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Welcome to ArcGIS Geostatistical Analyst

IN THIS CHAPTER

Exploratory spatial data analysis
Semivariogram modeling

Surface prediction and error
modeling

Threshold mapping
Model validation and diagnostics
Surface prediction using cokriging

Tips on learning Geostatistical
Analyst

Welcome to the ESRI® ArcGIS® Geostatistical Analyst extension for
advanced surface modeling using deterministic and geostatistical methods.
Geostatistical Analyst extends ArcMap™ by adding an advanced tool bar
containing tools for exploratory spatial data analysis and a geostatistical
wizard to lead you through the process of creating a statistically valid
surface. New surfaces generated with Geostatistical Analyst can
subsequently be used in geographic information system (GIS) models and in
visualization using ArcGI S extensions such as ArcGI S Spatial Analyst and
ArcGIS 3D Analyst™.

Geostatistical Analyst is revolutionary because it bridges the gap between
geostatistics and GIS. For some time, geostatistical tools have been
available, but never integrated tightly within GIS modeling environments.
Integration is important because, for the first time, GIS professionals can
begin to quantify the quality of their surface models by measuring the
statistical error of predicted surfaces.

Surface fitting using Geostatistical Analyst involves three key steps
(demonstrated on the following pages):

» Exploratory spatial data analysis

e Structural analysis (cal culation and modeling of the surface properties of
nearby locations)

» Surface prediction and assessment of results

The software contains a series of easy-to-use tools and wizards that guide
you through each of these steps. It also includes a number of unique tools
for statistical spatial data analysis.



Exploratory spatial data analysis

Using measured sample points from a study area, Geostatistical Analyst can create accurate predictions for other unmeasured locations
within the same area. Exploratory spatial data analysis tools included with Geostatistical Analyst are used to assess the statistical
properties of data such as spatial data variability, spatial data dependence, and global trends.
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A number of exploratory spatial data analysis tools are used to investigate the properties of ozone measurements taken

at monitoring stations in the Carpathian Mountains.
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Semivariogram modeling

Geostatistical analysis of data occurs in two phases: 1) modeling the semivariogram or covariance to analyze surface properties, and
2) kriging. A number of kriging methods are available for surface creation in Geostatistical Analyst, including ordinary, simple,
universal, indicator, probability, and disjunctive kriging.
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The two phases of geostatistical analysis of data are illustrated above. First, the semivariogram/covariance wizard was used to
fit a model to winter temperature data for the USA. This model was then used to create the temperature distribution map.
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Surface prediction and error modeling

Various types of map layers can be produced using Geostatistical Analyst, including prediction maps, quantile maps, probability maps,
and prediction standard error maps.
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Here, Geostatistical Analyst has been used to produce a prediction map of radioceasium soil contamination levels in the country of
Belarus after the Chernobyl nuclear power plant accident.
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Threshold mapping

Probability maps can be generated to predict where values exceed a critical threshold.
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Locations shown in dark orange and red indicate a probability greater than 62.5% that radioceasium contamination exceeds the upper
permissible level (critical threshold) in forest berries.
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Model validation and diagnostics

Input data can be split into two subsets. The first subset of the available data can be used to develop a model for prediction. The
predicted values are then compared with the known values at the remaining locations using the Validation tool.
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The validation wizard is used to assess a model developed to predict organic matter for a farm in lllinois.
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Surface prediction using cokriging

Cokriging, an advanced surface modeling method included in Geostatistical Analyst, can be used to improve surface prediction of a
primary variable by taking into account secondary variables, provided that the primary and secondary variables are spatially correlated.
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In this example, exploratory spatial data analysis tools are used to explore spatial correlation between
ozone (primary variable) and nitrogen dioxide (secondary variable) in California. Because the variables are
spatially correlated, cokriging can use the nitrogen dioxide data to improve predictions when mapping
ozone.

Additionally, Geostatistical Analyst contains a number of unique tools to improve prediction, including tools for data transformation;
data detrending using local polynomial interpolation; identification of the shift parameter in a cross-covariance model; error modeling
to define the proportion of error resulting from microscale variations and measurement errors; examination of data for bivariate
distribution; optimal searching neighborhood selection; and quantile map production.
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Tips on learning Geostatistical
Analyst

If you are new to the concept of geostatistics, remember that you
don’t have to know everything about Geostatistical Analyst to get
immediate results. Begin learning Geostatistical Analyst by
reading Chapter 2, ‘Quick-start tutorial’. This chapter introduces
you to some of the tasks you can accomplish using Geostatistical
Analyst and provides an excellent starting point as you begin to
think about how to tackle your own spatial problems.
Geostatistical Analyst comes with the data used in the tutorial, so
you can follow along step by step at your computer.

If you prefer to jump right in and experiment on your own, use
Chapter 5, ‘Deterministic methods for spatial interpolation’, and
Chapter 6, ‘Creating a surface with geostatistical techniques’, as
a guide to learn the concepts and the steps to perform a certain
task.

Finding answers to questions

Like most people, your goal is to complete your tasks while
investing a minimum amount of time and effort on learning how
to use software. You want intuitive, easy-to-use software that
gives you immediate results without having to read pages of
documentation. However, when you do have a question, you want
the answer quickly so you can complete your task. That’s what
this book is all about—getting the answers you need, when you
need them.

This book describes geostatistical analysis tasks—from basic to
advanced—that you’ll perform with Geostatistical Analyst.
Although you can read this book from start to finish, you’ll likely
use it more as a reference. When you want to know how to do a
particular task, such as identifying global outliers, just look it up
in the table of contents or the index. What you’ll find is a
concise, step-by-step description of how to complete the task.
Some chapters also include detailed information that you can

read if you want to learn more about the concepts behind the
tasks. You may also refer to the glossary in this book if you come
across any unfamiliar geostatistical terms or need to refresh your
memory.

About this book

This book is designed to help you perform geostatistical analyses
by giving you conceptual information and teaching you how to
perform tasks to solve your geostatistical problems. Topics
covered in Chapter 2 assume you are familiar with the
fundamentals of a Geographic Information System (GIS) and
have a basic knowledge of ArcGIS. If you are new to GIS or
ArcMap, you are encouraged to take some time to read Getting
Started with ArcGIS and Using ArcMap, which you received in
your ArcGIS package. It is not necessary to do so to continue
with this book; simply use the books as references.

Chapter 3 takes you through the basic principles of geostatistics,
helping you understand the different interpolation methods and
how they work conceptually. Chapter 4 covers the various
ESDAs that allow you to understand your data better. Chapter 5
explains the deterministic interpolation methods. Chapter 6
discusses the various geostatistical methods, and Chapter 7
discusses the wide variety of tools that you use when performing
interpolation. Chapter 8 describes the various display and
management tools that are applicable to geostatistical layers.
Chapter 9 covers a series of other geostatistical-analysis
concepts and tasks. Appendix A provides detailed mathematical
formulas for the various functions and methods used in
Geostatistical Analyst. Finally, a glossary gives definitions to
various geostatistical terms used in this book.

Getting help on your computer

In addition to this book, use the ArcMap online Help system to
learn how to use Geostatistical Analyst and ArcMap. To learn
how to use Help, see the book Using ArcMap.
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Contacting ESRI

If you need to contact ESRI for technical support, see the product
registration and support card you received with ArcGIS
Geostatistical Analyst, or refer to ‘Contacting Technical Support’
in the ‘Getting more help’ section of the ArcGIS Desktop Help
system. You can also visit ESRI on the Web at www.esri.com and
support.esri.com for more information on Geostatistical Analyst
and ArcGIS.

ESRI education solutions

ESRI provides educational opportunities related to geographic
information science, GIS applications, and technology. You can
choose among instructor-led courses, Web-based courses, and
self-study workbooks to find education solutions that fit your
learning style. For more information, go to www.esri.com/
education.
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Quick-start tutorial

INTHIS CHAPTER

» Exercise 1: Creating a surface
using default parameters

» Exercise 2: Exploring your data

» Exercise 3: Mapping ozone con-
centration

» Exercise 4: Comparing models

» Exercise 5: Mapping the probabil-
ity of ozone exceeding a critical
threshold

» Exercise 6: Producing the final
map

With Geostatistical Analyst, you can easily create a continuous surface,

or map, from measured sample points stored in a point-feature layer, raster
layer, or by using polygon centroids. The sample points may be measurements
such as elevation, depth to the water table, or levels of pollution, asisthe case
inthistutorial. When used in conjunction with ArcMap, Geostatistical Analyst
provides a comprehensive set of tools for creating surfaces that can be used
tovisualize, analyze, and understand spatial phenomena.

Tutorial scenario

TheU.S. Environmental Protection Agency isresponsible for monitoring
atmospherl C ozone concentratl onin California. Ozone concentration is mea-

» ~ sured at monitoring stations throughout the state.
The locations of the stations are shown here. The
concentration levels of ozone are known for
# al of the stations, but we are also interested in
knowing thelevel for every location in California
However, dueto cost and practicality, monitoring
stations cannot be everywhere. Geostatistical
Analyst provides tools that make the best predic-
tions possible by examining the relationships
between all of the sample points and producing a
continuous surface of ozone concentration,
standard errors (uncertainty) of predictions, and
probabilitiesthat critical values are exceeded.
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Introduction to the tutorial

The data you’ll need for this tutorial is included on the
Geostatistical Analyst installation disk. The datasets were
provided courtesy of the California Air Resources Board.

The datasets are:

Dataset Description

ca_outline Outline map of California

ca_ozone_ pts Ozone point samples (ppm)

ca_cities Location of major Californian cities
ca_hillshade A hillshade map of California

The Ozone dataset (ca_ozone pts) represents the 1996
maximum eight-hour average concentration of ozone in
parts per million (ppm). (The measurements were taken
daily and grouped into eight-hour blocks.) The original data
has been modified for the purposes of the tutorial and
should not be taken to be accurate data.

From the ozone point samples (measurements), you will
produce two continuous surfaces (maps), predicting the
values of ozone concentration for every location in the State
of California based on the sample points that you have. The
first map that you create will simply use all default options
to show you how easy it is to create a surface from your
sample points. The second map that you produce will allow
you to incorporate more of the spatial relationships that are
discovered among the points. When creating this second
map, you will use the ESDA tools to examine your data.
You will also be introduced to some of the geostatistical
options that you can use to create a surface such as
removing trends and modeling spatial autocorrelation. By

12

using the ESDA tools and working with the geostatistical
parameters, you will be able to create a more accurate
surface.

Many times it is not the actual values of some caustic
health risk that is of concern, but rather if it is above some
toxic level. If this is the case immediate action must be
taken. The third surface you create will assess the probabil-
ity that a critical ozone threshold value has been exceeded.

For this tutorial, the critical threshold will be if the maximum
average of ozone goes above 0.12 ppm in any eight-hour
period during the year; then the location should be closely
monitored. You will use the Geostatistical Analyst to predict
the probability of values complying with this standard.

This tutorial is divided into individual tasks that are designed
to let you explore the capabilities of the Geostatistical
Analyst at your own pace. To get additional help, explore
the ArcMap online Help system or see Using ArcMap.

Using ARcGIS GEOSTATISTICAL ANALYST



» Exercise 1 takes you through accessing the Geostatisti-
cal Analyst and through the process of creating a
surface of ozone concentration to show you how easy it
is to create a surface using the default parameters.

» Exercise 2 guides you through the process of exploring
your data before you create the surface in order to spot
outliers in the data and to recognize trends.

» Exercise 3 creates the second surface that considers
more of the spatial relationships discovered in Exercise 2
and improves on the surface you created in Exercise 1.
This exercise also introduces you to some of the basic
concepts of geostatistics.

» Exercise 4 shows you how to compare the results of the
two surfaces that you created in Exercises 1 and 3 in
order to decide which provides the better predictions of
the unknown values.

» Exercise 5 takes you through the process of mapping the
probability that ozone exceeds a critical threshold, thus
creating the third surface.

» Exercise 6 shows you how to present the surfaces you
created in Exercises 3 and 5 for final display, using
ArcMap functionality.

You will need a few hours of focused time to complete the
tutorial. However, you can also perform the exercises one
at a time if you wish, saving your results after each exer-
cise.

QUICK-START TUTORIAL
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Exercise 1: Creating a surface using default parameters

Before you begin you must first start ArcMap and enable
Geostatistical Analyst.

Starting ArcMap and enable Geostatistical Analyst

Click the Start button on the Windows taskbar, point to
Programs, point to ArcGIS, and click ArcMap. In ArcMap,
click Tools, click Extensions, and check Geostatistical
Analyst. Click Close.

Adding the Geostatistical Analyst toolbar to
ArcMap

Click View, point to Toolbars, and click Geostatistical
Analyst.

Adding data layers to ArcMap

Once the data has been added, you can use ArcMap to
display the data and, if necessary, to change the properties
of each layer (symbology, and so on).

1. Click the Add Data button on the Standard toolbar.

2. Navigate to the folder where you installed the tutorial
data (the default installation path is
C:\ArcGIS\ArcTutor\Geostatistics), hold down the Ctrl
key, then click and highlight the ca_ozone pts and
ca_outline datasets.

Click Add.

4. Click the ca_outline layer legend in the table of contents
to open the Symbol Selector dialog box.

(98]

5. Click the Fill Color dropdown arrow and click No Color.
6. Click OK on the Symbol Selector dialog box.
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The ca_outline layer is now displayed transparently with
just the outline visible. This allows you to see the layers
that you will create in this tutorial underneath this layer.

Saving your map

It is recommended that you save your map after each
exercise.

7. Click the Save button on the Standard toolbar.

You will need to provide a name for the map because
this is the first time you have saved it (we suggest
Ozone Prediction Map.mxd). To save in the future, click
Save.
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Creating a surface using the defaults

Next you will create (interpolate) a surface of ozone
concentration using the default settings of the Geostatistical
Analyst. You will use the ozone point dataset

(ca_ozone pts) as the input dataset and interpolate the
ozone values at the locations where values are not known
using ordinary kriging. You will click Next in many of the
dialog boxes, thus accepting the defaults. Do not worry
about the details of the dialog boxes in this exercise. Each
dialog box will be revisited in later exercises. The intent of

this exercise is to create a surface using the default options.

1. Click the Geostatistical Analyst toolbar, then click
Geostatistical Wizard.

J Geostatistical Analyst = ‘

Explore Data 3

)

33 Create Subsets...

2. Click the Input Data dropdown arrow and click
ca_ozone_pts.

(98]

Click the Attribute dropdown arrow and click the
OZONE attribute.

4. Click Kriging in the Methods dialog box.
5. Click Next.

By default, Ordinary Kriging and Prediction Map will be
selected in the Geostatistical Method Selection dialog
box.
Note that having selected the method to map the ozone
surface, you could click Finish here to create a surface

using the default parameters. However, steps 6 to 10 will
expose you to many of the different dialog boxes.
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Geostatistical Wizard: Choose Input Data and Method
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box.
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Geostatistical Wizard: Step 1 of 4 - Geostatistical Method Selection
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©

. Click Next on the Geostatistical Method Selection dialog
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Geostatistical Wizard: Step 2 of 4 - Semivariogram/Covariance Modeling
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The Semivariogram/Covariance Modeling dialog box allows
you to examine spatial relationships between measured
points. You assume things that are close are more alike.
The semivariogram allows you to explore this assumption.
The process of fitting a semivariogram model while captur-
ing the spatial relationships is known as variography.

7. Click Next.
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Geostatistical Wizard: Step 3 of 4 - Searching Meighborhood
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The crosshairs show a location that has no measured value.
To predict a value at the crosshairs you can use the values
at the measured locations. You know that the values of the
closer measured locations are more like the value of the
unmeasured location that you are trying to predict. The red
points in the above image are going to be weighted (or
influence the unknown value) more than the green points
since they are closer to the location you are predicting.
Using the surrounding points, with the model fitted in the
Semivariogram Modeling dialog box, you can predict a
more accurate value for the unmeasured location.

8. Click Next.
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Geostatistical Wizard: Step 4 of 4 - Cross Validation
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The Cross Validation dialog box gives you some idea of
“how well” the model predicts the values at the unknown
locations. You will learn how to use the graph and under-
stand the statistics in Exercise 4.

9. Click Finish.

The Output Layer Information dialog box summarizes
information on the method (and its associated param-
eters) that will be used to create the output surface.

10. Click OK.

The predicted ozone map will appear as the top layer in
the table of contents.

11. Click the layer in the table of contents to highlight it,
then click again, and change the layer name to
“Default”.
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This name change will help you distinguish this layer
from the one you will create in Exercise 4.

12. Click save on the ArcMap Standard toolbar.

Notice that the interpolation continues into the ocean. You
will learn in Exercise 6 how to restrict the prediction
surface to stay within California.
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Surface-fitting methodology

You have now created a map of ozone concentration and completed Exercise 1 of the tutorial. While it is a simple task to
create a map (surface) using the Geostatistical Analyst, it is important to follow a structured process as shown below:

Exercise 1
Add layers and display them in the ArcMap data view.

Represent
the data
Exercise 2

Investigate the statistical properties of your dataset. These tools can be used
to investigate the data, whether or not the intention is to create a surface.

Explore
the data
Exercise 3

Select a model to create a surface. The exploratory data phase will help in
the selection of an appropriate model.

Fita
model

Exercise 3
Assess the output surface. This will help you understand “how well”
the model predicts the unknown values.

Perform
diagnostics
Exercise 4

If more than one surface is produced, the results can be
compared and a decision made as to which provides the better
predictions of unknown values.

Compare
the models

You will follow this structured process in the following exercises of the tutorial. In addition, in Exercise 5, you will create a
surface of those locations that exceed a specified threshold and, in Exercise 6, you will create a final presentation layout of
the results of the analysis performed in the tutorial.

Note that you have already performed the first step of this process, representing the data, in Exercise 1. In Exercise 2, you
will explore the data.
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Exercise 2: Exploring your data

In this exercise you will explore your data. As the struc-
tured process on the previous page suggests, to make better
decisions when creating a surface you should first explore
your dataset to gain a better understanding of it. When
exploring your data you should look for obvious errors in the
input sample data that may drastically affect the output
prediction surface, examine how the data is distributed,

look for global trends, etc.

The Geostatistical Analyst provides many data-exploration
tools.

In this tutorial you will explore your data in three ways:
+ Examine the distribution of your data.
 Identify the trends in your data, if any.

» Understand the spatial autocorrelation and directional
influences.

If you closed the map after Exercise 1, click the File menu
and click Open. In the dialog box, click the Look in box
dropdown arrow and navigate to the folder where you
saved the map document (Ozone Prediction Map.mxd).
Click Open.

