloc((l(btl] X R,R).

From Theorem 3.3, it follows that there exist a € [fo, 1) and a non-extendable solution p
of the problem

p=@p)  pln)=yuln)

on the interval (a,t;].
We show that

p@t) <u(t),  te(an].
By contradiction, we assume that there exist #5,#3 € (a,t), where t, < t3, such that
p(t) > u(t), t € [h,n),
and that
p(t3) = u(t3).
From the definition of @,, it follows
p(t) = o (t,u(r))
for almost all 7 € [t,,3]. From the inequality
u' (1) < @ (t,u(t))
which is valid for almost all # € (p,#], we obtain
p(t) < M(t)a re [t23t3]'

‘We have a contradiction.
Now, we show that
p(t) >0, t € (a,n).

By contradiction, we assume that there exists 74 € (a,t;) for which
p(t)>0, 1€ (t,n],

and for which
p(t4) =0.
We recall that
pit) <ul), 1€ (an).

Due to the definition of @,, the function

is a non-zero solution of the problem

p'(t) = . (t,p) sgn(t —1o), lim (7.5)

t—ty !
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on the interval (zy,?], which is a contradiction.
We have proved that

0<p(t)<ut), te(an]
From Theorem 3.2, it follows that a = 1y, i.e.,
0<p(t) <u(r), t € (fo,11].

Due to the definition of @,, we have a non-zero solution of the problem (7.5) on the
interval (¢o,#], which is a contradiction with the assumption of the theorem. O

Corollary 7.1 (Osgood). If there exist functions I, € L(I,R.) and 1, € Cjoe(Ry,Ry)
for any r > 0 such that

and that

F(e2) — (e, 9)]-sen [ —10) =] <LONx—yl). 1 € Lx,y € Bleor],
then the problem (7.1), (7.2) is uniquely solvable.
Proof. We put

and
o (t,x) = 1(t)n(x), tel,xeRy,r>0.

One can directly verify that all conditions of Theorem 7.1 are fulfilled. Note that, for
any r > 0, the problem

p'=L()n:(p)sgn(t—10),  plto) =0
has only the zero solution. Thus, for any r > 0, the problem

pir)

p'=L()n:(p)sgn(t—10),  lim+

has only the zero solution as well. Therefore, the corollary follows from Theorem 7.1.
O

Corollary 7.2 (Nagumo—Perron). Let ty € int(I). Let h € Ljyc(1,(0,0)) be such that
the function

fot,x) = f}(lt(;;), (t,x) €I xR",
is continuous in a neighbourhood of [ty, co|. If the inequality
h
(60) — 7)) -senfl—0) (=) < 0 eyl 10
[ h(7)dt

is valid on the set I x R", then the problem (7.1), (7.2) is uniquely solvable.
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Proof. We put A =0 and
h(t)x

fth(r) dr

o, (t,x) = , t#£tyg,t€l, xR, r>0.

Since the function fj is continuous in some neighbourhood of the point [fy,co], there

exist |
) 0,-
e5¢e < ,2)

such that the function f; is uniformly continuous on [y — €,7 + €] X B|cg,d]. Let
J=t—g,to+€]. Fors € [0,26] C[0,1], we put

(P(s) = max{||f0(t,x) _fO(t7y)H sted,xye B[C075]7 ||x—yH < S}'

Obviously, ¢ € C([0,26],R;) and ¢(0) = 0. One can easily verify that all conditions
of Theorem 7.1 are fulfilled. For example, by a direct computation, one can verify that
p()

the problem
h(t
! L P, lim -

- j'h(r) dr o Jh(t)dt

fo

p =0

has only the zero solution. Therefore, the corollary also follows from Theorem 7.1. [
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8. Krein theorem

Let I be a compact interval. Now, we consider the Cauchy problem

X = folt,x), (8.1.0)
x(l‘o) = Cp, (8.2.0)

where fo € K(I xR",R"), 10 €1, co € R".

For m € N, together with the problem (8.1.0), (8.2.0), we consider the perturbed
problem

X = fult,x), (8.1.m)
X(tw) = cm, (8.2.m)
where f,, € K(I xR"R"), t, €1, cy € R".

