BENZO[C]PHENANTHRIDINE ALKALOIDS AND THEIR INTERACTION TO NON-CANONICAL DNA STRUCTURES

Petra JAROŠOVÁ¹, Raimundo GARGALLO², Petr TÁBORSKÝ¹, Ondřej PEŠ³

¹Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic ²Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí I Franquès 1-11, 08028 Barcelona, Spain ³Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic Email of presenting author: 408846@mail.muni.cz

Non-canonical DNA secondary structures have become possible therapeutic targets in recent years. The most known types of these structures are the G-quadruplex (GQ) which is present in several protooncogenic-DNA promoters and thus participates in biological processes such as replication, transcription and translation and i-motif, which is sequence observed in cytosin-rich parts of the strand and is stable in lower pH conditions. The interaction of natural benzo[c]phenanthridine alkaloids (macarpine and sanguinarine) with parallel and antiparallel G-quadruplex DNA structures was studied, for comparison the competitive dialysis experiment with alkaloid berberine in lower pH was performed. Spectroscopically-monitored melting experiments, fluorescence titrations and competitive dialysis were used to observe the interaction of the oligonucleotides and alkaloids. The results showed that these alkaloids stabilized G-quadruplex structures in terms of increments of T_m values with high selectivity over duplexes and unfolded DNA. The presence of non-specific electrostatic interactions was also observed. Overall, the results pointed to a strong stabilization of G-quadruplex structures by these alkaloids.

Acknowledgements

This work was supported by department of chemistry, Masaryk University. Part of the work was carried out with the support of Biomolecular Interactions and Crystallization Core facility of CEITEC – Central European Institute of Technology, ID number CZ.1.05/1.1.00/02.0068, financed from European Regional Development Fund.