Examining the distribution of your data

Histogram

The interpolation methods that are used to generate a
surface give the best results if the data is normally distrib-
uted (a bell-shaped curve). If your data is skewed (lop-
sided) you may choose to transform the data to make it
normal. Thus, it is important to understand the distribution of
your data before creating a surface. The Histogram tool

QUICK-START TUTORIAL

plots frequency histograms for the attributes in the dataset,
enabling you to examine the univariate (one-variable)
distribution of the dataset for each attribute. Next, you will
explore the distribution of ozone for the ca_ozone pts layer.

1. Click ca _ozone pts, move it to the top of the table of
contents, then place ca_outline underneath
ca_ozone_pts.

L £Z Layers
T ey Rigng

Prediction

[ea_ozone_pis}[0Z0

Filed Contaurs

L.04E500 - 0.0E5771

L0BE771 - 0078867

0.078867 - 0087768

0L.087768 - 0.033817

0.093917 - 0.057328

0.037928 - 0.103978
I 0103976 - 0.112077
0112077 -0.125973
0125973 - 0.145244

I 0145244 - 0173600
= I ca_ozone_pts H

-
= ca_outine
O

2. Click the Geostatistical Analyst toolbar, point to Explore
Data, and click Histogram.

J Geostatistical Analyst *

Explore Data @
Mormal GG Plot
@ Trend Analysiz
Yaronai bap

Semivariogram/Covariance Cloud

General DG Plat

@ Geostatistical Wizard...

45 Create Subsets...

@ Crosscovariance Cloud

You may wish to resize the Histogram dialog box so you
can also see the map, as the following diagram shows.
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. Click the Layer dropdown arrow and click
ca_ozone_pts.

4. Click the Attribute dropdown arrow and click OZONE.
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The distribution of the ozone attribute is depicted by a
histogram with the range of values separated into

10 classes. The relative proportion (density) of data within
each class is represented by the height of each bar.

Generally, the important features of the distribution are its
central value, its spread, and its symmetry. As a quick
check, if the mean and the median are approximately the
same value, you have one piece of evidence that the data
may be normally distributed.
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The histogram shown above indicates that the data is
unimodal (one hump) and fairly symmetric. It appears to be
close to a normal distribution. The right tail of the distribu-
tion indicates the presence of a relatively small number of
sample points with large ozone concentration values.

5. Click the histogram bar with ozone values ranging from
0.162t0 0.175 ppm.

The sample points within this range are highlighted on
the map. Note that these sample points are located
within the Los Angeles region.

6. Click to close the dialog box.

Normal QQPlot

The QQPIot is where you compare the distribution of the
data to a standard normal distribution, providing yet another
measure of the normality of the data. The closer the points
are to creating a straight line, the closer the distribution is to
being normally distributed.

1. Click the Geostatistical Analyst toolbar, point to Explore
Data, and click Normal QQPlot.

J Geostatiztical Analyst * ‘

Explore Data

ld M Histogram
G Geostatistical Wizard..
@ Trend Analysiz
Yoronol Map

Semivariogram/Covariance Cloud

General DEPIot

35y Create Subsets...

& Crosscovariance Cloud
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2. Click the Layer dropdown arrow and click
ca_ozone_pts.

Click the Attribute dropdown arrow and click OZONE.
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A General QQPIlot is a graph on which the quantiles from
two distributions are plotted versus each other. For

two identical distributions, the QQPIlot will be a straight line.
Therefore, it is possible to check the normality of the ozone
data by plotting the quantiles of that data versus the
quantiles of a standard normal distribution. From the
Normal QQPIot above you can see that the plot is very
close to a straight line. The main departure from this line
occurs at high values of ozone concentration (which were
highlighted in the histogram plot so they are highlighted here
also).

QUICK-START TUTORIAL

If the data did not exhibit a normal distribution in either the
Histogram or the Normal QQPIot, it may be necessary to
transform the data to make it comform to a normal distribu-
tion before using certain kriging interpolation techniques.

4. Click to exit the dialog box.

Identifying global trends in your data

If a trend exists in your data, it is the nonrandom (determin-
istic) component of a surface that can be represented by
some mathematical formula. For instance, a gently sloping
hillside can be represented by a plane. A valley would be
represented by a more complex formula (a second-order
polynomial) that creates a “U” shape. This formula may
produce the representation of the surface you desire.
However, many times the formula is too smooth to accu-
rately depict the surface because no hillside is a perfect
plane nor is a valley a perfect “U” shape. If the trend
surface does not adequately portray your surface for your
particular need, you may want to remove it and continue
with your analysis, modeling the residuals, which is what
remains after the trend is removed. When modeling the
residuals, you will be analyzing the short-range variation in
the surface. This is the part that isn’t captured by the
perfect plane or the perfect “U”.

The Trend Analysis tool enables you to identify the pres-
ence/absence of trends in the input dataset.

1. Click the Geostatistical Analyst toolbar, point to Explore
Data, and click Trend Analysis.

2. Click the Layer dropdown arrow and click
ca_ozone_pts.
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3. Click the Attribute dropdown arrow and click OZONE.

Each vertical stick in the trend analysis plot represents the
location and value (height) of each data point. The points
are projected onto the perpendicular planes, an east—west
and a north—south plane. A best-fit line (a polynomial) is
drawn through the projected points, which model trends in
specific directions. If the line were flat, this would indicate
that there would be no trend. However, if you look at the
light green line in the image above, you can see it starts out
with low values and increases as it moves east until it levels
out. This demonstrates that the data seems to exhibit a
strong trend in the east—west direction and a weaker one in
the north—south direction.
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4. Click the Rotate Projection scroll bar and scroll left until
the rotation angle is 30°.

This rotation enables you to see the shape of the cast—west
trend more clearly. You can see that the projection actually
exhibits an upside-down “U” shape. Because the trend is
“U” shaped, a second-order polynomial is a good choice to
use for the global trend. Even though the trend is being
exhibited on the east—west projection plane, because we
rotated the points 30°, the actual trend is northeast to
southwest. The trend seen is possibly caused by the fact
that the pollution is low at the coast, but moving inland there
are large human populations that taper off again at the
mountains. You will remove these trends in Exercise 4.

5. Click to exit the dialog box.
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Understanding spatial autocorrelation and
directional influences

1. Click the Geostatistical Analyst toolbar, point to Explore
Data, and click Semivariogram/Covariance Cloud.

J Geostatiztical Analpst + |

Explare Data d @ Histagram
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Wononol bap
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2. Click the Layer dropdown arrow and click
ca_ozone_pts.

3. Click the Attribute dropdown arrow and click OZONE.
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The Semivariogram/Covariance Cloud allows you to
examine the spatial autocorrelation between the measured
sample points. In spatial autocorrelation, it is assumed that
things that are close to one another are more alike. The
Semivariogram/Covariance Cloud lets you examine this
relationship. To do so, a semivariogram value, which is the
difference squared between the values of each pair of
locations, is plotted on the y-axis relative to the distance
separating each pair on the x-axis.

Each red dot in the Semivariogram/Covariance Cloud
represents a pair of locations. Since closer locations should
be more alike, in the semivariogram the close locations (far
left on the x-axis) should have small semivariogram values
(low on the y-axis). As the distance between the pairs of
locations increases (move right on the x-axis), the
semivariogram values should also increase (move up on the
y-axis). However, a certain distance is reached where the
cloud flattens out, indicating that the relationship between
the pairs of locations beyond this distance is no longer
correlated.

Looking at the semivariogram, if it appears that some data
locations that are close together (near zero on the x-axis)
have a higher semivariogram value (high on the y-axis) than
you would expect, you should investigate these pairs of
locations to see if there is the possibility that the data is
inaccurate.

4. Click and drag the Selection pointer over these points to
highlight them. (Use the following diagram as a guide. It
is not important to highlight the exact points the diagram
displays.)
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The pairs of sample locations that are selected in the
semivariogram are highlighted on the map, and lines link the
locations, indicating the pairing.

There are many reasons why the data values differ more
among sample locations between the Los Angeles area and
other areas. One possibility is that there are more cars in
the Los Angeles area than in other areas, which will
invariably produce more pollution, contributing to a higher
ozone buildup in the Los Angeles area.

Besides global trends that were discussed in the previous
section, there may also be directional influences affecting
the data. The reasons for these directional influences may
not be known, but they can be statistically quantified. These
directional influences will affect the accuracy of the

surface you create in the next exercise. However, once you
know if one exists, the Geostatistical Analyst provides tools
to account for it in the surface-creation process. To explore
for a directional influence in the semivariogram cloud, you
use the Search Direction tools.
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5. Check Show Search Direction.
6. Click and move the directional pointer to any angle.

The direction the pointer is facing determines which pairs of
data locations are plotted on the semivariogram. For
example, if the pointer is facing an east—west direction, only
the pairs of data locations that are east or west of one
another will be plotted on the semivariogram. This enables
you to eliminate pairs you are not interested in and to
explore the directional influences on the data.

7. Click and drag the Selection tool along the values with
the highest semivariogram values to highlight them on
the plot and in the map. (Use the following diagram as a
guide. It is not important to highlight the exact points in
the diagram or to use the same search direction.)
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You will notice that the majority of the linked locations
(representing pairs of points on the map), regardless of
distance, correspond to one of the sample points from the
Los Angeles region. Taking more pairs of points, at any
distance, into consideration, shows that it is not just pairs of
points from the Los Angeles region out to the coast that
have high semivariogram values. Many of the pairs of data
locations from the Los Angeles region to other inland areas
also have high semivariogram values. This is because the
values of ozone in the Los Angeles area are so much higher
than anywhere else in California.

8. Click to exit the dialog box.

9. Click Selection and click Clear Selected Features to
clear the highlighted points on the map.
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In this exercise we learned:

1. The ozone data is close to a normal distribution. They
are unimodal and fairly symmetrical around the mean/
median line as seen in the histogram.

2. The Normal QQPIot reaffirmed that the data is normally
distributed since the points in the plot created a fairly
straight line, and transformation is not necessary.
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. Using the Trend Analysis tool you saw that the data
exhibited a trend and, once refined, identified that the
trend would be best fit by a second-order polynomial in
the southeast to northwest direction (330 degrees).

4. From the Semiovariogram/Covariance Cloud we found
that the high values of ozone concentration in Los
Angeles create high semivariance values with locations
nearby as well as far away.

5. The semivariogram surface indicates there is a spatial
autocorrelation in the data.

Knowing that there are no outlier (or erroncous) sample
points in the dataset and that the distribution is close to
normal, you can proceed with confidence to the surface
interpolation. Also, you will be able to create a more
accurate surface because you know that there is a trend in
the data that you can adjust for in the interpolation.
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Exercise 3: Mapping ozone concentration

In Exercise 1, you used the default parameters to map
ozone concentration. However, you did not take into
account the statistical properties of the sample data. For
example, from exploring the data in Exercise 2, it appeared
that the data exhibited a trend. This can be incorporated
into the interpolation process.

In this exercise you will:

» Improve on the map of ozone concentration created in
Exercise 1.

» Be introduced to some basic geostatistical concepts.

Again you will use the ordinary kriging interpolation method
and will incorporate the trend in your model to create better
predictions.

1. Click the Geostatistical Analyst toolbar and click Geo-
statistical Wizard.

2. Click the Input Data dropdown and click ca_ozone pts.

Click the Attribute dropdown arrow and click the
OZONE attribute.

4. Click Kriging in the Methods box.
5. Click Next.

By default, Ordinary Kriging and Prediction are se-
lected.

(98]

26

Geostatistical Wizard: Choose Input Data and Method
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of kriging can require & lot of decision-making. Kriging assumes the data came from a
stationary stochastic process, and some methods assume namallp-distibuted data,

4] 5]

From the exploration of your data in Exercise 2, you
discovered that there was a global trend in your data. After
refinement with the Trend Analysis tool, you discovered that
a second-order polynomial seemed reasonable and the trend
was from the southeast to the northwest. This trend can be
represented by a mathematical formula and removed from
the data. Once the trend is removed, the statistical analysis
will be performed on the residuals or the short-range
variation component of the surface. The trend will auto-
matically be added back before the final surface is created
so that the predictions will produce meaningful results. By
removing the trend, the analysis that is to follow will not be
influenced by the trend, and once it is added back a more
accurate surface will be produced.
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Geostatistical Wizard: Step 1 of 4 - Geostatistical Method 5 election
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Trends should only be removed if there is justification for
doing so. The southwest to northeast trend in air quality can
be attributed to an ozone buildup between the mountains
and the coast. The elevation and the prevailing wind
direction are contributing factors to the relatively low
values in the mountains and at the coast. The high concen-
tration of humans also leads to high levels of pollution
7. Click Next on the Geostatistical Method Selection dialog between the mountains and coast. The northwest to
box. southeast trend varies much more slowly due to the higher
By default, the Geostatistical Analyst maps the global populations around Los Angeles and extending to lesser
trend in the dataset. The surface indicates the most numbers in San Francisco. Hence we can justifiably
rapid change in the southwest to northeast direction and remove these trends.
a more gradual change in the northwest—southeast
direction (causing the ellipse shape).

6. On the Geostatistical Method Selection dialog box, click
the Order of Trend Removal dropdown arrow and click
Second.

A second-order polynomial will be fitted because a
U-shaped curve was detected in the southwest to
northeast direction in the Trend Analysis dialog box in
Exercise 2.

8. Click Next on the Detrending dialog box.
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Semivariogram/Covariance modeling

In the Semivariogram/Covariance Cloud in Exercise 2, you
explored the overall spatial autocorrelation of the measured
points. To do so, you examined the semivariogram, which
showed the difference-squared of the values between each
pair of points at different distances. The goal of
Semivariance/Covariance modeling is to determine the best
fit for a model that will pass through the points in the
semivariogram (the yellow line in the diagram).

The semivariogram is a function that relates semivariance
(or dissimilarity) of data points to the distance that sepa-
rates them. Its graphical representation can be used to
provide a picture of the spatial correlation of data points
with their neighbors.

The Semivariogram/Covariance Modeling dialog box allows
you to model the spatial relationship in the dataset. By
default, optimal parameters for a spherical semivariogram
model are calculated. The Geostatistical Analyst first
determines a good lag size for grouping semivariogram
values. The lag size is the size of a distance class into
which pairs of locations are grouped in order to reduce the
large number of possible combinations. This is called
binning. As a result of the binning, notice that there are
fewer points in this semivariogram than the one in Exer-
cise 2. A good lag distance can also help reveal spatial
correlations. The dialog box displays the semivariogram
values as a surface and as a scatterplot related to distance.
Then it fits a spherical semivariogram model (best fit for all
directions) and its associated parameter values, which are
typically called the nugget, range, and partial sill.

Try to fit the semivariogram at small lags (distances). It is
possible to use different bin sizes and refit the default
spherical model by changing the lag size and number of
lags.
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9. Type a new Lag Size value of 12000.

10. Click in the input box and type 10 for the Number of
Lags.

Reducing the lag size means that you are effectively
zooming in to model the details of the local variation be-
tween neighboring sample points. You will notice that with a
smaller lag size, the fitted semivariogram (the yellow line)
rises sharply and then levels off. The range is the distance
where it levels off. This flattening out of the semivariogram
indicates that there is little autocorrelation beyond the
range.

Geostatistical Wizard: Step 3 of 5 - Semivariogram/Covariance Modeling
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By removing the trend, the semivariogram will model the
spatial autocorrelation among data points without having to
consider the trend in the data. The trend will be automati-
cally added back to the calculations before the final surface
is produced.
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The color scale, which represents the calculated semivari-
ogram value, provides a direct link between the empirical
semivariogram values on the graph and those on the
semivariogram surface. The value of each “cell” in the
semivariogram surface is color coded, with lower values
blue and green and higher values orange and red. The
average value for each cell of the semivariogram surface is
plotted on the semivariogram graph. The x-axis on the
semivariogram graph is the distance from the center of the
cell to the center of the semivariogram surface. The
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semivariogram values represent dissimilarity. For our
example, the semivariogram starts low at small distances
(things close together are more similar) and increases as
distance increases (things get more dissimilar farther apart).
Notice from the semivariogram surface that dissimilarity
increases more rapidly in the southwest to northeast
direction than in the southeast to northwest direction.
Earlier, you removed a coarse-scale trend. Now it appears
that there are directional components to the autocorrelation
at finer scales, so we will model that next.
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Directional semivariograms

A directional influence will affect the points of the semivari-
ogram and the model that will be fit. In certain directions
closer things may be more alike than in other directions.
Directional influences are called anisotropy, and the Geo-
statistical Analyst can account for them. Anisotropy can be
caused by wind, runoff, a geological structure, or a wide
variety of other processes. The directional influence can be
statistically quantified and accounted for when making your
map.

You can explore the dissimilarity in data points for a certain
direction with the Search Direction tool. This allows you to
examine directional influences on the semivariogram chart.
It does not affect the output surface. The following steps
show you how to achieve this.

11. Check Show Search Direction. Note the reduction in the
number of semivariogram values. Only those points in
the direction of the search are displayed.

12. Click and hold the cursor on the center line in the
Search Direction. Move the direction of the search tool.
As you change the direction of the search, note how the
semivariogram changes. Only the semivariogram
surface values within the direction of the secarch are
plotted on the semivariogram chart above.

To actually account for the directional influences on the
semivariogram model for the surface calculations, you must
calculate the anisotropical semivariogram or covariance
model.
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Geostatistical Wizard: Step 3 of § - Semivariogram/Covariance Modeling
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13. Check Anisotropy.

The blue ellipse on the semivariogram surface indicates the
range of the semivariogram in different directions. In this
case the major axis lies approximately in the NNW-SSE
direction.

Anisotropy will now be incorporated into the model to adjust
for the directional influence of autocorrelation in the output
surface.
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14

14. Type the following parameters for the Search direction
to make the directional pointer coincide with the minor
axis of the anisotropical ellipse:

Angle Direction: 236.0
Angle Tolerance: 45.0
Bandwidth (lags): 3.0

Note that the shape of the semivariogram curve increases
more rapidly to its sill value. The x- and y-coordinates are
in meters, so the range in this direction is approximately

74 km.
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15. Type the following parameters for the Search direction
to make the directional pointer coincide with the major
axis of the anisotropical ellipse:

Angle Direction: 340.0
Angle Tolerance: 45.0
Bandwidth (lags): 3.0

The semivariogram model increases more gradually, then
flattens out. The range in this direction is 114 km.

The plateau that the semivariogram models reach in both
steps 14 and 15 is the same and is known as the sill. The
range is the distance at which the semivariogram model
reaches its limiting value (the sill). Beyond the range, the
dissimilarity between points becomes constant with
increased lag distance. The lag is defined by the distance
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between pairs of points. Points separated by a lag distance
greater than the range are spatially uncorrelated. The
nugget represents measurement error and/or microscale
variation (variation at spatial scales too fine to detect). It is
possible to estimate the measurement error if you have
multiple observations per location, or you can decompose
the nugget into measurement error and microscale variation
by checking the Nugget Error Modeling check box.
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16. Click Next.