For m € NU{0}, by the symbol X (f,s, 2, cm ), we denote the set of all non-extend-
able solutions of the problem (8.1.m), (8.2.m).

Definition 8.1. Let Y C C(I,R"). Then, the e-neighbourhood of the set Y is the set

Ye = UB(y78)a

yey

where
B(y,e) = {x € C(L,R");

x—yllc <e}.

Definition 8.2. LetY C C(I,R") and let Y™ C C(I,IR") for all sufficiently large m € N.
If, for any € > 0, there exists my € N such that

Y™ C Y, m 2> my,
then we write
limY" CY.
m—soo

Lemma 8.1. Let the following conditions:

1. forall x € R", it holds

m—seo

lim /fm(r,x)d'c:/fo(r,x)dr

uniformly on I;
2. for any r > 0, there exists ®, € K(I x R, R} such that

o, (—,0)=0

and that

||fm(t7x)_fm(tuy)|| < a)r(t7||x_y||)7 tEI,x,yEB[O,r],mE N7
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be fulfilled. If {x},,_, is a sequence of functions from the space C(I,R") such that

lim x,, () = x0(7)

m—soo

uniformly on I, then
t

lim .fm(r,xm(r)) dr = ./fo(r,xo(r)) dr

m—yoo
fo

uniformly on I.

Proof. Since the sequence {x,, },,_; is uniformly convergent, {||x,||c}, _, is bounded.
Let r € R satisfy
1+ |[xmllc <, m e NU{0}.

Let ®, be from the condition 2. Without loss of generality, we can assume that the
function @, is non-decreasing in the second variable. Using Lemma 1.4, we can also
assume that

Ifo(t,%) = fot. )|l < (e, x=yll), €1, xy€B[0,r].

‘We denote
ym(t) = /fm(nxm(r))dr—/fo(r,xo(r))dr, tel,meN.

Let € > 0 be arbitrarily given. We choose 1 € (0, 1] so that (see also Lemma 4.1)
£
/w,(f,n)dr< 3
1

Since the function xq is continuous on the compact interval, there exists a system
{ti}f:1 (k> 2, k € N) of points of the interval I such that

minl =t <t) < --- <ty = max/

and that n
lxo () —x0(#:)]] < > t € [ty tiv1], i €{1,...,k—1}.
We put
() =x0(t), t € [ty ti1), 1 €{1,...,k—1},
and
*(tr) = xo(tk—1)-
Obviously,
56 —x0@)l <3, rel
There exists my € N with the property that
n
[1m —x0]lc < = m > mg, m € N.

2’
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Therefore,
[lxm (2) = %(2)|| < 7, tel,m>my, meN.

Next, we obtain

[[ym ()] < /llfm(r,xm(r))ffm(r,i(r))\l dt
+ /fm 7,%(7)) — fo(t,%(7))dt

* / fo(e,(2) — fo(F,x0(2)) | 0

/fm’L'x — fo(r,%(1))dr +2/a)rrn

forallz € I, m > mo, m € N. We define

Yim = max h/%ﬁmﬁ”—ﬁ@ﬁd@ﬂfﬂel

fo

forallie {1,....k—1},meN.
Using the condition 1, one can easily verify that

Wlll_rgo}/i’m:O, ie{l,...;,k—1}.

Since
/a),(r,n)dr< g,
1
the definitions of ¥ and ¥, ,, give
k=1
ym@)| <€+ Y Yim, t€l,m>my,meN.
i=1

From this inequality, we obtain the statement of the lemma. It is enough to consider
the arbitrariness of € > 0 and

lim %, =0, ief{l,... k—1}.

Theorem 8.1 (Krein). If the following conditions:
1. it holds

lim ¢, = 1, lim ¢;, = co;
m—yoo m—yoo
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2. forall x € R", it holds

lim fmrxdr—/forx

m—»oo
fo

uniformly on I;
3. for any r > 0, there exists a function @, € K(I x Ry R, such that

o, (—,0)=0

and that

1fn(#,%) = fn (0 )| < @ (2, lx=5l)), 1€ l,xy€B[0,r],meN;

4. every non-extendable solution of the problem (8.1.0), (8.2.0) exists on I, i.e.,
X(fo,l‘o,Co) c (I, R"),

are fulfilled, then there exists my € N such that, for all m > mgy, m € N, all non-ex-
tendable solution of the problem (8.1.m), (8.2.m) exists on I and

hm X (fmatmacm) g X (f()at()vc()) .

m—yoo

Proof. According to Theorem 4.1, the set X (fp, %o, co) is bounded in the space C(I,R").
Thus, there exists ro > 0 such that

X[l < ro, x € X (fo.10,¢0)-
‘We define the function
X, IIx[| <ro+ 1, xR
K= ot ) el > ro+ 1, e Y,

and we put

Fult,2) = fult. (), (1,x) €1xR", me NU{0}.
It is obvious that
fn €KIXR"RY,  meNU{0},
and that
| fn (2, 0)|| < fin(0), tel,xeR" meNU{0},
where
(@) =sup{||fn(,x)||;x € B[0,70+ 1]}, rel.

Due to Lemma 1.2, f;(¢t) € L(I,R) for all considered m. For all m € NU {0}, we
consider the equation

X = finlt,x). (8.3.m)

As X ( fm,tm,cm), we denote the set of all non-extendable solutions of the problem
(8.3.m), (8.2.m).
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Now, we show that
X (fo,10,c0) =X (fo,t0,c0) -
Obviously,
X (fo,10,c0) € X (fot0,c0) -

We assume the existence of ¥ € X (fo,to7 co) such that X ¢ X (fo,%0,c0). We have
%l >ro+1,  [[X(0)ll = llcoll < ro+1.
Therefore, there exists an interval Iy C I such that #y € Iy and that
sup{||X(®)|[;t €} =ro+1.

Now, it is seen that the function X is a solution of (8.1.0), (8.2.0) on the interval Iy. Due
to 4. from the statement of the theorem, we know that there exists an extension y of the
solution x to /. Then,

y € X(fo,t0,c0)
and
I¥llc = ro+1.

This is a contradiction which proves

X (fo.t0,c0) € X (fo.to,c0).

Since
[ Fn(e)|| < fi(),  r€lxeR". meN,

according to Corollary 6.1, for arbitrary m € N, any element of the set X ( fm,tm,cm)
existson /, i.e.,
X (funstmrcm) CCIL,RY),  meN.

Next, we prove that

n%iLILX (fm,tm,cm) C X (fo,0,¢0)-
We assume the opposite. Then, there exist & > 0, an increasing sequence {my },_, of
positive integers, and a sequence {x;},_, of functions from the space C(I,R") such
that

X% € X (fong sty - Cmg ) » keN,

and that
xe & Xe,(fo,10,c0),  keN.
Evidently,
X (t) = cm +k(t) +21(t),  t€LKEN,
where
t
3w = [ (o)~ (20)d7,  reLkeN,

t)ﬂk

and

t
zk(t):/fmk(r,O)dr, trel,keN.

Imy,
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From the condition 3., we obtain

H.ﬁn(trx) —ﬁn(t,0)|‘ = ||ﬁn(t7X(x)> _fm(t70)||
< @y 41 (1 [ ()1])
< @py41(t,r0+ 1), tel,xeR", meN,

because, without loss of generality, we can assume that the function @, is non-de-
creasing in the second variable. Thus,

[9%@)|| < @rgs1 (8,70 +1)

for almost all € I, k € N. Hence, the functions y;, k € N, are equicontinuous. More-
over, we have

@)l <| [ (o)l v

my,

g/a),0+1(1,r0+1)dr, tel,keN,
1

i.e., the functions y, k € N, are uniformly bounded. According to the Arzela—As-
coli theorem, without loss of generality, we can assume that the sequence {yj},_; is
uniformly convergent.