Now you have a fitted model to describe the spatial auto-
correlation, taking into account detrending and directional
influences in the data. This information, along with the
configuration and measurements of locations around the
prediction location, is used to make a prediction. But how
should man-measured locations be used for the calcula-

tions?
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Searching neighborhood

It is common practice to limit the data used by defining a
circle (or ellipse) to enclose the points that are used to
predict values at unmeasured locations.

Additionally, to avoid bias in a particular direction, the circle
(or ellipse) can be divided into sectors from which an equal
number of points are selected. By using the Searching
Neighborhood dialog box, you can specify the number of
points (a maximum of 200), the radius (or major/minor axis),
and the number of sectors of the circle (or ellipse) to be
used for prediction.

The points highlighted in the data view window give an
indication of the weights that will be associated with each
location in the prediction of unknown values. In this

Geostatistical Wizard: Step 4 of 5 - Searching Meighborhood

D ataset Selection:

I D atazet 1 j

example, four locations (red) have weights of more than
10 percent. The larger the weight, the more impact that
location will have on the prediction of unknown values.

17. Click inside the graph view to select a prediction
location (where the crosshairs meet). Note the change
in the selection of data location (together with their
associated weights) that will be used for calculating the
value at the prediction location.

18. For the purpose of this tutorial, type the following
coordinates in the Test Location input boxes:

X =-2044968 and Y =208630.37.

19. Check the Shape check box and type 90 in the Angle
input box. Notice how the shape changes. However, to
account for the directional influences, change the angle
back to 338.1.

In each sector of the search

Locations used and
associated weights

Sector of search
neighborhood

Crosshairs define the
location prediction

Perimeter of search
neighborhood

Preview surface or
neighbors
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20. Uncheck the Shape check box—the Geostatistical
Analyst will use the default values (calculated in the
Semivariogram/Covariance dialog earlier).

21. Click Next on the Searching Neighborhood dialog box.

Before you actually create the surface, you next use the
Cross-validation dialog to perform diagnostics on the
parameters to determine “how good™ your model will be.
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Cross-validation

Cross-validation gives you an idea of “how well” the model
predicts the unknown values.

For all points, cross-validation sequentially omits a point,
predicts its value using the rest of the data, and then
compares the measured and predicted values. The calcu-
lated statistics serve as diagnostics that indicate whether
the model is reasonable for map production.

Cross-validation
scatter plot

Line of best fit 1:1 Line
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In addition to visualizing the scatter of points around this
1:1 line, a number of statistical measures can be used to
assess the model’s performance. The objective of cross-
validation is to help you make an informed decision about
which model provides the most accurate predictions. For a
model that provides accurate predictions, the mean error
should be close to 0, the root-mean-square error and
average standard error should be as small as possible (this
is useful when comparing models), and the root-mean-
square stardardized error should be close to 1.

Here the term “prediction error” is used for the difference
between the prediction and the actual measured value. For
a model that provides accurate predictions, the mean
prediction error should be close to 0 if the predictions are
unbiased, the root-mean-square standardized prediction
error should be close to 1 if the standard errors are accu-
rate, and the root-mean-square prediction error should be
small if the predictions are close to the measured values.

The Cross Validation dialog box also allows you to display
scatterplots that show the Error, Standardized Error, and
QQPlot for each data point.
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22. Click the QQPIot tab to display the QQPlot. The Output Layer Information dialog box provides a

From the QQPIlot you can see that some values fall slightly summary of the model that will be used to create a
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25. Click Finish.
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By default, the layer assumes the name of the kriging

method used to produce the surface (e.g., Ordinary Krig-

ing).

27. Click the layer name to highlight it, then click it again
and change it to “Trend removed”.

Bty | bmren fapies
L O A= e
e e

s v I ke |

You can also create a Prediction Standard Error surface to
examine the quality of the predictions.

28. Right-click on the “Trend removed™ layer that you
created and click on Create Prediction Standard Error
Map.

29. Click Save on the Standard toolbar.

The Prediction Standard Errors quantify the uncertainty for
each location in the surface that you created. A simple rule

of thumb is that 95 percent of the time, the true value of the
surface will be within the interval formed by the predicted
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value + 2 times the prediction standard error if data are
normally distributed. Notice in the Prediction Standard Error
surface that locations near sample points generally have
lower error.

The surface you created in Exercise 1 simply used the
defaults of the Geostatistical Analyst, with no consideration
of trends in the surface, of using smaller lag sizes, or of
using an anisotropic semivariogram model. The prediction
surface you created in this exercise took into consideration
the global trends in the data, adjusted the lag size, and
adjusted for the local directional influence (anisotropy) in
the semivariogram.

In Exercise 4, you will compare the two models to see
which one provides a better prediction of unknown values.

Note: Once again, you see that the interpolation continues
into the ocean. You will learn in Exercise 6 how to restrict
the prediction surface to stay within California.
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Exercise 4: Comparing models

Using the Geostatistical Analyst, you can compare the
results of two mapped surfaces. This allows you to make
an informed decision as to which provides more accurate
predictions of ozone concentration based on cross-validation
statistics.

1. Right-click the “Trend removed™ layer, point to Com-
pare.... You will be comparing the “Trend removed”
layer with the Default layer you created in Exercise 2.
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Because the root-mean-square prediction error is smaller
for the Trend removed layer, the root-mean-square stan-
dardized prediction error is closer to one for the Trend
removed layer, and the mean prediction error is also closer
to zero for the Trend removed layer, you can state with
some evidence that the Trend removed model is better and
more valid. Thus, you can remove the default layer since
you no longer need it.

2. Click Close on the Cross Validation Comparison dialog
box.
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3. Right-click the Default layer and click Remove.
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4. Click the Trend removed layer and move it to the bottom
of the table of contents so that you can see the sample
points and outline of California.

5. Click Save on the Standard toolbar.

You have now identified the best prediction surface, but
there may be other types of surfaces that you might wish to
create.
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Exercise 5: Mapping the probability of ozone exceeding a critical threshold

In Exercises 1 and 3 you used ordinary kriging to map
ozone concentration in California using different param-
eters. In the decision making process, care must be taken in
using a map of predicted ozone for identifying unsafe areas
because it is necessary to understand the uncertainty of the
predictions. For example, suppose the critical threshold
ozone value is 0.12 ppm for an eight-hour period, and you
would like to decide if any locations exceed this value. To
aid the decision making process, you can use the Geostatis-
tical Analyst to map the probability that ozone values
exceed the threshold.

While the Geostatistical Analyst provides a number of
methods that can perform this task, for this exercise you
will use the indicator kriging technique. This technique does
not require the dataset to conform to a particular distribu-
tion. The data values are transformed to a series of Os and
Is according to whether the values of the data are below or
above a threshold. If a threshold above 0.12 ppm is used,
any value below this threshold will be assigned a value of 0,
whereas the values above the threshold will be assigned a
value of 1. Indicator kriging then uses a semivariogram
model that is calculated from the transformed 0-1 dataset.

1. Click the Geostatistical Analyst toolbar and click Geo-
statistical Wizard.

2. Click the Layer dropdown arrow and click
ca_ozone_pts.

. Click the Attribute dropdown arrow and click the
OZONE attribute.

4. Click Kriging in the method box.

98]
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5. Click Next on the Choose Input Data and Method dialog
box.

6. Click Indicator Kriging: notice that Probability Map is
selected.

7. Set the Primary Threshold Value to 0.12.
8. Click the Exceed radial button to select it.

9. Click Next on the Geostatistical Method Selection dialog
box.
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10. Click Next on the Additional Cutoffs Selection dialog
box.

11. Click Anisotropy to account for the directional nature of
the data.

12. Type 25000 for the lag size and 10 for the number of
lags.
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13. Click Next on the Semivariogram/Covariance Modeling
dialog box.

14. Click Next on the Searching Neighborhood dialog box.

The blue line represents the threshold value (0.12 ppm).
Points to the left have an indicator-transform value of 0
whereas points to the right have an indicator-transform
value of 1.

>

15. Click and scroll right until the Measured, Indicator, and
Indicator Prediction columns are displayed.

16. Click and highlight a row in the table with an indicator
value of 0. That point will be highlighted in green on the
scattergraph, to the left of the blue threshold line.
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The measured and indicator columns display the actual and
transformed values for each sample location. The indicator
prediction values can be interpreted as the probability of
exeeding the threshold. The indicator prediction values are
calculated using the semivariogram modeled from the
binary (0,1) data, created as indicator transformations of
your original data. Cross-validation sequentially omits a
point and then calculates indicator prediction values for
cach.

For example, the highest measured value is 0.1736. If this
location had not actually been measured, a prediction of
about an 85 percent chance that it was above the threshold
based on the indicator kriging model would have been
made.

17. Click Finish on the Cross Validation dialog box.
18. Click OK on the Output Layer Information dialog box.

The probability map will appear as the top layer in the
ArcMap data view.

The map displays the indicator prediction values,
interpreted as the probability that the threshold value of
0.12 ppm was exceeded on one or more days in the
year 1996.
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It is clear from the map that near Los Angeles the probabil-
ity of values exceeding our threshold (staying, on average,
below 0.12 ppm for every eight-hour period during the year)
is likely.

19. Click and hold the Indicator Kriging layer. Drag the
layer and reposition between the ca_outline and trend
removed layers.

Click Save on the Standard toolbar to save your map.
Exercise 6 will show you how you can use the functionality
within ArcMap to produce a cartographically pleasing map
of the prediction surface that you created in Exercise 3 and
the probability surface that you created in this exercise.
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Exercise 6: Producing the final map

You will now produce a final map for presentation. You will
use ArcMap to produce a final output map in which the
prediction and the probability surfaces will be displayed.

Displaying both surfaces

You can change the display of the probability map so you
will be able to see both the prediction and the probability
maps at the same time. The probability levels will be
displayed as a contour map.

1. Right-click the Indicator Kriging layer. Click Properties.
2. Click the Symbology tab.

3. Uncheck the Filled Contours check box, then check the
Contours check box.

4. Click the Color Ramp dropdown arrow and choose an
alternative color ramp.

5. Click OK.

You now see both the probability map (the contours) and
the prediction map as the diagram to the right shows.
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Extrapolating ozone values

By default, the Geostatistical Analyst interpolates the value
of the selected variable at any location that lies within the
arca defined by the north—south and east—west limits of the
sample point data. However, the map of predicted ozone
does not cover the geographical extent of California (the
ca_outline layer). To overcome this problem you will
extrapolate values (predict values outside the default
bounding box) for both surfaces.

1. Right-click the Indicator Kriging layer in the table of
contents and click Properties. Click the Extent tab. In
Set the extent to: select a custom extent entered below
and type the following values for the Visible Extent, then
click OK:

Left: -2400000 Right: -1600000

Top: 860000 Bottom: -400000
Repeat this step for the Trend removed layer.
Properties HE
General | Source | Display  Extent I Symbology | Method Parameters |
Tip: You can specify the geographic extent of this laper's data source that will be
reprezented by this layer
Set the extent to: 4 custom extent entered below ﬂ

~Wisible Extent

Top 860000
Left: |-24I]IJIJI]I]

Bottom: | -400000f

Right:  |-1600000

r~ Full Extent
% of thig layer " of the data frame
Top: 845703 683821087

Left: 2354300747 28542 Right: -1646015.24273085

Bottor:  -364577. 369533003

Cancel Apply
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Clipping the layers to the California State outline

You will now clip the layers to the ca_outline layer as you
are only interested in mapping the ozone levels within the
State of California and this will produce a more appealing
map.

1. Right-click Layers and click Properties.

N

Click the Data Frame tab.

Check the Enable Clip to Shape check box.
Click Specify Shape.

Click Outline of Features.

Click the Layer dropdown and click ca_outline.
Click OK.

® N kW

Click OK to close the Data Frame Properties dialog box.
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Data Frame Properties

Data Frame Clipping

o

EXTT—
£ =" 3
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The clipped map should look like the following diagram.

Locating the City of Los Angeles

1. Click the Add Data button on the Standard toolbar.

2. Navigate to the folder where you installed the tutorial
data (the default installation path is
C:\ArcGIS\ArcTutor\Geostatistics), then click ca_cities.

3. Click Add.

A map of'the location of cities in California will be
displayed.

Using ARcGIS GEOSTATISTICAL ANALYST



4. Right-click the ca_cities layer and click Open Attribute
Table.

5. Scroll through the table and find the AreaName called
Los Angeles. Click this row.

The City of Los Angeles is highlighted on the map.
6. Click to close the attribute table.

epy [T - Janamis)
e = o - [ - B - oo
L

7. Click the Zoom In tool on the Tools toolbar and zoom in
on the City of Los Angeles.

Notice that the area with the highest ozone concentration is
actually located just to the east of Los Angeles.

QUICK-START TUTORIAL

| soea

D O A S

Bl R e e
O T

Create a layout
1. Click View on the Main menu and click Layout View.
2. Click the map to highlight it.

3. Click and drag the bottom-left corner of the Data Frame
to resize the map.
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4. Click Insert on the Main menu and click Data Frame. E
Bl £F Layers
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5. Right-click the Trend removed layer and click Copy.

6. Right-click the New Data Frame in the table of contents
and click Paste Layer(s).

. _-le
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8. Click the Full Extent button on the Tools toolbar to view
the full extent of the map in the New Data Frame.

9. Right-click the New Data Frame and click Properties.

10. Click the Data Frame tab and, as you did for the first
Data Frame, check Enable Clip to Shape and click the
Specify Shape button. Choose ca_outline as the layer to
clip to, then click OK.

Adding a hillshade and transparency
1. Right-click the New Data Frame and click Add Data.

= lfitier] - Aocini - Aichap

| B ¢ Yo st Golechon Jock indow Hes
D& L hBX » | &= =]t AN Teonusea Skt >
ol i osstinsn Brnstussal nbsniaossstnsssDaiosia Lssstinsal Sl

E|

e ———
BEELOOO B3] ELI
I

| Do = (W 0[O = A= T = W A S =

A e 21 19 o a1 acen ity B =X R Yk

2. Navigate to the folder where you installed the tutorial
data (the default installation path is
C:\ArcGIS\ArcTutor\Geostatistics), then click
ca_hillshade.

3. Click Add.
A hillshade map of California will be displayed.
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Click ca_hillshade and move it to the bottom of the table
of contents.

. Right-click the Trend removed layer in the New Data

Frame table of contents and click Properties.

Beres | Soce DR (TR Trbany T HeraT Faaar | 6
™ Evs Wl b lewscioiesd wabie 8 mnd
= 0
o ] owes | s |
6. Click the Display tab.
7. Type 30 for the percentage of transparency.
8. Click OK.

The hillshade should now partially display underneath the
Trend removed layer.

Adding map elements

1

2.

(98]

Click Insert on the Main menu and click Legend.
Move the legend to the bottom-left corner of the layout.

Optionally, click Insert and add a North arrow, a Scale
bar, and Text.
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The following diagram shows the type of finished map you
could produce using the functionality of ArcMap. Refer to
Using ArcMap if necessary to learn about inserting
elements into the layout.
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The map shows that the area east of Los Angeles has the
highest predicted levels of ozone and the highest probability
of exceeding the critical average threshold (0.12 ppm) on at
least one eight-hour period during 1996. Since this is the
case in the analysis (but remember the original data has
been altered), you may wish to focus on these areas and
analyze time series measurements of ozone to accurately
identify the areas at potential risk.
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The principles of geostatistical analysis

INTHIS CHAPTER

e Understanding deterministic
methods

* Understanding geostatistical
methods

e Working through a problem

e Basic principles behind
geostatistical methods

* Modeling a semivariogram

e Predicting unknown values with
kriging

* The Geostatistical Analyst
extension

Geostatistical Analyst uses sample pointstaken at different locationsin a
landscape and creates (interpolates) a continuous surface. The sample
points are measurements of some phenomenon such as radiation leaking
from anuclear power plant, an oil spill, or elevation heights. Geostatistical
Analyst derives a surface using the values from the measured locations to
predict values for each location in the landscape.

Geostatistical Analyst providestwo groups of interpolation techniques:
deterministic and geostatistical. All methodsrely on the similarity of nearby
sample points to create the surface. Deterministic techniques use
mathematical functionsfor interpolation. Geostatisticsrelies on both
statistical and mathematical methods, which can be used to create surfaces
and assess the uncertainty of the predictions.

Geostatistical Analyst, in addition to providing various interpolation
techniques, al so provides many supporting tools. Thesetoolsallow you to
explore and gain a better understanding of the data so that you create the
best surfaces based on the available information.

This chapter will provide an overview of the theory behind deterministic and
geostatistical interpolation techniques. Thefirst part of the chapter will
introduce you to the deterministic interpolation methods. You will then be
exposed to geostatistical methods through an example, and then you will
read about the principles, concepts, and assumptions that provide the
foundation for geostatistics.

49



Understanding deterministic methods

Generating a continuous surface used to represent a particular
measure is a key capability required in most GIS applications.
Perhaps the most commonly used surface type is a digital
elevation model of terrain. These datasets are readily available at
small scales for various parts of the world. However, as you have
read earlier, just about any measure taken at locations across a
landscape, subsurface, or atmosphere can be used to generate a
continuous surface. A major challenge facing most GIS modelers
is to generate the most accurate possible surface from existing
sample data as well as to characterize the error and variability of
the predicted surface. Newly generated surfaces are used in
further GIS modeling and analysis as well as in 3D visualization.
Understanding the quality of this data can greatly improve the
utility and purpose of GIS modeling. This is the role of the
Geostatistical Analyst.

Analyzing the surface properties of nearby
locations

Generally speaking, things that are closer together tend to be
more alike than things that are farther apart. This is a fundamental
geographic principal (Tobler, 1970). Suppose you are a town
planner, and you need to build a scenic park in your town. You
have several candidate sites, and you may want to model their
viewsheds at each location. This will require a more detailed
elevation surface dataset for your study area. Suppose you have
preexisting elevation data for 1,000 locations throughout the
town. You can use this to build a new elevation surface.

When trying to build the elevation surface, you can assume that
the sample values closest to the prediction location will be similar.
But how many sample locations should you consider? And
should all of the sample values be considered equally?
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As you move farther away from the prediction location, the
influence of the points will decrease. Considering a point too far
away may actually be detrimental because the point may be
located in an area that is dramatically different from the prediction
location.