At the same time, fort € I, k € N, we have

tmk t

/fmk(r,O)dT + /fmk(r,o)dr—/tfo(f,o)df
fo fo fo

IA

0 —/fo(f,O) dr

lmk tmk

Ty,
/fmk(T,O)dT—/fo(T,O)dT + /fo(f,O)dr
) ) )

IN

+ /tlfmk(%O) dT—/t.fO(T’O) dz

Iy,

< [ (o) ¢

fo
N N
+ 2 max /fmk(r,O)drf/fo(r,O)dr ;sel
0 0

Thus, from the conditions 1. and 2., we obtain

k—roo

limzk(t):/fg(r,o)dr

uniformly on /. From

Xk (1) = cmy +yie(t) + 2 (1), tel,keN,
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from the condition 1., and from the uniform convergences of the sequences {y};_,

and {zx },_, obtained above, it follows that there exists X € C(I,R") such that

lim xy (1) = %(¢)
k—yoo
uniformly on /.
Now, we show that
¥eX (f07t07C0) .

From
Xk GX(fmkvtmkvcmk)v kENa
it follows )
xu(t) =lto) + [ fu (5. x((®))de,  relkeN,
fo
Since

[l (t0) = coll < [lxe(t0) — £(to) | + ||%(10) — Z(tw, )
+ ||i(tmk) *xk(tmk)H + ka(tmk) *COH
<2l — &l + || %(20) — E(tm ) || 4 || — o]

for all k € N, from the condition 1., from the uniform limit

]}iigoxk(f) =X(1)

on /, and from the continuity of ¥, we obtain
lim xk(t()) = Co.
k—yoo
Next,
lim (2 (1)) = 2 (%(1))
k—roo
uniformly on /. Thus, (8.1) and Lemma 8.1 give

(1) zco—i—/fo(nf(r))dr, rel,

ie.,

¥eX (f07l‘07C0) .
Therefore,

x€ X (fo,to,c0).

Since ¥ is the uniform limit of the sequence {x; },_,, there exists ko € N such that

|X — x|l < &0, k> ko, k€N,

and, consequently,
Xk EX&'()(vatOvCO)v kaO,kGN»

which is a contradiction with

xx & Xe, (fo,t0,¢0), keN.
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The contradiction proves

hm X (fmatmacm) g X (f()7t(),C()) .

m—seo

From Definition 8.2, it follows the existence of my € N for which
X (finstmscm) S X1 (fo,to,c0) » m > mp, m € N.

Let m > mg (m € N) and y € X (fin,tm,cm) be arbitrary. Then, y € X; (fo,to,co), i..,
there exists x € X (fo,o,co) such that ||y —x||- < 1. Thus,

ylle <Ixlle+1<ro+1,

ie.,
Y EX(finytmsCm)-
‘We have obtained that

X(fm,tm,cm)gX(fm,tm,cm), m > my,m € N.
The opposite inclusion is also valid, which gives
X (fnstmscm) =X (fnstmsCm) m > mg, m € N.
‘We have proved that
X(fm,tm,cm) C C(I,R"Y), m e N.

Hence,
X (fin,tmycm) C C(I,R"), m>mgy, me N.

Now, it is enough to consider

lim X (ﬁmtmacm) cX (f(),l‘(),C()),

m—yoo

ie.,
llm X (fmytmacm) g X (fOJOaCO) .

m—yeo

Corollary 8.1. Let the assumptions 1.—4. from Theorem 8.1 be valid and let
Xm eX(fm7tm7cm)7 m € N.
Then, the sequence {xy},,_, has a subsequence {xmk }:Z | such that
,}E‘;xmk (1) =x(t)

uniformly on I, where
x € X(fo,10,c0)-
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Proof. From Theorem 8.1, it follows the existence of mg € N such that
Xm € C(I,R"), m>mgy, m e N.

In addition,
hm X (fmatmacm) g X (f07t07CO) .

m—yoo

Thus, there exists rg > 0 for which
[[%m (1)1 < ro, tel,m>my,méeN.

We recall that the set X(fo,%,co) is bounded in the space C(I,R") (due to Theo-
rem 4.1). We have obtained that the functions of the sequence {x, } are uniformly
bounded.