One solution is to consider enough points to give a good sample
but small enough to be practical. The number will vary with the
amount and distribution of the sample points and the character of
the surface. If the elevation samples are relatively evenly distrib-
uted and the surface characteristics do not change across your
landscape, you can predict surface values from nearby points
with reasonable accuracy. To account for the distance relation-
ship, the values of closer points are weighted more heavily than
those farther away.

This is the basis for the Inverse Distance Weighting (IDW)
interpolation technique. As its name implies, the weight of a value
decreases as the distance increases from the prediction location.
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Visualizing global polynomial interpolation

There are other solutions for predicting the values for unmea-
sured locations. Another proposed site for the observation area
is on the face of a gently sloping hill. The face of the hill is a
sloping plane. However, the locations of the samples are in slight
depressions or on small mounds (local variation). Using the local
neighbors to predict a location may over or underestimate
because of the influence of depressions and mounds. Further,
you may pick up the local variation and may not capture the
overall sloping plane (referred to as the trend). The ability to
identify and model local structures and surface trends can
increase the accuracy of your predicted surface.

To base your prediction on the overriding trend, you can fit a
plane between the sample points. A plane is a special case of a
family of mathematical formulas called polynomials. You then
determine the unknown height from the value on the plane for the
prediction location. The plane may be above certain points and
below others. The goal for interpolation is to minimize error. You
can measure the error by subtracting each measured point from
its predicted value on the plane, squaring it, and adding the
results together. This sum is referred to as a least-squares fit.
This process is the theoretical basis for the first-order global
polynomial interpolation.

THE PRINCIPLES OF GEOSTATISTICAL ANALYSIS

But what if you were trying to fit the plane to a landscape that is a
valley? You will have a difficult task obtaining a good surface
from a plane. However, if you are allowed one bend in the plane
(see image below), you may be able to obtain a better fit (get
closer to more values). To allow one bend is the basis for second-
order global polynomial interpolation. Two bends in the plane
would be a third-order polynomial, and so forth. The bends can
occur in both directions, possibly resulting in a “bowl-shaped™
surface.
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Visualizing local polynomial interpolation force the surface to form nice curves (thin-plate spline), or you
can control how tightly you pull on the edges of the surface
(spline with tension). This is the conceptual framework for
interpolators based on radial basis functions.

Now what happens if the area slopes, levels off, and then slopes
again? Asking you to fit a flat plane through this study site would
give poor predictions for the unmeasured values. However, if you
are permitted to fit many smaller overlapping planes, and then use
the center of each plane as the prediction for each location in the
study area, the resulting surface will be more flexible and perhaps
more accurate. This is the conceptual basis for local polynomial
interpolation.

Visualizing radial basis functions

Radial basis functions enable you to create a surface that
captures global trends and picks up the local variation. This helps
in cases where fitting a plane to the sample values will not
accurately represent the surface.

To create the surface, suppose you have the ability to bend and
stretch the predicted surface so that it passes through all of the
measured values. There are many ways you can predict the shape
of the surface between the measured points. For example, you can
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Understanding geostatistical methods

Geostatistical solutions

So far, the techniques that we have discussed are referred to as
deterministic interpolation methods because they are directly
based on the surrounding measured values or on specified
mathematical formulas that determine the smoothness of the
resulting surface. A second family of interpolation methods
consists of geostatistical methods that are based on statistical
models that include autocorrelation (statistical relationships
among the measured points). Not only do these techniques have
the capability of producing a prediction surface, but they can also
provide some measure of the certainty or accuracy of the
predictions.

The following example will guide you through the basic steps of
geostatistics using ordinary kriging.

Kriging is similar to IDW in that it weights the surrounding
measured values to derive a prediction for each location. How-
ever, the weights are based not only on the distance between the
measured points and the prediction location but also on the
overall spatial arrangement among the measured points. To use
the spatial arrangement in the weights, the spatial autocorrelation
must be quantified.

To solve the geostatistical example, you will walk you through a
series of steps.

Calculate the empirical semivariogram—Lkriging, like most
interpolation techniques, is built on the assumption that things
that are close to one another are more alike than those farther
away (quantified here as spatial autocorrelation). The empirical
semivariogram is a means to explore this relationship. Pairs that
are close in distance should have a smaller measurement differ-
ence than those farther away from one another. The extent that
this assumption is true can be examined in the empirical semivari-

ogram.

THE PRINCIPLES OF GEOSTATISTICAL ANALYSIS

Fit a model—this is done by defining a line that provides the best
fit through the points in the empirical semivariogram cloud graph.
That is, you need to find a line such that the (weighted) squared
difference between each point and the line is as small as possible.
This is referred to as the (weighted) least-squares fit. This line is
considered a model that quantifies the spatial autocorrelation in
your data.

Create the matrices—the equations for ordinary kriging are
contained in matrices and vectors that depend on the spatial
autocorrelation among the measured sample locations and
prediction location. The autocorrelation values come from the
semivariogram model described above. The matrices and vectors
determine the kriging weights that are assigned to each measured
value.

Make a prediction—from the kriging weights for the measured
values, you can calculate a prediction for the location with the
unknown value.
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Working through a problem

Suppose you have gone out and collected five elevation points in
your landscape. The configuration of the points is displayed in
orange on the map below. Beside each point, the spatial coordi-
nates are given as (X,Y).

Y
5T © o Values:
4+ 0(1’5) (4.5) at (1,5) observe = 100
3 o (3.4) at (3.4) observe = 105
, L (1,3) at (1,3) observe =105
at (4.5) observe = 100

17T O =

‘ | . ‘ I(Sal) at (5,1) observe =115

The kriging equations

You will use ordinary kriging to predict a value for location X = 1
and Y =4, coordinate (1,4), which is called the prediction location
(yellow point on the map). The ordinary kriging model is

Z(8) = pte(s)

where s = (X.Y) is a location; one of the sample locations is

s = (1,5), and Z(s) is the value at that location; for example,
Z(1,5)=100. The model is based on a constant mean . for the
data (no trend) and random errors £(s) with spatial dependence.
Assume that the random process £(s) is intrinsically stationary.
These assumptions are discussed in the next sections. The
predictor is formed as a weighted sum of the data,

2<s0>=i1,2<s,->
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where

Z(s)) is the measured value at the ith location, for example,
Z(1,5)=100;

X, is an unknown weight for the measured value at the ith
location;

8, is the prediction location, for example, (1,4); and
N = 5 for the five measured values.

This is the same type of predictor as for IDW interpolation.
However, in IDW, the weight, 2., depends solely on the distance
to the prediction location. In ordinary kriging, the weight, .,
depends on the semivariogram, the distance to the prediction
location, and the spatial relationships among the measured values
around the prediction location.

When making predictions for several locations, expect some of
the predictions to be above the actual values and some below. On
average, the difference between the predictions and the actual
values should be zero. This is referred to as making the prediction
unbiased. To ensure the predictor is unbiased for the unknown
measurement, the sum of the weight &, must equal one. Using this
constraint, make sure the difference between the true value, Z(s ),
and the predictor, X2 Z(s ), is as small as possible. That is,
minimize the statistical expectation of the following formula,

(Z(so)—iﬂiZ(si)]
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from which the kriging equations were obtained. By minimizing its
expectation, on average, the kriging predictor is as close as
possible to the unknown value. The solution to the minimization,
constrained by unbiasedness, gives the kriging equations,

r * A o= g
or
Yo o K 1 4 Yo
: S . :
T o Y 1 /17\/ Vo
1 - 1 0 m 1

These equations will also become more understandable when the
values are filled in for the matrix and vectors in the following
section. Remember, the goal is to solve the equations for all of the
L s (the weights), so the predictor can be formed by using
ZLL(S).

Most of the elements can be filled in if you know the semivari-
ogram. In the next few sections, you will see how to calculate the
semivariogram values. The gamma matrix I" contains the modeled
semivariogram values between all pairs of sample locations,
where v, denotes the modeled semivariogram values based on the
distance between the two samples identified as the ith and jth
locations. The vector g contains the modeled semivariogram
values between each measured location and the prediction
location, where v, denotes the modeled semivariogram values
based on the distance between the ith sample location and the
prediction location. The unknown m in the vector A is also
estimated and it arises because of the unbiasedness constraint.
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Calculating the empirical semivariogram

To compute the values for the I matrix, we must examine the
structure of the data by creating the empirical semivariogram. In a
semivariogram, half the difference squared between the pairs of
locations (the y-axis) is plotted relative to the distance that
separates them (the x-axis).

The first step in creating the empirical semivariogram is to
calculate the distance and squared difference between each pair
of locations. The distance between two locations is calculated by
using the Euclidean distance:

dy =6 =P+ (= v

The empirical semivariance is 0.5 times the difference squared
0.5 * average|[(value at location 7 - value at location ;)*].

Locations Distance Cal. Distances Difference?. Semivariance
(1,5),(3,4) sqrt[(1-3)2 + (5-4)] 2.236 25 12.5
(1,5),(1,9) sqri[0® + 27] 2 25 12.5
(1,5),(4,5) sqrt[32 + 07] 3 0 0
(1,5),(5,1) sqri[4? + 47] 5.657 225 112.5
(3,4),(1,3 sqrt[2? + 12 2.236 0 0
(3,4),(4,5) sqri[12 + 12 1.414 25 12.5
(3,4),(5,1) sqri[22 + 37 3.606 100 50
(1,3),(4,5) sqrt[32 + 22 3.606 25 12.5
(1,3),(5,1) sqri[4? + 22| 4.472 100 50
(4,5),(5,1) sqri[1? + 47] 4.123 225 112.5

As you can see, with larger datasets (more measured samples) the
number of pairs of locations will increase rapidly and will quickly
become unmanageable. Therefore, you can group the pairs of
locations, which is referred to as binning. In this example, a bin is
a specified range of distances. That is, all points that are within 0
to 1 meter apart are grouped into the first bin, those that are
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within 1+ to -2 meters apart are grouped into the second bin, and
so forth. The average empirical semivariance of all pairs of points
is taken. In the following example, the data is placed into

five bins.

Binning the Empirical Semivariogram
Lag Distance Pairs Distance Av. Distance Semivariance Average

1+-2 1.414, 2 1.707 12.5, 12.5 12.5
2+-3 2.236, 2.236, 3 2.491 12.5,0,0 4.167
3+-4 3.606, 3.606 3.606 50, 12.5 31.25
4+-5 4.472, 4.123 4.298 50, 112.5 81.25

5+ 5.657 5.657 112.5 112.5

Fitting a model

Now you can plot the average semivariance versus average
distance of the bins onto a graph—the empirical semivariogram.
But the empirical semivariogram values cannot be used directly in
the I" matrix because you might get negative standard errors for
the predictions; instead, you must fit a model to the empirical
semivariogram. Once the model is fit, you will use the fitted model
when determining semivariogram values for various distances.

Variance
A

150
Empirical

2o |

90 -1

60 -

30 )

»
T T T T T T »

Distance
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For simplicity, the model that you will fit is a least-squares
regression line, and you will force it to have a positive slope and
pass through zero. In the Geostatistical Analyst, there are many
more models that could be fit.

The formula to determine the semivariance at any given distance
in this example is:

Semivariance = Slope * Distance

Slope is the slope of the fitted model. Distance is the distance
between pairs of locations and is symbolized as /4. In the example,
the semivariance for any distance can be determined by:

Semivariance = 13.5%h

Now create the I matrix. For example, y,,for the locations (1.5)
and (3,4) in the equation is:

Semivariance = 13.5 #2.236=30.19

(1,5 G4 (@13 &5 61

T" Matrix (Gamma)
1,5) 0 30.19 27.0 40.5  76.37 1
(3,4) 30.19 0 30.19 19.09 48.67 1
(1,3) 27.0 30.19 0 48.67 60.37 1
4,5) 40.5 19.09 48.67 0 55.66 1
(C)) 76.37 48.67 60.37 55.66 0 1
1 1 1 1 1 0

In the example above, for pair (1,5) and (3,4), the lag distance was
calculated using the distance between the two locations (see the
previous table). The semivariogram value is found by multiplying
the slope 13.5 times the distance. The 1s and 0 in the bottom row
and the rightmost column arise due to unbiasedness constraints.
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The matrix formula for ordinary kriging is:

I'«sp =g
Now the I" matrix has been produced, but it is necessary to solve
for )., which contains the weights to assign to the measured

values surrounding the prediction location. Thus, perform simple
matrix algebra and get the following formula:

r=1"*g
where [ is the inverse matrix of I'. By performing basic linear
algebra, the inverse of I" is obtained.

Inverse of I" Matrix (Gamma)

-0.02575  0.00704 = 0.0151 0.00664 -0.00303  0.3424
0.00704 -0.04584 0.01085 0.02275 0.0052  -0.22768
0.0151 0.01085 -0.02646 -0.00471 = 0.00522  0.17869
0.00664  0.02275 -0.00471 -0.02902 0.00433  0.28471
-0.00303  0.0052 0.00522 = 0.00433 -0.01173  0.42189
03424 022768 @ 0.17869 0.28471 042189 @ -41.701

Next, the g vector is created for the unmeasured location that we
wish to predict. For example, use location (1,4). Calculate the
distance from (1,4) to each of the measured points (1,5), (3.4),
(1,3), (4.5), and (5,1). From these distances, determine the fitted
semivariance using the formula Semivariance = 13.5* A, which
was derived earlier. The g vector for (1,4) is given in the following
table.

Point Distance g Vector for (1,4)
(1,5) 1 135
(3,4) 2 27.0
(1,3) 1 13.5
(4,5) 3.162 42.69
(5,1) 5 67.5

1
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Y
5+ O o
(1.5 4.5)
41— O o
(1,4) (3.4
3+ O
L a3
1+ o
, (5,1

L A
1 2 3 4 5 X
Now that the I matrix and the g vector have been created, solve

for the kriging weights vector: A =1"" * g. Use linear algebra to
do so. The weights are given in the table below.

Making a prediction

Now that you have the weights, multiply the weight for each
measured value times the value. Add the products together and,
finally, you have the final prediction for location (1,4).

Weights Values Product

0.46757 100 46.757

0.09834 105 10.3257

0.46982 105 49.3311

-0.02113 100 -2.113

-0.0146 115 -1.679

-0.18281 102.6218 Kriging Predictor

Next, examine the results. The following figure shows the weights
(in parentheses) of the measured locations for predicting the
unmeasured location (1,4).
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the prediction location. In the example, the prediction interval
51 o o Values: ranges from 95.49 to 109.75 (102.62 +1.96 * 3.64).
(0.46757) (-0.02113) (1.5)= 100
4+— 0o ) ’ G Vector  Weights () g Vector Times Weights
102.50  (0.09834) (3.4)=105 135 0.46757 6.312195
T o (13)= 105 270 0.09834 2.65518
5| (0.46982) ” 135 0.46982 6.34257
(4.5)=100 42.69 -0.02113 -0.90204
| | | | | 1 -0.18281 -0.18281
1 2 3 4 5

Kriging Variance = 13.2396

. . Kriging Std Error  3.6386
As expected, the weights decrease with distance but are more ging

refined than a straight distance weighting since they account for
the spatial arrangement of the data. The prediction appears to be
reasonable.

Kriging variance

One of the strengths of using a statistical approach is that it is
possible to also calculate a statistical measure of uncertainty for
the prediction. To do so, multiply each entry in the A vector times
each entry in the g vector and add them together to obtain what
is known as the predicted kriging variance. The square root of the
kriging variance is called the kriging standard error.

In this case, the kriging standard error value is 3.6386. If it is
assumed that the errors are normally distributed, 95 percent
prediction intervals can be obtained in the following way:

Kriging Predictor + 1.96*sqrt(kriging variance)

The value 1.96 comes from the standard normal distribution where
95 percent of the probability is contained from -1.96 to 1.96. The
prediction interval can be interpreted as follows. If predictions are
made again and again from the same model, in the long run 95
percent of the time the prediction interval will contain the value at
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Basic principles behind geostatistical methods

Random processes with dependence

Unlike the deterministic interpolation approaches, geostatistics
assumes that all values in your study area are the result of a
random process. A random process does not mean that all events
are independent as with each flip of a coin. Geostatistics is based
on random processes with dependence. For an example, flip

three coins and determine if they are heads or tails. The fourth
coin will not be flipped. The rule to determine how to lay the
fourth coin is if the second and third coins are heads, then lay the
fourth coin the same as the first; otherwise, lay the fourth coin
opposite to the first.

In a spatial or temporal context, such dependence is called
autocorrelation.

Prediction for random processes with
dependence

How does this relate to geostatistics and predicting unmeasured
values? In the coin example, the dependence rules were given. In
reality, the dependency rules are unknown. In geostatistics there
are two key tasks: (1) to uncover the dependency rules and (2) to
make predictions. As you can see from the example, the predic-
tions come from first knowing the dependency rules.

Kriging is based on these same two tasks: (1) semivariogram and
covariance functions (spatial autocorrelation) and (2) prediction
of unknown values. Because of these two distinct tasks, it has
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been said that geostatistics uses the data twice: first to estimate
the spatial autocorrelation and second to make the predictions.

Understanding stationarity

Consider again the coin example. There is a unique dependence
rule among the coins. With only one set of measured values,
there is no hope of knowing the dependence rules without being
told what they are. However, through continued observations of
numerous samples, dependencies become apparent. In general,
statistics relies on some notion of replication, where it is believed
estimates can be derived and the variation and uncertainty of the
estimate can be understood from repeated observations.

In a spatial setting, the idea of stationarity is used to obtain the
necessary replication. Stationarity is an assumption that is often
reasonable for spatial data. There are two types of stationarity.
One is called mean stationarity. Here it is assumed that the mean
is constant between samples and is independent of location.

The second type of stationarity is called second-order
stationarity for covariance and intrinsic stationarity for
semivariograms. Second-order stationarity is the assumption that
the covariance is the same between any two points that are at the
same distance and direction apart no matter which two points you
choose. The covariance is dependent on the distance between
any two values and not on their locations. For semivariograms,
instrinsic stationarity is the assumption that the variance of the
difference is the same between any two points that are at the
same distance and direction apart no matter which two points you
choose.

Second-order and intrinsic stationarity are assumptions neces-
sary to get the necessary replication to estimate the dependence
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rules, which allows us to make predictions and assess uncertainty
in the predictions. Notice that it is the spatial information (similar
distance between any two points) that provides the replication.
The coin example is dependent (the first and second coins are
independent, but the first and fourth are dependent), so this
random process does not have second-order stationarity.
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Modeling a semivariogram

The following sections will further discuss how a semivariogram
is created. Assuming stationarity, the autocorrelation can be
examined and quantified. In geostatistics this is called spatial
modeling, also known as structural analysis or variography. In
spatial modeling of the semivariogram, begin with a graph of the
empirical semivariogram, computed as,

Semivariogram(distance /) = 0.5 * average [ (value at location i -
value at location j)?|

for all pairs of locations separated by distance /. The formula
involves calculating half the difference squared between the
values of the paired locations.To plot all pairs quickly becomes
unmanageable. Instead of plotting each pair, the pairs are
grouped into lag bins. For example, compute the average
semivariance for all pairs of points that are greater than 40 meters
but less than 50 meters apart. The empirical semivariogram is a
graph of the averaged semivariogram values on the y-axis and
distance (or lag) on the x-axis (see diagram below).