Obviously,

(=]
m=my

X () = X (20) + Y (t) + 2 (1), tel,m>my,meN,

where
t
wn(®) = [ fa(®5n(®) = fu(.0)d7, 1€ Lm=mo,meN,
I

and

t
zMﬁz/ﬁAme, t€l,m>my meN.
fo

From the condition 3., we obtain

[fn (#,%) = fin (2, 0) | < 00, (2, [|]])

< wy,(t,70), t€l,x€B[0,rg],m>my,meN,

because we can assume (without loss of generality) that the function @y, is non-de-
creasing in the second variable. At the same time, we have

[yn(®)]] < 1 (2, 70)

for almost all r € I and all m > mgy, m € N. Hence, the functions of the sequence
{¥m} e, are equicontinuous. From the condition 2., we get

m—yoo

lim 2 (1) = / fo(7,0)dz

=)

uniformly on /. Thus, the functions of the sequence {zm}m:mo are equicontinuous.
Therefore, the functions of the sequence {xm};zmo are equicontinuous as well.
Using the Arzela—Ascoli theorem, from the sequence {xm}::mo, one can extract a
subsequence {ka }::1 satisfying
lim X, (1) = x(¢)
k—>o0

uniformly on 1, where x € C(I,R").
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It remains to prove that x € X (fo,f0,co). Let € > 0 be arbitrary. Then, there exists
ko € N such that

Xmy,, € X (fo,10,c0)

and that e
< =.
HC 2

Therefore, one can choose y € X(fp, %0, co) satisfying

€
xkaGB( ’5)’

Jpmy

ie.,
€

5 .
Thus, x € B(y, €). From the arbitrariness of € > 0, it follows that x is an element of the
closure of the set X (fy,%0,co). This set is closed (see Remark 4.1). Therefore,

<

Hy g ||

X € X(f(),l‘o,Co).
O]

Remark 8.1. From the proof of Theorem 8.1 and from Corollary 8.1, it follows that the
condition 3. can be replaced by the following one:

3. for any r > 0, there exists a function @, € K(I x R, , R ) such that

o, (—,0)=0

and that |
Ifnlt.0) = Sult )| < 0100 x50 + @ (1,

forallz €1, x,y € B[0,r], m € N.
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9. Kneser theorem

Let I be a compact interval. We consider the Cauchy problem
X = f(t,x), 9.1
x(to) = co, 9.2)

where f € K(I x R",R"), 1o € I, cp € R". As X(f,f0,c0), we denote the set of all
non-extendable solutions of the problem (9.1), (9.2).

Theorem 9.1 (Kneser). If any non-extendable solution of the problem (9.1), (9.2) exists
on I, then the set X (f,to,co) is compact and connected in the space C(I,R").

Proof. According to Remark 4.1, the set X (f,#o,co) is compact in the space C(I,R").
We show that it is connected. We suppose the opposite, i.e., let X (f, o, co) be discon-
nected. Thus, there exist non-empty closed sets X1,X, C X(f,%o,co) such that

X1NX, =0, X1UXp ZX(f,t(),C()).

We denote
8 = inf{[ly x|

C;yEX],.XGXz}.

We know that § > 0. The sets X, X, are compact. Hence, there exist x; € X1, x2 € X
such that
||JC1 —XQHC = 6

From the compactness of X (f,,co) in C(I,R"), it follows the existence of r > 0 such
that
Ixllc <r—1, x € X(f,t0,c0)-

Now, we use Lemma 1.6 and Remarks 1.2 and 1.3. There exists a sequence
{fm}n—, of functions satisfying the following conditions:

a. it holds
fu €KIXRR"Y),  meN;

b. forany p > 0 and m € N, there exists a function /, ,, € L(I,R ) such that
1 (2:%) = fn (@) < lpm(@) =yl €1, x,y € B[0,p];
c. for almost all # € [ and any p > 0, it holds
Wlli_rgoﬁn(t,x) = f(t,x)

uniformly on BJ0, p];

d. for any p > 0, there exists a function i, € L(I,R) such that

[t x)| < hp(t),  t€I,x€Bl0,p],meN;
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e. for any p > 0, there exists a function @, € K(I x R, ,R ) such that