Semivanogram | Covaniance I

+10*
67
536
402
268
1.34

Distance, k10"~

Again, note that it is the intrinsic stationarity assumption that
allows replication. Thus it is possible to use “averaging” in the
semivariogram formula above.
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Once you've created the empirical semivariogram, you can fit a
line to the points forming the empirical semivariogram model. The
modeling of a semivariogram is similar to fitting a least-squares
line in regression analysis. Some function is selected that serves
as the model, for example, a spherical type that rises at first and
then levels off for larger distances beyond a certain range.

The basic goal is to calculate the parameters of the curve to
minimize the deviations from the points according to some
criterion. There are a lot of different semivariogram models to
choose from. See Chapter 7 for more details and recommendations
on how to choose a model. Now you will go through each of
these steps in detail.

Creating the empirical semivariogram

To create an empirical semivariogram, determine the squared
difference between the values for all pairs of locations. When
these are plotted, with half the squared difference on the y-axis
and the distance that separates the locations on the x-axis, it is
called the semivariogram cloud. The scene below shows the
pairings of one location (the red point) with 11 other locations.
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One of the main goals of variography is to explore and quantify
the spatial dependence, also called the spatial autocorrelation.
Spatial autocorrelation quantifies the assumption that things that
are closer are more alike than things farther apart. Thus, pairs of
locations that are closer (far left on the x-axis of the semivari-
ogram cloud) would have more similar values (low on the y-axis of
the semivariogram cloud). As pairs of locations become farther
apart (moving to the right on the x-axis of the semivariogram
cloud), they should become more dissimilar and have a higher
squared difference (move up on the y-axis of the semivariogram
cloud).

Semivariogran | Covarnance I
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Binning the empirical semivariogram

As you can see from the landscape of locations in the previous
page and the semivariogram cloud above, plotting each pair of
locations quickly becomes unmanageable. There are so many
points that the plot becomes congested, and little can be inter-
preted from it. To reduce the number of points in the empirical
semivariogram, the pairs of locations will be grouped based on
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their distance from one another. This grouping process is known
as binning.

Binning is a two-stage process. First, form pairs of points, and
second, group the pairs so that they have a common distance and
direction. In the landscape scene of 12 locations, you can see the
pairing of all the locations with one location, the red point. Similar
colors for the links between pairs indicate similar bin distances.

This process continues for all possible pairs. You can see that in
the pairing process the number of pairs increases rapidly with the
addition of each location. This is why, for each bin, only the
average distance and semivariance for all the pairs in that bin are
plotted as a single point on the empirical semivariogram cloud
graph.
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In the second stage of the binning process, pairs are grouped
based on common distances and directions. Imagine a graph so
each point has a common origin. This property makes the
empirical semivariogram symmetric. Always put the links to the

right of the vertical axis.
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The figure below shows all possible pairwise links among all :' ' ' i ' :
12 locations. The points are rotated to orient north to the top. : i i ! i !

Now, you can see that links 1 and 2 have a fairly similar distance
and direction. Each cell in the grid forms a bin. Links 1 and 2 fall
into the same bin, which is colored yellow. For link 1 form the
squared difference from the values at the two locations that are
linked, and do likewise for link 2. Then these are averaged and
multiplied by 0.5 to give one empirical semivariogram value for the
bin.

Perform the same process for another bin, the one colored green,
with links 3 and 4. To keep things simple, only four links are
shown, but of course there are many, many more.
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For each bin, form the squared difference from the values for all
pairs of locations that are linked, and these are then averaged and
multiplied by 0.5 to give one empirical semivariogram value per
bin. In the Geostatistical Analyst, you can control the lag size and
number of bins. The empirical semivariogram value in each bin is
color coded and is called the semivariogram surface.

n
[J€4+=——B8in
-'. .‘ ]'-7 Center of semivariogram surface

In the figure above, there are seven bins horizontally and
vertically from the center of the semivariogram surface. For the
bins, the “cool” colors (blue and green) are lower values, and the
“warm” colors (red and orange) are higher values. As you can
see, in general, the empirical semivariogram values increase as the
bins get farther away from the origin. This indicates that values
are more dissimilar with increasing distance. Also notice the
symmetry that we described earlier.

The Geostatistical Analyst also gives a plot of the empirical
semivariogram.
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In the graph above, the empirical semivariogram value for each
bin for each direction is plotted as a red dot, where the y-axis is
the empirical semivariogram value and the x-axis is the distance
from the center of the bin to the origin (center of semivariogram
surface). The color bar on the right matches the colors on the
semivariogram surface. By binning and averaging the semivari-
ogram cloud values, it is much more obvious that dissimilarity
increases with distance. The yellow line in the figure above is a
fitted semivariogram model, which will be discussed shortly.
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An alternative method that is often used for grouping the pairs
into bins is based on radial sectors (see the figure below). The
Geostatistical Analyst does not use this method.
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Empirical semivariograms for different directions

Sometimes the values for the measured locations will contain a
directional influence that can be statistically quantified but
perhaps cannot be explained by any known identifiable process.
This directional influence is known as anisotropy. The angle of
tolerance will determine the angle in which close points will be
included or excluded until it reaches the bandwidth. The band-
width specifies how wide the search should be when determining
which pairs of points will be plotted in the semivariogram. The
points in the bins are pairs of locations that are within certain
distances and directions apart. You can conceptually view
directional binning either by limiting the pairs of points that will
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be graphed in the grouping process or by graphing all pairs and
considering only the portion of the graph representing a certain
direction. The scene below depicts a directional binning of 90
degrees, a bandwidth of five meters, an angle tolerance of 45
degrees, and a lag distance of five meters from a single sample
point (in blue).

Bandwidth

Lag distance

The directional search continues for each sample point and
direction on the surface.
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The scene below shows the directional binning of three points.
Notice that fewer pairs of locations will be included in the
grouping process than with the omnidirectional semivariogram in
the previous example.

The pairs are then binned according to common distances and
directions, the bins are averaged, and the average of the pairs for
each bin is plotted on the semivariogram.

Alternatively, in the grid method of binning described earlier, all
of the pairs can be binned, and you can make directional subsets
as illustrated below. The bin will be plotted on the semivariogram
cloud graph if the center of the cell on the semivariogram surface
is included in the search direction.
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Choosing the lag size

The selection of a lag size has important effects on the empirical
semivariogram. For example, if the lag size is too large, short-
range autocorrelation may be masked. If the lag size is too small,
there may be many empty bins, and sample sizes within bins will
be too small to get representative “averages” for bins.

When samples are located on a sampling grid, the grid spacing is
usually a good indicator for lag size. However, if the data is
acquired using an irregular or random sampling scheme, the
selection of a suitable lag size is not so straightforward. A rule of
thumb is to multiply the lag size times the number of lags, which
should be about half of the largest distance among all points.
Also, if the range of the fitted semivariogram model is very small,
relative to the extent of the empirical semivariogram, then you can
decrease the lag size. Conversely, if the range of the fitted
semivariogram model is large, relative to the extent of the empiri-
cal semivariogram, you can increase the lag size. Semivariogram
models are discussed next.
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The diagrams below show two common models and identify how
the functions differ:

Fitting a model to the empirical semivariogram

Semivariogram/Covariance modeling is a key step between spatial

description and spatial prediction. Earlier, it was described how to
fit a semivariogram model and how it is used in the kriging
equations (gamma matrix, I', and g vector). The main application
of geostatistics is the prediction of attribute values at unsampled
locations (kriging).

So far, you’ve read how the empirical semivariogram and covari-
ance provide information on the spatial autocorrelation of
datasets. However, they do not provide information for all
possible directions and distances. For this reason and to ensure
that kriging predictions have positive kriging variances, it is
necessary to fit a model (i.e., a continuous function or curve) to
the empirical semivariogram/covariance.

Abstractly, this is similar to regression analysis, where a continu-
ous line or a curve of various types is fit.

Different types of semivariogram models

The Geostatistical Analyst provides the following functions to
choose from to model the empirical semivariogram: Circular,
Spherical, Tetraspherical, Pentaspherical, Exponential, Gaussian,
Rational Quadratic, Hole Effect, K-Bessel, J-Bessel, and Stable.
The selected model influences the prediction of the unknown
values, particularly when the shape of the curve near the origin
differs significantly. The steeper the curve near the origin, the
more influence the closest neighbors will have on the prediction.

As a result, the output surface will be less smooth. Each model is
designed to fit different types of phenomena more accurately.
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Semivariogram | Covarnance I
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¢ The Spherical model

This model shows a progressive decrease of spatial autocorrela-
tion (equivalently, an increase of semivariance) until some
distance, beyond which autocorrelation is zero. The spherical
model is one of the most commonly used models.

Semivariogranm | CovarianCEI
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Distance, h+10

¢ The Exponential model

This model is applied when spatial autocorrelation decreases
exponentially with increasing distance, disappearing completely
only at an infinite distance. The exponential model is also
commonly used.
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Understanding a semivariogram—the range, sill,
and nugget

As previously discussed, the semivariogram depicts the spatial
autocorrelation of the measured sample points. Once each pair of
locations is plotted (after binning), a model is fit through them.
There are certain characteristics that are commonly used to
describe these models.

The range and sill

When you look at the model of a semivariogram, you will notice
that at a certain distance the model levels out. The distance where
the model first flattens out is known as the range. Sample
locations separated by distances closer than the range are
spatially autocorrelated, whereas locations farther apart than the
range arc not.

The value that the semivariogram model attains at the range (the
value on the y-axis) is called the sill. The partial sill is the sill
minus the nugget.

Semivariogram | Cowvariance I

L —
A B e
536)----- (A S
Sill o T =
@ ® a8 B
Z5E) | - -l 3H. B
e .
ST U SR R B
Nugget—[: : |
0 02 04 0
Distance, b10 ™
Range

68

The nugget

Theoretically, at zero separation distance (i.c., lag = 0), the
semivariogram value should be zero. However, at an infinitesi-
mally small separation distance, the difference between measure-
ments often does not tend to zero. This is called the nugget
effect. For example, if the semivariogram model intercepts the y-
axis at 2, then the nugget is 2.

The nugget effect can be attributed to measurement errors or
spatial sources of variation at distances smaller than the sampling
interval (or both). Measurement error occurs because of the error
inherent in measuring devices. Natural phenomena can vary
spatially over a range of scales. Variation at micro scales smaller
than the sampling distances will appear as part of the nugget
value. Before collecting data, it is important to gain some under-
standing of the scales of spatial variation that interest you.

Using ARcGIS GEOSTATISTICAL ANALYST



Accounting for directional influences—trend and WIND
anisotropy

There are two types of directional components that can affect the
predictions in your output surface: global trends and directional
influences on the semivariogram/covariance (known as anisot-
ropy). A global trend is an overriding process that affects all
measurements in a deterministic manner. The global trend can be
represented by a mathematical formula (e.g., a polynomial) and
removed from the analysis of the measured points but added back
in before predictions are made. This process is referred to as
detrending (see Chapter 7, ‘Using analytical tools when generat-
ing surfaces’).

An example of a global trend can be seen in the effects of the
prevailing winds on a smoke stack at a factory (right). In the
image, the higher concentrations of pollution are depicted in the
warm colors (reds and yellows) and the lower concentrations in
the cool colors (greens and blues). Notice that the values of the
pollutant change more slowly in the east—west direction than in
the north—south direction. This is because east—west is aligned
with the wind while north—south is perpendicular to the wind.

The shape of the semivariogram/covariance curve may also vary
with direction (anisotropy) after the global trend is removed or if
no trend exists. Anisotropy differs from the global trend dis-
cussed above because the global trend can be described by a
physical process (in the example above, the prevailing winds) and
modeled by a mathematical formula. The cause of the anisotropy
(directional influence) in the semivariogram is not usually known,
so it is modeled as random error. Even without knowing the
cause, anisotropic influences can be quantified and accounted
for.
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Anisotropy is usually not a deterministic process that can be
described by a single mathematical formula. It does not have a
single source or influence that predictably affects all measured
points. Anisotropy is a characteristic of a random process that
shows higher autocorrelation in one direction than in another.
The following image shows conceptually how the process might
look. Once again, the higher concentrations of pollution are
depicted in the warm colors (reds and yellows) and the lower
concentrations in the cool colors (greens and blues). The random
process shows undulations that are shorter in one direction than
another. These undulations could be the result of some unknown
or unmeasurable physical process but are modeled as a random
process with directional autocorrelation.
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In this example, because of anisotropy, when the empirical
semivariogram for the measured points is plotted, you can see
that the spatial relationship is different for two directions. In the
north—south direction the shape of the semivariogram curve
increases more rapidly before leveling out.
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For anisotropy, the shape of the semivariogram may vary with
direction. Isotropy exists when the semivariogram does not vary
according to direction.
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Combining variogram models

Many times there are two or more processes that will dictate the
spatial distribution of some phenomenon. For instance, the
quantity of vegetation (the biomass) may be related to elevation
and soil moisture. If this relationship is known, it is possible to
use cokriging to predict biomass. You could use the measured
values of biomass as datasct one, elevation as dataset two, and
soil moisture as dataset three (see Chapter 6, ‘Creating a surface
with geostatistical techniques’). You might fit different variogram
models to each dataset because each exhibits different spatial
structure. That is, the spherical model might fit elevation best, the
exponential model might fit soil moisture best, and a combination
of the models might fit biomass best. The models can then be
combined in a way that best fits the structure of the data.

However, sometimes you do not know the causal relationships of
the factors that are determining the spatial structure in some
phenomenon. Using the same example of biomass above, you
may only have the sample points measuring the biomass. When
you examine the variogram, you notice distinct inflection points.

0.18
0.16
0.14
0.12 A
0.1 1
0.08
0.06

Semivariance

0 2 4 6 8 10

THE PRINCIPLES OF GEOSTATISTICAL ANALYSIS

The points go up, straighten out, and then bend again to level off
to the sill. You suppose that there are two distinct structures in
the data and a single model will not capture it. You may model the
semivariogram with two separate models (e.g., spherical and
exponential) and combine them into a single model.

Representing multiple distinct random processes through a single
variogram is discouraged, and it is best to separate the spatial
processes whenever possible. However, the causal relationships
are not always understood. The choice of multiple models adds
more parameters to estimate and is a subjective exercise that you
perform by eye and then quantify by cross-validation and
validation statistics (see Chapter 7, ‘Using analytical tools when
generating surfaces’).

The Geostatistical Analyst allows you to select up to
three models in addition to a nugget effect model. In the example
above, the model consists of three components: a nugget effect
model and two spherical models with different ranges.
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Using the Geostatistical Analyst to fit a model to a
semivariogram

The example that was presented earlier in this chapter was
simplified to make it easier to understand. To demonstrate the
concept of modeling a semivariogram, more sample points will be
used.

Ten measured sample points have been taken of elevation.

Point X-Coordinate | Y-Coordinate Value

Number
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95
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105

100

115
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110
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In this example, a value for the location x = 2.75, y = 2.75 will be
predicted where the value is currently unknown (the yellow point
in the image below).
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The spatial configuration of the measured points, their values,
and the prediction location are displayed in ArcMap below.
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In the first two panels of the Geostatistical Wizard, you specify
the dataset, the prediction field, and the kriging method (in this
case, Ordinary Kriging). The third panel contains the semivari-
ogram modeling dialog box. Here our goal is to fit a semivariogram
model to the empirical semivariogram. You can see the list of
available models below. In the previous example, a simple straight
line is fitted, but you can see there are many more choices. Each
model is slightly different so that you can fit the best one
possible. Chapter 7, “Using analytical tools when generating
surfaces’, provides more information on the models.
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In this example, the spherical model will be fitted to the empirical
semivariogram. The formula for the spherical model is given here.
As you can see, the formula is more involved than the simple line
used in the previous example in this chapter. However, the two
serve the same purpose with differing results.
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where
0, is the sill value,

h is the lag vector, and / is the length of h (distance between 2
locations),

0 is the range of the model.

Note the parameters of the spherical model are in blue lettering at
the bottom left of the dialog box. This indicates a spherical model
is being used with a sill value of 86.1, a range of 6.96, and zero
nugget. Therefore, the calculated semivariogram values using the
selected spherical model will be:

y(h) =806.1*(1.5%(//6.96)-0.5(1/6.96)*), for all lag values < 6.96
and
y(h)=86.1, for all lag values >6.96

This is similar to finding the semivariogram value for a given
distance, /. on the fitted line in our previous example, once the
line was fitted, the values for the matrix and vectors were deter-
mined for the ordinary kriging equation from the line. Here the
same can be done using the fitted spherical model.
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Kriging

Like IDW interpolation, kriging forms weights from surrounding
measured values to predict values at unmeasured locations. As
with IDW interpolation, the closest measured values have the
most influence. However, the kriging weights for the surrounding
measured points are more sophisticated than those of IDW. IDW
uses a simple algorithm based on distance, but kriging weights
come from a semivariogram that was developed by looking at the
spatial structure of the data. To create a continuous surface or
map of the phenomenon, predictions are made for locations in the
study area based on the semivariogram and the spatial arrange-
ment of measured values that are nearby.

Searching neighborhood

It can be assumed that as the locations get farther from the
prediction location, the measured values will have less spatial
autocorrelation with the prediction location. Thus, it is possible
to eliminate locations that are farther away that demonstrate little
influence using search neighborhoods. Not only is there less
relationship with locations that are farther away, but it is possible
that the locations that are farther away may have a detrimental
influence if they are located in an area much different than the
prediction location. Another reason to use search neighborhoods
is for computational speed. Recall from the first example that a
5-x-5 matrix was inverted. If you had 2,000 data locations, the
matrix would be too large to invert. The smaller the search
neighborhood, the faster the predictions can be made. As a result,
it is common practice to limit the number of points used in a
prediction by specifying a search neighborhood.

The specified shape of the neighborhood restricts how far and
where to look for the measured values to be used in the predic-
tion. Other neighborhood parameters restrict the locations that
will be used within that shape.
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The shape of the neighborhood is influenced by the input data
and the surface that you are trying to create. If there are no
directional influences on the spatial autocorrelation of your data,
then you will want to consider points equally in all directions. To
do so, you will probably want the shape of your neighborhood to
be a circle. However, if there is directional autocorrelation in your
data, then you may want the shape of your neighborhood to be
an ellipse with the major axis parallel with the direction of long-
range autocorrelation.