0

wp(_ao)
and that |
nlt.0) = It )] < 00, Le=31) + 05 (1)

forallz €I, x,y € B[0,p], m € N.
Forall A € [0,1] and m € N, we put

f/17m(tax) :f;n(t,x) + (1 —/’L) [f(t,)ﬂ([)) —fm(t,xl(t))]
+A[f(t,x2(0) = fnlt,x2(2))],  t€L,xeR"

One can easily verify that the functions f; ,, satisfy the following conditions:

1. it holds
fam € KU XR"R"), A€0,1],meN;

2. forany p > 0 and m € N, there exists a function /, ,, € L(1,R.) such that
[ f2.m(0%) = o m @) || < lpn(0) x =¥l t€L,xy€eBl0,p], 2 €[0,1];
3. for almost all r € I and any p > 0, it holds
i fy(t.0) = £(0.)

uniformly with respect to x € B[0,p], A € [0,1];

4. for any p > 0, it holds
[fam@X)|| <hp(t),  1€1,x€Bl0,p], A €[0,1],meN,
where

ho(8) = hp (6) + e (0) + [ £ x1 @)+ £ (E 2@, 1 €L

5. for any p > 0, there exists a function @, € K(I x R;,R ) with the property that

and that
1
| n5) = Fame.9)] < @plr =310+ 0 (1)

forallr € I, x,y € B[0,p], A € [0,1], m € N.

For all A € [0,1] and m € N, we consider the problem

X, = flm(tvx% (93)
x(l‘o) = Cy. 9.2)
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Due to the condition 2., from Corollary 7.1, it follows that the problem (9.3), (9.2) is
uniquely solvable for any 4 € [0,1] and m € N. As x; ,,, we denote the non-extendable
solution of this problem. Since the convergence is uniform with respect to A in the
condition 3. and since the majorants are also independent on A in the conditions 4. and
5., the assumptions of Theorem 8.1 (Remark 8.1) are satisfied (uniformly with respect
to A). Thus, there exists my € N such that, for all m > mg, m € N, and A € [0, 1], the
solution xy ,, exists on the interval /. Moreover, due to the inequality

Ixlle <r—1, x € X(f,t0,c0),

the proof of Theorem 8.1 guarantees that, without loss of generality, we can assume
the inequality
||x,17m||C§r, m>my,meN, A e[0,1].

We denote
Nm(A) :inf{|fx,1’m—y||c;y €Xi}, A €10,1],m > my,m € N.

From the definition of the function f} ,, and the uniqueness of the solution x; ,,, it
follows that
Xom = X1, X1m = X2, me N.

Therefore, 1,,(0) =0, N, (1) = 8, m > my, m € N. Let m > mg (m € N) be arbitrarily
given. Let Ao € [0,1] be also arbitrarily given and let {Ax};_, C [0,1] be a sequence
for which

lim A,k = 10
k—yoo
Using Theorem 8.1, one can verify that

I}g?cxlk,m(t) = xlo,m(t)

uniformly on /. Since the set X; is compact, from the definition of the function 1,,, it
follows that

lim 1, (A4) = 1M (%),
k—yoo0
i.e., the function 1, is continuous on [0, 1]. Therefore,
Mn(0)=0,  Mu(1)=6, m=>mo,meN,
implies that, for any m > mg, m € N, there exists 4,, € (0, 1) with the property that

o
nm()“m) - 57

ie.,

. )
lnf{Hxlm,m_yHC;yEXl}257 m > mo, m € N.
Due to the condition 4. and

||x,17m||C§r, m>my,meN, A €[0,1],

the functions of the sequence {ka_,m }::mo have to be uniformly bounded and equicon-
tinuous. According to the Arzela—Ascoli theorem, without loss of generality, we can
assume that this sequence is convergent, i.e., there exists X € C(I,R") such that

lim x, ,,(¢) = %(2)

m—yoo
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uniformly on /.
Next, Theorem 8.1 gives
DS X(fathCO)-

Since the set X is compact, we have

o 5
inf{||f—ylc:yeXi} = 5

Thus, we know that ¥ ¢ X; and, consequently, X € X,, which is a contradiction. The
contradiction proves that the set X (f,#,co) is connected. O
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10. Fukuhara theorems

Let I be a compact interval. We consider the Cauchy problem
X' = f(t,x), (10.1)
x(t()) = ¢, (10.2)

where f € K(I x R",R"), tp € I, ¢cp € R". As X(f,1,c0), we denote the set of all
non-extendable solutions of the problem (10.1), (10.2). For M C R"™, we denote

X(f7t07M) = U X(f,[(),C).

ceM

Theorem 10.1 (1. Fukuhara). Let M be a closed and connected subset of R". If, for
any co € M, all non-extendable solution of the problem (10.1), (10.2) exists on I, then
the set X(f,t0,M) is closed and connected in the space C(I,R"). Moreover, if the set
M is bounded, then the set X (f,ty,M) is compact.

Proof. The set X(f,tp,M) is closed in the space C(I,R"). Indeed, it suffices to consider
Theorem 8.1 and the fact that the set M is closed.

We show that the set X(f,7,M) is connected. We suppose the opposite. Then,
there exist non-empty closed sets X;,X, C X(f,,M) such that

Xi1NX, =0, X1UXy :X(f,l‘o,M).
Let co € M be arbitrary. We denote
Y =X (f,t0,c0) N X, ie{1,2}.

If Y) # 0 and Y, # 0, then ¥ and Y, are non-empty closed subsets of X (f,#,co) such
that
YinY, =0, Yiubh, =X<f,t(),C()>.

Next, from Theorem 9.1, it follows that the set X (f,f,co) is a subset of X; for some
i € {1,2}. We denote

M; = {co € M;X(f,10,c0) € X;}, i€ {l1,2}.

Obviously, M| #£ 0, My # 0, M "M, =0, and M| UM = M.
We prove that the set M| is closed. Let {c,,},,_; € M, be such that

lim ¢, = cg.
m—roo

Then, co € M (M is closed) and there exists a sequence {x,,},._; C X; such that
Xm € X(fyto,6m)s m e N.
Without loss of generality (see Corollary 8.1), we can assume that

lim x,,,(t) = %(¢)

m—yoo
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uniformly on /, where
FeX(ft0,c0)-

Since the set X is closed, we see that X € X;. Thus, ¢g € M;, which means that M is
closed.

Analogously, one can prove that M is closed as well. Hence, we have proved that
M, M, are non-empty closed subsets of the set M satisfying

M NM, =0, MiUM>, =M,

which is a contradiction with the assumption that M is connected. The contradiction
means that the set X (f,7,M) is connected.

Now, we consider that the set M is bounded. Let {x,,}, _, be a sequence of ele-
ments of X (f,7,M). Then, there exists a sequence {c,},,_; C M such that

Xm € X(fito,cm),  meN.
Due to the compactness of the set M, without loss of generality, we can assume that

lim ¢, = co,
m—yoeo

where ¢y € M. From Corollary 8.1, it follows the existence of a subsequence {ka }::1
of the sequence {x,,},._, satisfying

]}i_r>13°xmk (1) =x(t)

uniformly on /, where
x €X(f,10,c0).

Since co € M, we see that

x€X(f,t0,M),
i.e., the set X (f,f, M) is compact in the space C(I,R"). O
Let
X(f,t0,c0) CC(I,R").
We denote

W (f,to,co) ={(t,x(r));t € I,x € X(f,t0,c0)}
and, for r € I, we put
Wi (f,t0,¢c0) = {x e R"; (¢,x) € W(f,0,c0)}-

Theorem 10.2 (2. Fukuhara). If any non-extendable solution of the problem (10.1),
(10.2) exists on I, then, for all T € I and ¢ € OW;(f,1y,co), there exists X € X (f,t0,co)
such that X(f) = ¢ and the graph of the function X between ty and { is on the boundary
of the set W (f,19,co), i.e.,

(t,%(t)) € IW(f,10,¢0), min {#,7} <t < max {to,7}.