The searching neighborhood can be specified in Step 3 of the
Geostatistical Wizard. Once a neighborhood shape is specified,
you can also restrict which locations within the shape should be
used. You can define the maximum and minimum number of
neighbors to include. You can also divide the neighborhood into
sectors to ensure you get values from all directions. If you divide
the neighborhood into sectors, the specified maximum and
minimum number of neighbors will be applied to each sector.
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There are several different sector types that can be used (below).

One sector—-':::::'l % ':E:'l %I—Eight sectors

Ellipse with four sectors

Using the data configuration within the specified neighborhood,
in conjunction with the fitted semivariogram model, the weights
for the measured locations can be determined. From the weights
and the values, a prediction can be made for the unknown value
for the prediction location. This process is performed for each
spatial location to create a model of the continuous surface.

Creating a prediction surface using neighborhood
searching

As the datasets get larger and cover more area, you will want to
limit which measured points you consider when predicting. If you
consider points too far away, they may be in areas much different
than the prediction location. You will want to include enough
points in your calculations for a good sampling, but you do not
want to include those that are too far away from the prediction
location because either they contribute very little or they come
from an area unlike the area in which you are predicting (below).
In the dialog box below a circular neighborhood with a radius of 3
is specified, and the maximum number of neighbors to include

is 5.
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The locations that are used to predict the unknown value for the
desired location (2.75, 2.75) are highlighted and color coded
(according to percentage size of coefficients 2. )in the dialog view
box. The points in the neighborhood are:

Neighborhood | Original Point | x-coordinate | y-coordinate Value
Point Number Number

1 1 1 3 105

2 2 1 5 100

3 4 3 4 105

4 6 4 5 100

5 7 5 1 115
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The predicted value for the desired location (x = 2.75,y = 2.75) is
107.59. The Geostatistical Analyst predicted the value by solving
the ordinary kriging equations.

I'*= % =g and solving for the weights . =1"'* g
With the spherical semivariogram model and with the trimmed
down set of measured values identified through the neighbor-
hood search, it is possible to solve for A in the equation above.
First, create the I matrix. This is done by calculating the dis-

tances between the pairs of points and substituting them into the
fitted spherical model,

v(h) = 86.1%(1.5*(1/6.96)-0.5(1/6.96)?), for 0 <h < 6.96

The distances between the measured points are:

Points Distance Points Distance
1,2 2.000 24 3.000
1.3 2.236 2.5 5.657
14 3.605 34 1414
15 4472 35 3.606
23 2.236 45 4.124

If the distance (k) between points 1 and 3 is substituted, where
h = 2.236, the semivariogram value is:

v(h) = 86.1%(1.5%(2.236/6.96)-0.5(2.236/6.96)*) = 40.065
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Repeat this process for each pair of points to produce the I'
matrix. To keep the notation clear in the matrices, the points have
been renumbered as shown in the top left.

i 1 2 3 4 5 6

1 0000  36.091 || 40065 60920 71564 1.000
2 36.091 0.000 40065 52221  81.855 1.000
3 40.065/ 40.065  0.0000  25.881  60.920 1.000
4 60920  52.221 25881 0.000  67.559 1.000
5 71564 81.855 60920  67.559 0.000 1.000
6 1.000 1.000 1.000 1.000 1.000  0.000

Next find the inverse I

i 1 2 3 4 5 [§

1 -0.0191 0.01005 0.00776 -0.0021 0.00336 02114
2 001005 -0.0187 0.00472 0.00402 -0.0001 0.24891
3 0.00776 0.00472 -0.0317 0.01619 0.00304 -0.1038
4 -0.0021 0.00402 0.01619 0.0214 0.00324 0.27739
5 000336 -0.0001 0.00304 0.00324 -0.0095 0.36607
[§ 02114 0.24891 -0.1038 027739 0.36607 47.922

Now it is necessary to create the g vector to solve the ordinary
kriging equation, 2 =1"'* g. To do so, calculate the distance of
each of the five measured locations in our neighborhood to the
prediction location (2.75, 2.75). The distances are:

From x=2.75y=275

Points Distance
1 1.768
2 2.850
3 1275
4 2.574
5 2.850
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The g vector is created by substituting each of the distances into
the fitted spherical model.

From x=275y=275
Points  Fitted Semivariance

1 32.097

2 49.936

3 23.390

4 45584

5 49.936

6 1.000

The extra row in the g vector (and the extra row and column in the
I" matrix) has been added to ensure the weights sum to 1 (i.e.,
using the Lagrange multiplier explained further in Appendix A).

Now solve for the weights of the . vector. An example of solving
for the weight of point 1 is:

L =(-0.019*32.097+0.01005*49.936 +0.00776%*23.390
-0.0021*45.584 +0.00336*49.936 +0.2114*1.000)
=0.355

The weights for all of the points and the Lagrange multiplier
(entry number 6) are:

Points ©,
1 0355
2 -0.073
3 0.529
4 -0.022
5 0211
6 -0.210

Finally, predict the value of the location (2.75, 2.75) by multiplying
the weights of the measured points (dropping entry number 6) by
their values and then adding them together.
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Prediction = 0.355* 105 — 0.073 * 100 + 0.529 * 105
-0.022*100+ 0.211 *115
Prediction = 107.59
i i Valug;
1 0.35 105
2 -0.073 100
3 0.529 105
4 -0.022 100
5 0.211 115

Repeating this for many prediction locations and mapping the
results produces the prediction surface shown below.
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Output surfaces can be created with the Geostatistical Analyst in
a number of formats. These include a shapefile of contour lines, a
shapefile of filled contour polygons, and a grid representing a
continuous surface and hillshade.
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A guide to the Geostatistical Analyst extension

In this last section, you will learn more about the Geostatistical
Analyst extension to ArcMap.

The software is accessed via the Geostatistical Analyst
dropdown menu on the ArcMap toolbar. There are three main
components to the Geostatistical Analyst: (1) Explore Data,
(2) Geostatistical Wizard, and (3) Create Subsets.

Explore data

Before using the interpolation techniques, you can explore your
data with these tools. ESDA tools allow you to gain insight into
your data, enabling you to select the appropriate parameters for
interpolation model. For example, when using ordinary kriging to
produce a quantile map, you should examine the distribution of
the data because it is assumed that the data is normally distrib-
uted. Alternatively, you may explore for a trend in your data with
the ESDA tools, and you may wish to remove it in the prediction
process.

The following tools are provided:
¢ Histogram—Explore the univariate distribution of a dataset.

¢ Voronoi Map—Analyze stationarity and spatial variability of a
dataset.

¢ Normal QQPlot—Check for normality of a dataset.
¢ Trend Analysis—Identify global trends in a dataset.

¢ Semivariogram/Covariance Cloud—Analyze the spatial
dependencies in a dataset.

¢ General QQPlot—Explore whether two datasets have the same
distributions.

¢ (Crosscovariance Cloud—Understand crosscovariance
between two datasets.
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Geostatistical Wizard

The Geostatistical Analyst provides a number of interpolation
techniques that use sample points to produce surfaces of the
phenomena of interest. The interpolation techniques in the
Geostatistical Analyst are divided into two main types: determin-
istic and geostatistical.

Deterministic

Deterministic techniques are based on parameters that control
either (i) the extent of similarity (e.g., Inverse Distance Weighted)
of the values or (ii) the degree of smoothing (e.g., radial basis
functions) in the surface. These techniques do not use a model of
random spatial processes.

Geostatistics

Geostatistics assume that at least some of the spatial variation of
natural phenomena can be modeled by random processes with
spatial autocorrelation.

Geostatistical techniques can be used to:

* Describe and model spatial patterns—variography.
* Predict values at unmeasured locations—Xkriging.

* Assess the uncertainty associated with a predicted value at
the unmeasured locations—kriging.

Kriging can be used to produce the following surfaces:
* Maps of kriging predicted values

* Maps of kriging standard errors associated with predicted
values

¢ Maps of probability, indicating whether or not a predefined
critical level was exceeded

* Maps of quantiles for a predetermined probability level
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Create subsets

The most rigorous way to assess the quality of an output surface
is to compare the predicted values with those measured in the
field. It is often not possible to go back to the study area to
collect an independent validation dataset. One solution is to
divide the original dataset into two parts. One part can be used to
model the spatial structure and produce a surface. The other part
can be used to compare and validate the quality of the predic-
tions. The Create Subsets dialog box enables you to produce
both test and training datasets.

Processing data

The software includes many tools for analyzing data and produc-
ing a variety of output surfaces.
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While the aim of the investigation may vary, you are encouraged
to adopt the following approach when analyzing/mapping spatial
processes:

Represent Add layers and display in ArcMap.
the data
Explore Investigate the statistical and spatial properties of
the data your data.
Fit a Choose a model to create a surface. The
model Geostatistical Wizard is used in the definition and
refinement of an appropriate model.
Perform Assess the quality of the output surface using
diagnostics | Cross-Validation and Validation tools. This will help
9 you understand how well the model predicts the
values at unmeasured locations.
Compare More than one surface can be produced. The
the models |surface can be compared using cross-validation
statistics.
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Exploratory Spatial Data Analysis

INTHIS CHAPTER

e What is Exploratory Spatial Data
Analysis?

* The Exploratory Spatial Data
Analysis tools

e Examining the distribution of the
data

* Looking for global and local
outliers

e Looking for global trends

e Examining spatial autocorrelation
and directional variation

e Understanding covariation among
multiple datasets

Exploratory Spatial DataAnalysis alowsyou to examine your datain
different ways. Before creating a surface, ESDA enables you to gain a
deeper understanding of the phenomenayou are investigating so that you
can make better decisions on issues relating to your data. The ESDA
environment is composed of a series of tools, each allowing aview into the
data. Each view can be manipulated and explored, alowing different
insights about the data. Each view isinterconnected with all other views as
well aswith ArcMap. That is, if abar is selected in the histogram, the
points comprising the bar are also selected on the QQPlot (if opened), on
any other open ESDA view, and on the ArcMap map.

The ESDA environment is designed to explore, asits nameimplies.
However, there are certain tasks that are useful in most explorations.
Exploring the distribution of the data, |looking for global and local outliers,
looking for global trends, examining spatial autocorrelation, and
understanding the covariation among multiple datasets are all useful tasksto
perform on your data. The ESDA tools can assist you with these tasks as
well as many others.
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What is Exploratory Spatial Data Analysis?

The ESDA environment allows you to graphically investigate
your dataset to gain a better understanding of it. Each ESDA tool
provides a different view of the data and is displayed in a
separate window. The different views are Histogram, Voronoi
Map, Normal QQPlot, Trend Analysis, Semivariogram/Covariance
Cloud, General QQPIlot, and Crosscovariance Cloud. All views
interact with one another and with the ArcMap map.

Working with selections; brushing and linking

The views in ESDA are interconnected by selecting (brushing)
and highlighting the selected points on all maps and graphs
(linking). Brushing is a graphical way to perform a selection in
either the ArcMap data view or in an ESDA tool. Any selection
that occurs in an ESDA view or in the ArcMap data view will be
selected in all ESDA windows as well as on the ArcMap map (see
the diagram on the following page); this is called linking. When
brushing in some ESDA tools (Histogram, Voronoi map, QQPlot,
and Trend analysis), the selected points in the view are linked to
the ArcMap map, and the corresponding points are highlighted.
Because points in the semivariogram/covariance plots represent
pairs of locations, when brushing in the Semivariogram/
Covariance Cloud tool, the pairs are highlighted in the ArcMap
data view and a line connects each pair. When pairs of points in
the ArcMap data view are selected, the points in the
semivariogram/covariance plot are also highlighted.

Layer interaction between ArcMap and ESDA

The ESDA tools interact with the layers in ArcMap in the

following ways:

1. ESDA tools work on point feature and polygon feature (i.c.,
census, epidemiology, or demographic data) layers.

2. The layer that is highlighted in the ArcMap table of contents
prior to initiating an ESDA tool will be the default layer for the
tool.
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3. If the highlighted point feature layer is not checked as
selectable, the default layer in the tool will be the first layer in
the TOC.

4. Only selectable point feature layers will be in a dropdown list
of layers that can be explored by the tool.

5. The query definition for any layer will be honored.

6. The layer that is being explored in ESDA does not have to be
displayed in the ArcMap data view, but if it is not the different
brushings will not be visible on the map.

7. If only one point feature layer is highlighted in the ArcMap
table of contents and an ESDA tool requiring multiple layers is
selected, the highlighted layer will be the default for the first
input dataset for that tool.

8. If two or more point feature layers are highlighted in the
ArcMap table of contents and an ESDA tool requiring
multiple layers is selected, the first highlighted point feature
layer in the table of contents is the first input dataset for that
ESDA tool, and the second highlighted layer is the second
dataset.

Transformations

Several methods in the Geostatistical Analyst require that the
data is normally distributed. When the data is skewed (the
distribution is lopsided), you may want to transform your data to
make it normal. In ESDA, the Histogram and Normal QQPlot allow
you to explore the effects of different transformations on the
distribution of the dataset. If you choose to transform your data
before creating a surface using geostatistics, the predictions will
be transformed back to the original scale for your interpolated
surface.
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Exploratory Spatial Data Analysis

Selection of Data Points
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Select points of interest in the ArcMap data view. The ESDA
tools will display the selected points in the context of all points
(e.g., partitioned histogram).
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Voronoi mapping tool

Select a feature of interest (e.g., the tail of a histogram) in an
ESDA window. The locations of the selected points are displayed
in the ArcMap data view. When you initiate a new ESDA tool it
will also display the associated properties of the selected points
(e.g., location of Voronoi cells).
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Exploratory Spatial Data Analysis tools

Each ESDA tool provides you with the capability to examine your
data in different views. Each view is displayed in a separate
window and fully interacts with the ArcMap display as well as
with other ESDA windows. The tools available are Histogram,
Voronoi Map, Normal QQPlot, Trend Analysis, Semivariogram/
Covariance Cloud, General QQPlot, and Crosscovariance Cloud.

Histogram

The histogram tool in ESDA provides a univariate (one-variable)
description of your data. The tool displays the frequency
distribution for the dataset of interest and calculates summary
statistics.

Frequency distribution

The frequency distribution is a bar graph that displays how often
observed values fall within certain intervals or classes. You

specify the number of classes of equal width that should be used
in the histogram. The relative proportion of data that falls in each

. . . Frequency Count 193 Skewness  : 0.50357
D|Str|but|0n 48 in 0.0465.... | Kurtasis . : 3.7192
.. * 7 = Ma: 0.1736 | 1-st Quartile : 0.083365
i H | Mean 0.0992 |Median : 0.09899
StatIStICS 384 .| 5td. Dev. : 0.022722 |3-1d Quartile : 0.11105

288

19.2¢---

Data distribution
96

i}
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Data-10

X N um ber Of Tip:  Click or diag over bars to select Add to Layout
histogram bars——g=—Ts B s
-« Transtormation
Transformation T |
selection | s DalaSource
Laper. Attribute:
oa_ozone_pis . = [T ———
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84

class is represented by the height of each bar. For example, the
histogram above shows the frequency distribution (10 classes)
for an ozone dataset.

Summary statistics

The important features of a distribution can be summarized by a
few statistics that describe its location, spread, and shape.

Measures of location

Measures of location provide you with an idea of where the
center and other parts of the distribution lie.

The mean is the arithmetic average of the data. The mean
provides a measure of the center of the distribution.

The median value corresponds to a cumulative proportion of 0.5.
If the data was arranged in increasing order, 50 percent of the
values would lie below the median, and 50 percent of the values
would lie above the median. The median provides another
measure of the center of the distribution.

The first and third quartiles correspond to a cumulative
proportion of 0.25 and 0.75, respectively. If the data was arranged
in increasing order, 25 percent of the values would lie below the
first quartile, and 25 percent of the values would lie above the
third quartile. The first and third quartiles are special cases of
quantiles. The quantiles are calculated as follows:

quantile=(i)-0.5/N

where (i) is the i rank of the ordered data values and N is the
number of data.

Measures of spread

The spread of points around the mean value is another
characteristic of the displayed frequency distribution. The
variance of the data is the average squared deviation of all values
from the mean. The units are the square of the units of the
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original measurements and, because it involves squared
differences, the calculated variance is sensitive to unusually high
or low values.

The standard deviation is the square root of the variance. It
describes the spread of the data about the mean in the same units
as the original measurements. The smaller the variance and
standard deviation, the tighter the cluster of measurements about
the mean value.

The diagram below shows two distributions with different
standard deviations. The frequency distribution given by the
black line is more variable (wider spread) than the frequency
distribution given by the red line. The variance and standard
deviation for the black frequency distribution are greater than
those for the red frequency distribution.

Measures of shape

Density

Value

The frequency distribution is also characterized by its shape.

The coefficient of skewness is a measure of the symmetry of a
distribution. For symmetric distributions, the coefficient of
skewness is zero. If a distribution has a long right tail of large
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values, it is positively skewed, and if it has a long left tail of small
values, it is negatively skewed. The mean is larger than the
median for positively skewed distributions, and vice versa for
negatively skewed distributions. The figure below shows a
positively skewed distribution.

0.3

0.0

Value
Median Mean

The kurtosis is based on the size of the tails of a distribution and
provides a measure of how likely the distribution will produce
outliers. The kurtosis of a normal distribution is 3. Distributions
with relatively thick tails are “leptokurtic” and have kurtosis
greater than 3. Distributions with relatively thin tails are
“platykurtic” and have a kurtosis less than 3. In the figure below,
a normal distribution is given in red, and a leptokurtic (thick-
tailed) distribution is given in black.

0.4
0.3

0.2

Density

0.1

0.0

Value
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Voronoi map

Voronoi maps are constructed from a series of polygons formed
around the location of a sample point.

Tools (pan,

zoom, etc.) Voronoi map Cell values

“Yoronoi Map

IV Legend

0.0465: 0.025216
0.085216: 0105
{0,1)05 017 1

Tip:  Click on cell to select it Add to Layout
-« Properties
Type: m Color Ramp: I _-j—
-~ Data Source
Layer: Altribute:
[oa_oeone_pis _— m
Select Selected Selected Color ramp
method dataset attribute

Voronoi polygons are created so that every location within a
polygon is closer to the sample point in that polygon than any
other sample point. After the polygons are created, neighbors of a
sample point are defined as any other sample point whose
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polygon shares a border with the chosen sample point. For
example, in the following figure, the bright green sample point is
enclosed by a polygon, given as red. Every location within the
red polygon is closer to the bright green sample point than any
other sample point (given as small dark blue dots). The blue
polygons all share a border with the red polygon, so the sample
points within the blue polygons are neighbors of the bright green
sample point.