52



Proof. 1If we use the boundedness of the set X (f,o,co) (see Theorem 4.1), then, with-
out loss of generality, we can assume the existence of a function 4 € L(,R ) for which

|f(t,x)|| <h(t), tel,xeR"

We prove the theorem in the case when 7 > #( (in the second case, the proof is
analogical). According to Theorem 9.1, W;(f, o, co) is a connected and compact subset
of R". Therefore, there exists a sequence {cx};_; C R”" such that

Ck¢VVt_(f7t07C0)7 kEN,

and that

lim cp=_C.
k—soo

For k € N, we consider the problem

X = f(t,x), (10.1)
x(f) Ck- (10'3)

‘We assume that
If(t.x)]| <h(r), tel,xeR"

Therefore, for all k € N, there exists a solution x; of the problem (10.1), (10.3) on the
interval I, where (see also Corollary 6.1)

xp € X(f,F,cr), keN.
By contradiction, we show that

(t,xi(t)) € W(f,t0,c0), 1€ [to,],keN.

If, for some k € N, there exists * € [f,7) such that
(t*axk(t*)) € W(f,[()aco)v

then one can find ¥ € X (f,#o,co) satisfying %(+*) = x;(+*). We denote

A= (), te€[infl,r*];
x(t), te(*,supl].
Obviously,
y € X(f,t0,¢0)-
Therefore,
y(f) € ‘/Vl_(fvt(hco)‘
At the same time,
y(f) = Ck ¢ vvf(fJOaQ))a

which is a contradiction.
Corollary 6.1 gives that all non-extendable solution of the problem

X = f(t,x), (10.1)
x() (10.4)

Il
o
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exists on the interval /. Therefore, with regard to Corollary 8.1, without loss of gene-
rality, we can assume that

lim xk(t) = X()(l‘)
k—roo

uniformly on 7, where
x0 € X(f,£,0).

Let s € (fy,7) be arbitrarily given. We consider the sets W;(f, %o, co) and Wy(f,7,¢). We
have proved that x((s) is not an inner point of the set W;(f,1,co), i.e.,

xo(s) & Ws(f,t0,c0) or  xo(s) € IWy(f,t0,c0).

But, it is valid that
Wi(fto,c0) NWs(f,7,¢) # 0.
Indeed, since (7,¢) € W(f,t,co), there exists ¥ € X(f,to,co) such that ¥(f) = ¢. This
fact means that
xeX(f,i,0).
Thus,
X(s) € Ws(f10,c0) NWs(f7,2).
The sets Wy(f, 0, co) and Wy(f,7,¢) are connected and closed and they are not dis-

joint. There exists a point belonging to the set Ws(f,7,¢) which is not in the interior of
the set W,(f,f0,co). Therefore, there exists a point ¢; € R" such that

cs € OW,(f 10, c0) NWs(f,7,€).

Hence, there exists a solution % of the problem (10.1), (10.2) passing through the point
[s,cs] and, at the same time, there exists a solution %, of the problem (10.1), (10.4)
passing through the point [s, ¢,]. If we put

%o(t), t€(s,supl],

y([) _ {fl (l>7 te [inf]’s];

then
yEX(fit0,c0),  ¥(s)=cs, Y@ =0
We have proved that, for any s € (f9,7), there exists y € X(f,,co) such that

yO) =&  (sy(s)) € IW(f,10,c0)-

Thus, for an arbitrary set

{S1,...,Sm} C (to,t_),

there exists y,, € X (f,1),co) with the property that

ym(@) =& (si,ym(si)) € IW(f.t0,c0),  i€{l,....m}. (10.5)
Let {s;},_, be dense in (f,7). It is obvious that, for any m € N, there exists y,, €
X(f,10,co) satisfying (10.5). Since the set X (f, o, co) is compact in the space C(I,R"),
without loss of generality, we can assume that the sequence {y,},_, is convergent,
ie.,
lim ym(t) :f(l‘)

m—yoo
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uniformly on /, where
FeX(f,t0,c0)-

Using (10.5), one can easily verify that
(t,f(t))E&W(f,to,CO), re [t0>ﬂ'

The proof is complete.
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