Using this definition of neighbors, a variety of local statistics can
be computed. For example, a local mean is computed by taking the
average of the sample points in the red and blue polygons. This
average is then assigned to the red polygon. After this is
repeated for all polygons and their neighbors, a color ramp shows
the relative values of the local means, which helps visualize
regions of high and low values.

The Voronoi Mapping tool provides a number of methods for
assigning or calculating values to polygons.

Simple: The value assigned to a cell is the value recorded at the
sample point within that cell.

Mean: The value assigned to a cell is the mean value that is
calculated from the cell and its neighbors.

Mode: All cells are placed into five class intervals. The value
assigned to a cell is the mode (most frequently occurring class) of
the cell and its neighbors.
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Cluster: All cells are placed into five class intervals. If the class
interval of a cell is different from each of its neighbors, the cell is
colored grey to distinguish it from its neighbors.

Entropy: All cells are placed into five classes based on a natural
grouping of data values (i.c., smart quantiles, refer to Chapter 8,
‘Displaying and managing geostatistical layers’). The value
assigned to a cell is the entropy that is calculated from the cell
and its neighbors, that is,

Entropy = - Z (p,* Log p,)
where p, is the proportion of cells that are assigned to each class.

For example, consider a cell surrounded by four neighbors (a total
of five cells). The values are placed into the corresponding
classes:

Class Frequency Di
1 3 3/5
2 0 0
3 1 1/5
4 0 0
5 1 1/5

The entropy assigned to the cell will be:
E=-[0.6*log,(0.6) +0.2* log, (0.2) +0.2* log, (0.2)] = 1.371

Minimum entropy occurs when the cell values are all located in
the same class. Then,

E,_ =-[1*log,(1)]=0

Maximum entropy occurs when each cell value is located in a
different class interval. Then,

E, = -[0.2*log, (0.2)+0.2 *log, (0.2) + 0.2 *log, (0.2) + 0.2
*log, (0.2)+ 0.2 *log, (0.2)] =2.322
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Median: The value assigned to a cell is the median value
calculated from the frequency distribution of the cell and its
neighbors.

Standard deviation: The value assigned to a cell is the standard
deviation that is calculated from the cell and its neighbors.

Interquartile range: The first and third quartiles are calculated
from the frequency distribution of a cell and its neighbors. The
value assigned to the cell is calculated by subtracting the value
of the first quartile from the value of the third quartile.

The different Voronoi statistics are used for different purposes.
The statistics can be grouped into the following general
functional categories:

Local Smoothing
Mean
Mode
Median

Local Tariation
Standard deviation
Interquartile range
Entropy

Local Outliers
Cluster

Local Influence

Simple
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Normal QQPIlot and General QQPIlot Constructing a General QQPIlot

QQPlots are graphs on which quantiles from two distributions are The General QQPlot is used to assess the similarity of the

plotted relative to each other. distributions of two datasets. A General QQPIlot is created by
plotting data values for two datasets where their cumulative
Constructing a Normal QQPlot distributions are equal; see figure below.

For the data, a cumulative distribution is produced by ordering

the data and producing a graph of the ordered values versus Data Set 1 N Data Set 2
. . . . . . 1.0 .
cumulative distribution values calculated as (i - 0.5)/n for the ith s ]
308 308
ordered value out of n total values (the percent of the data below £ 2
. . . . 2 0, 20671
avalue). Linear interpolation is used between values. The Normal 5% 8
. . >
QQPlot is created by plotting data values versus the value of a g 04
. . . . . 3 4
standard normal where their cumulative distributions are equal; s o2 ] £’
see the figure below. of vV ‘ 00 v vV
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Normal QQPlot General QQPlot

Plot of the quantiles of the input Plot of the quantiles of
Transformation dataset versus quantiles of the two datasets
to apply standard normal distribution

Mormal GHPIot

foromese  — S —
iz — o —

[eaceoneps =] [ -
Input datasets Attributes to use

Input dataset Attribute to use
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Trend analysis

You may be interested in mapping a trend, or you may wish to
remove a trend from the dataset before using kriging. The Trend
Analysis tool can help identify global trends in the input dataset.

Tools (Pan, East-West North—South
Zoom, etc.) trend line trend line

¥ Legend

Fiotation Angles

Location:  0°
— 30 Graph —

Each line represents
the location and
value (height) of
each data point.

Angles of

Harizontsl: 1207
Wertical: -11.5°

the display

Vertical control

= Map axis
’?
Fotate: | Lacations 52 (N DEEN T Horizontal control
Perspective: 1] mmi——— Perspective
Tip: Click or drag over points to select Add to Layout Control
- Gitaph Dpiions — Draw options
= Mumber of Grid Lines
I Projected D :
 Pervopoies |2 8 ¥ 2 b
7 Stoks z [ H raw
[V Ases
nput Data Points arameters
[ Irou Date P Gidlinewid [T & P
-~ DataSource
Layer: Attribute:
Ica,nznne,pls I ﬂ Mj‘

Selected dataset Selected attribute

The Trend Analysis tool provides a three-dimensional
perspective of the data. The locations of sample points are
plotted on the x.y plane. Above each sample point, the value is
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given by the height of a stick in the z dimension. The unique
feature of the Trend Analysis tool is that the values are then
projected onto the x,z plane and the y,z plane as scatter plots.
This can be thought of as sideways views through the three-
dimensional data. Polynomials are then fit through the scatter
plots on the projected planes. An additional feature is that you
can rotate the data to isolate directional trends through the
values. There are a host of other features that allow you to rotate
and vary the perspective of the whole image, change size and
color of points and lines, remove planes and points, and select
the order of the polynomial that is fit to the scatter plots. In the
diagram below, the data was rotated 25 degrees clockwise, and
second-order polynomials were fit to the scatter plots. There
appears to be a strong quadratic trend on the back panel (given
by the green line), with values starting low, rising up, and then
dropping back down. The trend on the right panel (given by the
blue line) appears more linear and gradual.
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Semivariogram/Covariance cloud

The semivariogram/covariance cloud shows the empirical
semivariogram (half of the difference squared) and covariance for
all pairs of locations within a dataset and plots them as a function
of the distance between the two locations.

Semivariogram points
representing pairs of
sample locations

Directional
parameters

nce Cloud

Semivariogram | Covarance

o 1.44 288 432 576 72 a.64 10.08 11.52

Distance, h10™°
Tip:  Click ar drag over pairs to select Add ta Layout

— # Semivariogram/Covariance Suface
-B-.Qm E?I
(T 1T Angle Direction: ID.D E
0001145
B8 AT Angle Tolerance: |45.D E 4
S Bandwidh (ot [24 [
l5zELE LagSies:  [113570
m Mumber of Lags: ITE
-~ Data Sourc
Layer: Attribute:
Ica_nzone_pts l j IDZDNE l j
Semivariogram  Selected Selected
surface dataset attribute
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Let z(s)) denote the value at the ith location in a dataset.

_gl.....,i"

= F1 (20KE

5 B calomia?

A

(]
Shagn
LATITUDE 36043
LONGITUDE A2
ELEVATION 1
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Then the empirical semivariogram for the (i,j)th pair is simply 0.5*
(2(s;)—z(s,))’, and the empirical covariance is the cross-product
(z(s;)—z)(z(s;)—Z). where 7 is the average of the data. The
semivariogram/covariance cloud can be used to examine the local
characteristics of spatial autocorrelation within a dataset and look
for outliers. The semivariogram cloud looks like this:

S emivariogram | Covariance |

576 72
Distance, b 10"
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where each red dot is the empirical semivariogram (half of the
difference squared plotted relative to the separation distance)
between a pair of locations in the dataset. You can brush dots
and see the linked pairs in ArcMap.

A Semivariogram Surface with Search Direction capabilities is also
given. The values in the semivariogram cloud are put into bins
based on the direction and distance between a pair of locations.
These bin values are then averaged and smoothed to produce a
surface of the semivariogram. On the right, a color ramp is given
along with the values on the borders between color transitions.
The extent of the semivariogram surface is controlled by Lag Size
and Number of Lags. (See Chapter 3, “The principles of
geostatistical analysis’, for additional discussions on the
semivariogram surface, bins, and lags.)

You can view subsets of values in the semivariogram cloud by
clicking on search direction and then clicking on the direction
controller to resize it or change its orientation. You can also click
on the arrow to temporarily hide this part of the tool.

— # SemivanogramsCovanance Suface

-EI-.IBEH E?I
[l e

IV {shew Search Direction;

=

Angle Direchiorn:
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You select the dataset and attribute using the following:

# Data Source
Layer: Attribute:

=] [ozonE =l

ca_ozone_pts
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where OZONE is the attribute field containing the ozone
concentration. You can click on the arrow to temporarily hide this
part of the tool.
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The crosscovariance cloud

The crosscovariance cloud shows the empirical crosscovariance
for all pairs of locations between two datasets and plots them as a
function of the distance between the two locations.

Crosscovariance points
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Let z(s,) denote the value at the ith location in dataset 1, and let
m(t) denote the value at the jth location in dataset 2.
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Then the empirical crosscovariance for the (7.j)th pair is simply
the cross-product, (z(s,) - z)( y(t;)—-y):

where 7z and y are the averages of the first and second datasets,
respectively. The crosscovariance cloud can be used to examine
the local characteristics of spatial correlation between

two datasets, and it can be used to look for spatial shifts in
correlation between two datasets. The crosscovariance cloud
looks like this:

Crogzcovaniance |

i i i i
144 288 432 576 72 864 1008 1152
Distance, b 10"
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where each red dot is the empirical crosscovariance between a
pair of locations in each dataset. You can brush dots and see the
linked pairs in ArcMap. (In order to differentiate which of the
pairs came from which dataset, set a different selection color in
the properties dialog box of each dataset.)

A Covariance Surface with Search Direction capabilities is also
given. The values in the crosscovariance cloud are put into bins
based on the direction and distance between a pair of locations.
These bin values are then averaged and smoothed to produce a
surface of the crosscovariance. On the right, a color ramp is given
along with the values on the borders between color transitions.
The extent of the crosscovariance surface is controlled by Lag
Size and Number of Lags. (See Chapter 3, “The principles of
geostatistical analysis’, for additional discussions on the
semivariogram surface, bins, and lags.)

You can view subsets of values in the crosscovariance cloud by
checking Show Search Direction and then clicking on the
direction controller to resize it or change its orientation. You can
also click the arrow to temporarily hide this part of the tool.

— » Crozzcovariance Surface
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Examining the distribution of the data

Certain kriging methods work best if the data is approximately
normally distributed (a bell-shaped curve), which has a
probability density function that looks like this:

0.4
0.3

0.2

Density

0.17

0.0

Value

In particular, quantile and probability maps using ordinary, simple,
and universal kriging assume that the data comes from a normal
distribution.

As we discussed in Chapter 3, kriging also relies on the
assumption of stationarity. This assumption requires, in part, that
all data values come from distributions that have the same
variability. We often observe in nature that when the values
increase, so does their variability. Transformations can be used to
make your data normally distributed and satisfy the assumption
of equal variability for your data.

The histogram and Normal QQPlot allow the use of several
transformations including the Box—Cox (also known as power
transformation), logarithmic, and arcsine (see Chapter 7, ‘Using
analytical tools when generating surfaces’, for more details). The
Box—Cox transformation is Y(s) = (Z(s)"- 1)/ A for L # 0. For an
instance when you would use this transformation, suppose that
your data is composed of counts of some phenomenon. For these

ExPLORATORY SpPATIAL DATA ANALYSIS

types of data, the variance is often related to the mean. That is, if
you have small counts in part of your study area, the variability in
that local region will be smaller than the variability in another
region where the counts are larger. In this case, it is well known
that if you first take the square root transformation of all of your
data, it will help to make the variances more constant throughout
your study area, and it often makes the data appear normally
distributed as well. The square root transformation occurs when A
= Y. The log transformation, which is usually considered part of
the Box—Cox transformations when A = 0, Y(s) = In(Z(s)) for Z(s) >
0, and ‘In’ is the natural logarithm. The log transformation is often
used where the data has a positively skewed distribution and
there are some very large values. These large values may be
localized in your study area, and the log transformation will help
to make the variances be more constant and normalize your data.
A positively skewed distribution looks like this:

0.3

0.0

Value

The arcsine transformation is Y(s) = sin"'(Z(s)) for Z(s) between 0
and 1. The arcsine transformation can be used for data that is a
proportion (or percentage). Often, when data is a proportion, the
variance is smallest near 0 and 1 and largest near 0.5. The arcsine
transformation will help to make the variances more constant
throughout your study area and often makes the data appear
normally distributed as well.

95



You can use the histogram and Normal QQPlots to see what
transformations, if any, are needed to make your data more
normally distributed. The same transformation will likely equalize
variances as well, helping to satisfy the stationarity assumption.

Using the Histogram tool to examine distributions

With the Histogram tool you can easily examine the shape of the
distribution by direct observation. By looking at the mean and
median statistics, you can also determine the center location of
the distribution. Notice in the image below that the shape of the
histogram looks bell shaped, and since the mean and median
values are very close, this distribution is close to normal. You can
also highlight the extreme values in the tail of the histogram and
see how they are spatially distributed in the landscape. In the
image below for ozone data, the high values are located in urban
areas, as expected.
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If your data is highly skewed, you can test the effects of a
transformation on your data. The diagram below shows a skewed
distribution before a transformation is applied.
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A log transform is applied to the skewed data and, in this case,
the transformation makes the distribution close to normal.
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Understanding distributions with the QQPIlot

For two identical distributions, the General QQPlot will be a
straight line. Therefore, comparing this line with the points on the
Normal QQPlot provides an indication of univariate normality. If
the data is asymmetric (i.e., far from normal), the points will
deviate from the line.

In the diagram below, the quantiles of the standard normal
distribution are plotted in the Normal QQPlot on the x-axis, and
the quantiles of the dataset are plotted on the y-axis. You can see
that the plot is close to a straight line. The main departure from
this line occurs at high values of ozone concentration. The
Normal QQPlot tool allows you to select the points that do not
fall on a straight line. The locations of the selected points are
then highlighted in the ArcMap data view. (They are seen here to
concentrate in one small area around Los Angeles.)
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The same dataset that was transformed in the previous histogram
example is also transformed in the Normal QQPlot in the images
below. Notice in the first image how the points stray greatly from
the straight line.
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However, as can be seen in the image below, when the log

transformation is applied to the dataset, the points lie close to the

straight line.
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Examining the
distribution of
your data

The ESDA tools help you
examine the distribution of your
data.

You are looking to see if your
data is normally distributed (a
bell-shaped curve). The mean
and median will be similar in a
normal distribution, the
skewness should be near zero,
and the kurtosis should be
near 3.

If the data is highly skewed,
you may choose to transform it
to see if you can make it normal.
Care should be taken while
transforming data when
creating a surface because the
predictions will be back-
transformed, and this back
transformation gives approxi-
mately unbiased predictions
with an approximate kriging
standard error.

Tip
The QQPIlot

The points will be close to a
straight line if the data is normally
distributed.
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Examining the
distribution with the
Histogram tool

1. Click on the point feature
layer in the ArcMap table of
contents that you wish to
explore.

2. Click on the Geostatistical
Analyst toolbar, click Explore
Data, then click Histogram.
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Exploring the distribution
through the QQPlot

1. Click on the point feature
layer in the ArcMap table of
contents that you wish to
explore.

2. Click on the Geostatistical
Analyst toolbar, click Explore
Data, then click Normal
QQPlot.
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Looking for global and local outliers

A global outlier is a measured sample point that has a very high
or a very low value relative to all of the values in a dataset. For
example, if 99 out of 100 points have values between 300 and 400,
but the 100th point has a value of 750, the 100th point may be a
global outlier.

A local outlier is a measured sample point that has a value that is
within the normal range for the entire dataset, but if you look at
the surrounding points, it is unusually high or low. For example,
the diagram below is a cross section of a valley in a landscape.
However, there is one point in the center of the valley that has an
unusually high value relative to its surroundings, but it is not
unusual compared to the entire dataset.

It is important to identify outliers for two reasons: they may be
real abnormalities in the phenomenon, or the value might have
been measured or recorded incorrectly.

If an outlier is an actual abnormality in the phenomenon, this may
be the most significant point of the study and for understanding
the phenomenon. For instance, a sample on the vein of a mineral
ore might be an outlier and the location that is most important to a
mining company.

If outliers are caused by errors during data entry that are clearly
incorrect, they should either be corrected or removed before
creating a surface. Outliers can have several detrimental effects
on your prediction surface including effects on semivariogram
modeling and the influence of neighboring values.

ExPLORATORY SpPATIAL DATA ANALYSIS

Looking for outliers through the histogram

The histogram tool enables you to select points on the tail of the
distribution. The selected points are displayed in the ArcMap
data view. If the extreme values are isolated locations (i.c.,
surrounded by very different values), then they may require
further investigation and, if necessary, be removed.
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In the example above, the high ozone values are not outliers and,
therefore, they should not be removed from the dataset.

Identifying outliers through the semivariogram/
covariance cloud

If you have a global outlier with an unusually high value in your
dataset, all pairings of points with that outlier will have high
values in the semivariogram cloud, no matter the distance. This
can be seen in the semivariogram cloud in the image below.
Notice that there are two main strata of points in the
semivariogram. If you brush points in the upper strata, as
demonstrated in the image below, you can see in the ArcMap
view that all of these high values come from pairings with a single
location—the global outlier. Thus, the upper stratum of points
has been created by all of the locations pairing with the single
outlier, and the lower stratum is comprised of the pairings among
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the rest of the locations. When you look at the histogram, which
is also in the image below, you can see one high value on the
right tail of the histogram, again identifying the global outlier.
This value was probably entered incorrectly and should be
removed or corrected.
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When there is a local outlier, the value will not be out of the range
of the entire distribution but will be unusual relative to the
surrounding values. In the image below, you can see that a group
of pairs of locations that are close together have a high
semivariogram value (they are to the far left on the x-axis,
indicating that they are close together, and high on the y-axis,
indicating that the semivariogram values are high). When these
points are brushed, you can see that all of these points are
pairing to a single location. When you look at the histogram, you
can see that the distribution is normal and that there is no single
value that is unusual. The location that is in question is
highlighted in the lower tail of the histogram and is pairing with
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higher surrounding values (see the highlighted points in the
histogram). This location may be a local outlier. Further
investigation must be made.
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Looking for outliers through Voronoi mapping

Voronoi maps created using the cluster and entropy methods can
be used to help identify possible outliers.

Entropy values provide a measure of dissimilarity between
neighboring cells. In nature you would expect that things closer
together are more likely to be more similar than things farther
apart. Therefore, local outliers may be identified by areas of high
entropy.

The cluster method identifies those cells that are dissimilar to
their surrounding neighbors. You would expect the value
recorded in a particular cell to be similar to at least one of its
neighbors. Therefore, this tool may be used to identify possible
local outliers.
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Identifying global
and local outliers

To identify a global outlier, look
for unusual high or low values
in the histogram and

two distinct horizontal group-
ings of points in the semivari-
ogram cloud. For local outliers,
there will be high semivariogram
values associated with a single
point at close distances in the
semivariogram cloud.

Both global and local outliers
can have detrimental effects on
your prediction surface by
changing the semivariogram
model and influencing the
prediction values.

See Chapter 3, ‘The principles of
geostatistical analysis’, for an
additional discussion on outliers.

EXPLORING SPATIAL DATA ANALYSIS

Identifying global outliers
using the Histogram tool

1. Click on the point or polygon
feature layer in the ArcMap
table of contents that you
wish to explore.

2. Click on the Geostatistical
Analyst toolbar, click Explore
Data, then click Histogram.

O s L2

Looking for global
outliers through the
Semivariogram/
Covariance Cloud

1. Click on the point or polygon
feature layer in the ArcMap
table of contents that you
wish to explore.

2. Click on the Geostatistical
Analyst toolbar, click Explore
Data, then click Semivari-
ogram/Covariance Cloud.
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Finding local outliers
using Voronoi map

1. Click on the point or polygon [D2B& | " 8% n - Fhm 3| & W] |t |

: : —
feature layer in the ArcMap o r"_‘;:':::.”“‘ SEE';."
table of contents that you N /==
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Looking for global trends

A surface may be made up of two main components: a fixed global
trend and random short-range variation. The global trend is
sometimes referred to as the fixed mean structure. Random short-
range variation (sometimes referred to as random error) can be
modeled in two parts: spatial autocorrelation and the nugget
effect.

If you decide a global trend exists in your data, then you must
decide how to model it. Whether you use a deterministic method
or a geostatistical method to create a surface usually depends on
your objective. If you wish to model just the global trend and
create a smooth surface, you may use a global or local polynomial
interpolation method to create a final surface (see Chapter 3, “The
principles of geostatistical analysis’, and Chapter 5,
‘Deterministic methods for spatial interpolation’). However, you
may wish to incorporate the trend in a geostatistical method,
remove it, and then model the remaining component as random
short-range variation. The main reason to remove a trend in
geostatistics is to satisfy stationarity assumptions (see Chapter 3,
‘The principles of geostatistical analysis’).

If you remove the trend in a geostatistical method, you will be
modeling the random short-range variation in the residuals. The
trend will be automatically added back so that you obtain
reasonable predictions.

If you decompose your data into trend plus short-range variation,
you are assuming that the trend is fixed and that the short-range
variation is random. Here, random does not mean
“unpredictable”, but rather that it is governed by rules of
probability that include dependence on neighboring values,
which is called autocorrelation. The final surface is the sum of the
fixed and random surfaces. That is, think of adding two layers:
one that never changes, while the other changes randomly. For
example, suppose that you are studying biomass. If you were to
go back in time, say 1,000 years, and start over to the present day,

ExPLORATORY SpPATIAL DATA ANALYSIS

the global trend part of the biomass surface would be unchanged.
However, the short-range variation part of the biomass surface
would change. The unchanging global trend could be due to fixed
effects such as topography. Short-range variation could be
caused by less permanent features that could not be observed
through time, such as precipitation, so it is assumed it is random
and likely to be autocorrelated.

If you can identify and quantify the trend, you will gain a deeper
understanding of your data and thus make better decisions. If
you remove the trend, you will be able to more accurately model
the random short-range variation because the global trend will
not be influencing your spatial analysis.

Examining the global trend through trend analysis

The Trend tool raises the points above a plot of the study site to
the height of the values of the attribute of interest in a three-
dimensional plot of the study area. The points are then projected
in two directions (by default, north and east) onto planes that are
perpendicular to the map plane. A polynomial curve is fit to each
projection. The entire map surface can be rotated in any direction,
which also changes the direction represented by the projected
planes. If the curve through the projected points is flat, no trend
exists, as is shown with the blue line in the right projected plane
in the image below.
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If there is a definite pattern to the polynomial, such as an upward
curving model as shown with the green line in the back-left
projected plane in the diagram below, this suggests a global trend
in the data.
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If you rotate the sample points 30 degrees in the example below,
the trend is accentuated and demonstrates a strong upside-down
“U” shape (see image below). This suggests that a second-order
polynomial can be fit to the data (see Chapter 3, ‘“The principles of
geostatistical analysis’, and Chapter 5, ‘Deterministic methods for
spatial interpolation’). Through the refinement allowed in the
Trend Analysis tool, the true direction of the trend can be
identified. In this case, its strongest influence is from the
southeast to the northwest.
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Identifying global trends
with the Trend Analysis
tool

Looking for
global trends

To 1dentify a global trend in 1
your data, look for a curve that

is not flat on the projected

plane.

. Click on the point or polygon
feature layer in the ArcMap
table of contents that you
wish to explore.

If you have a global trend in 2
your data, you may want to

create a surface using one of

the deterministic interpolation
methods (e.g., global or local
polynomial), or you may wish to
remove the trend before

modeling the semivariogram/
covariance for kriging.

See Chapter 5, ‘Deterministic
methods for spatial interpolation’,
for discussions on the deterministic
interpolation techniques and
Chapter 7, ‘Using analytical tools
when generating surfaces’, for
additional information on trends.

. Click on the Geostatistical
Analyst toolbar, click Explore
Data, then click Trend
Analysis.

ExPLORING SpPATIAL DATA ANALYSIS

focicn fock irdom 1ot
|IDE@&8 ' B o

D e P

=t

1 & Lapers G feomastcal wirmd
D coomres ] s
- | 4 Comae Siinehn.
- T f
o /
[
v
] =
s _.. .
...."\" :;t::. ..
A e,
L5 Y
o o
P
\ * iy
.\_‘
| %
""k T
's:,““:-'l.' ) ot I )
ek,
o Yo
v
P
S0l Ny
| D kO A A 8 7 g A= 5= 4= =~
B VMG RS T b
105



Examining spatial autocorrelation and directional variation

By exploring your data, you will gain a better understanding of
the spatial autocorrelation among the measured values. This
understanding can be used to make better decisions when
choosing models for spatial prediction.

Spatial autocorrelation

You can explore the spatial autocorrelation that is present in your
data by examining the different pairs of sample locations. By
measuring the distance between two locations and then plotting
half the difference squared between the values at the locations, a
semivariogram cloud is created. On the x-axis is the distance
between the locations, and on the y-axis is the difference of their
values squared. Each dot in the semivariogram represents a pair
of locations, not the individual locations on the map.

If data is spatially dependent, pairs of points that are close
together (on the far left of the x-axis) should have less difference
(be low on the y-axis). As points become farther away from each
other (moving right on the x-axis), in general, the difference
squared should be greater (moving up on the y-axis). Often there
is a certain distance beyond which the squared difference levels
out. Pairs of locations beyond this distance are considered to be
uncorrelated.

A fundamental assumption for geostatistical methods is that any
two locations that are a similar distance and direction from each
other should have a similar difference squared. This relationship
is called stationarity (see Chapter 3, “The principles of
geostatistical analysis’, and Chapter 7, ‘Using analytical tools
when generating surfaces’).

Spatial autocorrelation may depend only on the distance between
two locations, which is called isotropy. However, it is possible
that the same autocorrelation value may occur at different
distances when considering different directions. Another way to
think of this is that things are more alike for longer distances in
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some directions than in other directions. This directional
influence is seen in semivariograms and covariances and is called
anisotropy.

It is important to explore for anisotropy so that if you detect
directional differences in the autocorrelation, you can account for
them in the semivariogram or covariance models. This, in turn,
has an effect on the geostatistical prediction method.

Exploring spatial structure through the
Semivariogram/Covariance Cloud tool

The Semivariogram/Covariance Cloud tool can be used to
investigate autocorrelation in your dataset. Let us consider the
Ozone dataset. Notice in the following figure that you can select
all pairs of locations that are a certain distance apart by brushing
all points at that distance in the semivariogram cloud.
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Looking for directional influences with the
Semivariogram/Covariance Cloud tool

In the previous example you used the Semivariogram/Covariance
Cloud tool to look at the general autocorrelation of the data.
However, looking at the variogram surface, it appears that there
might be directional differences in the semivariogram values.
When you click on the Search Direction and set the angles and
bandwidths as in the following figure, you can see that the
locations linked together have very similar values because the
semivariogram values are relatively low.

EXPLORATORY SPATIAL DATA ANALYSIS
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Now, if you change the direction of the links, as in the following
figure, you can see that some linked locations have values that
are quite different, which result in the higher semivariogram
values. This indicates that locations separated by a distance of
about 0.9 x 10° meters in the 70/250-degree orientation are, on
average, more different than locations in the 160/340-degree
orientation. Recall that when variation changes more rapidly in
one direction than another it is termed anisotropy. When
interpolating a surface using the Geostatistical Analyst Wizard,
you can use semivariogram models that account for anisotropy.
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Examining
spatial structure
and directional
variation

Examining spatial structure
allows you to investigate the
spatial autocorrelation of the
sample points and explore if
there are any directional
influences.

Look for pairs of points that are
close together (to the left on
the x-axis in the semivariogram),
which should be more alike (low
on the y-axis). As the pairs are
farther apart (moving to the
right on the x-axis), the variance
should be greater (higher on the
y-axis).

If the pairs of points in the
semivariogram produce a
horizontal straight line, there
may be no spatial correlation in
the data, thus it would be
meaningless to create a surface.

See Chapter 7, ‘Using analytical
tools when generating surfaces’,
for further discussion on semivari-
ogram modeling and directional
trends.
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Understanding spatial
structure

1. Click on the point or polygon
feature layer in the ArcMap
table of contents that you
wish to explore.

2. Click on the Geostatistical
Analyst toolbar, click Explore
Data, then click Semivari-
ogram/Covariance Cloud.
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Understanding covariation among multiple datasets

Exploring covariation among multiple datasets

The Crosscovariance Cloud tool can be used to investigate
cross-correlation between two datasets. Consider the Ozone
(dataset 1) and NO, (dataset 2) datasets. Notice that the cross-
correlation between NO, and Ozone seems to be asymmetric. The
dark red areca shows that the highest correlation occurs when
taking NO, values that are shifted to the west of the Ozone
values. The Search Direction tool will help identify the reasons
for this. When it is pointed toward the west, the following is
obtained:

Cross-
Covariance
Cloud

L,

0 A6 63 We  t2e e wm B2 S
Dutarca,n40

=
U 031 062 083 124 155 185 217 248
Distance, h 10

and when it is pointed toward the east, the following is obtained:

Covarisncs |

. Cross-

Covariance
Cloud

0 031 062 083 124 155 18 217 248
Distarice, h 10~

It is clear that there are higher covariance values when the Search
Direction is pointed toward the west. Now you can examine which
pairs contribute the high values to the crosscovariance. The
Crosscovariance Cloud tool and Histogram tool are used in the
figure below to explore these features. If you use the Search
Direction tool pointed in the west direction and brush some of the

ExPLORATORY SpPATIAL DATA ANALYSIS

high crosscovariance points in the cloud, you see that most of
the pairs of data are located in the Los Angeles area. You also can
see that the values of NO, are shifted to the west of the ozone
values. From the histograms, you can see that the high
covariance values occur because, for all pairs of data, both NO,
(blue bars in NO, histogram) and Ozone (orange bars in Ozone
histogram) are above their respective means. So you have learned
that much of the asymmetry in the crosscovariance is due to a
shift in the high values for NO, to the west of the high values of
Ozone in the Los Angeles area. Notice that you could also obtain
high crosscovariance values whenever selected pairs from both
datasets have values that are below their respective means. In
fact, in general, you would expect to see high crosscovariance
values from pairs of locations that are both above their respective
means and below their respective means, and these would come
from several regions in the study area. By exploring this data, you
have identified that the crosscovariance in the Los Angeles area
seems to be different from that in the rest of the State (see the
following page). Using this information, you might decide that the
results of the crosscovariance cloud are due to a nonconstant
mean in the data and try to remove trends from both NO, and
Ozone, or you might stratify the study area into regions and do
kriging and cokriging within regions.
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Exploring the correlation between two datasets
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Data pairing for the Los Angeles area with high cross-correlation between ozone and nitrogen dioxide
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Understanding
spatial
covariation
among multiple
datasets

The tool allows you to examine
the crosscovariance cloud
between two datasets.

Check if the Covariance Surface
i1s symmetric and use the Search
Direction tool to see if the
crosscovariance cloud 1s similar
in all directions.

If you see that there is a spatial
shift in the values of two
datasets, or unusually high
crosscovariance values, you
can investigate where these
occur. If you note that unusual
crosscovariance values occur
for isolated locations or within
restricted areas in your study
site, you may want to take some
action such as investigating
certain data values, detrending
data, or stratifying your data.

ExPLORING SpPATIAL DATA ANALYSIS

Understanding spatial
covariation using the
Crosscovariance Cloud

1. Right-click on the point
feature layer in the ArcMap
table of contents identifying
the first layer in the
crosscovariance analysis
and click Properties.

2. Click on Selection.

3. Click on the symbol radio
button.

4. Click on the symbol.

5. Choose a color and size for
the selection.

Repeat steps 1-5 for the
second layer to be used in
the crosscovariance analysis,
but choose different selection
sizes and colors.

6. Highlight the layers in the
ArcMap table of contents by
holding down the Ctrl key
while left-clicking on the two
layers.

7. Click on Geostatistical
Analyst, click Explore Data,
and click Crosscovariance
Cloud. »
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8.

10.
11.

12.

Click on the appropriate
attribute for each layer in the
Attribute dropdown list.

Input the Lag Size and
Number of Lags.

Check Search Direction.

Click on the center blue line
in the Covariance Surface
and spin the search direction
until it points to the angle
where you believe there is a
shift; in this example it is

270 degress (given in the
angle direction box).

Brush some points in the
covariance cloud by holding
down the left mouse button
and dragging it over some of
the points. Examine where,
on the ArcMap map, the
pairs of points are that were
brushed.
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Deterministic methods for spatial interpolation

INTHIS CHAPTER

How Inverse Distance Weighted
interpolation works

Creating a surface using Inverse
Distance Weighted interpolation

How global polynomial
interpolation works

Creating a map using global
polynomial interpolation

How local polynomial
interpolation works

Creating a surface using local
polynomial interpolation

How radial basis functions
interpolation works

Creating a surface using radial
basis functions interpolation

There are two main groupings of interpolation techniques: deterministic and
geostatistical. Deterministic interpol ation techniques create surfaces from
measured points, based on either the extent of similarity (e.g., Inverse
Distance Weighted) or the degree of smoothing (e.g., radial basis functions).
Geostatistical interpolation techniques(e.g., kriging) utilize the statistical
properties of the measured points. The geostatistical techniques quantify the
spatial autocorrelation among measured points and account for the spatial
configuration of the sample points around the prediction [ocation.
Geostatistical techniqueswill be discussed in Chapter 6, ‘ Creating a surface
with geostatistical techniques'.

Deterministic interpolation techniques can be divided into two groups: global
and local. Global techniques calculate predictions using the entire dataset.

L ocal techniques cal cul ate predictions from the measured points within
neighborhoods, which are smaller spatial areas within the larger study area.
Geostatistical Analyst providesthe global polynomial asaglobal interpolator
and the Inverse Distance Weighted, local polynomial, and radial basis
functionsaslocal interpolators.

A deterministic interpolation can either force the resulting surface to pass
through the data values or not. An interpolation technique that predicts a
valueidentical to the measured value at a sampled location is known as an
exact interpolator. An inexact interpolator predicts a value that is different
from the measured value. The latter can be used to avoid sharp peaks or
troughs in the output surface. Inverse Distance Weighted and radial basis
functionsare exact interpolators, while global and local polynomial are
inexact.
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How Inverse Distance Weighted interpolation works

Inverse Distance Weighted interpolation explicitly implements the
assumption that things that are close to one another are more
alike than those that are farther apart. To predict a value for any
unmeasured location, IDW will use the measured values
surrounding the prediction location. Those measured values
closest to the prediction location will have more influence on the
predicted value than those farther away. Thus, IDW assumes that
each measured point has a local influence that diminishes with
distance. It weights the points closer to the prediction location
greater than those farther away, hence the name inverse distance
weighted.

The general formula is:

where:
Zs,) 1s the value we are trying to predict for location s,

N is the number of measured sample points surrounding the
prediction location that will be used in the prediction.

M, are the weights assigned to each measured point that we are
going to use. These weights will decrease with distance.

Z(s) is the observed value at the location s,

The formula to determine the weights is the following:

N N
A=d 1Y dy Y4 =1,
i=1 i=1
As the distance becomes larger, the wight is reduced by a factor
of p.
The quantity @, is the distance between the prediction location,

s,» and each of the measured locations, s,.
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The power parameter p influences the weighting of the measured
location’s value on the prediction location’s value; that is, as the
distance increases between the measured sample locations and
the prediction location, the weight (or influence) that the
measured point will have on the prediction will decrease
exponentially.

The weights for the measured locations that will be used in the
prediction are scaled so that their sum is equal to 1.

The power function

The optimal p value is determined by minimizing the root-mean-
square prediction error (RMSPE). The RMSPE is the statistic that
is calculated from cross-validation (see Chapter 7, ‘Using
analytical tools when generating surfaces’). In cross-validation,
each measured point is removed and compared to the predicted
value for that location. The RMSPE is a summary statistic
quantifying the error of the prediction surface. The Geostatistical
Analyst tries several different powers for IDW to identify the
power that produces the minimum RMSPE. The diagram below
shows how the Geostatistical Analyst calculates the optimal
power. The RMSPE is plotted for several different powers for the
same dataset. A curve is fit to the points (a quadratic local
polynomial equation), and from the curve the power that provides
the smallest RMSPE is determined as the optimal power.

RMSPE

v

I
Optimal
value
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Weights are proportional to the inverse distance raised to the
power p. As a result, as the distance increases, the weights
decrease rapidly. How fast the weights decrease is dependent on
the value for p. If p = 0, there is no decrease with distance, and
because each weight 2. will be the same, the prediction will be the
mean of all the measured values. As p increases, the weights for
distant points decrease rapidly as can be seen in the diagram
below. If the p value is very high, only the immediate few
surrounding points will influence the prediction.
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The Geostatistical Analyst uses power functions greater than 1. A
p =2 is known as the inverse distance squared weighted
interpolation.

DETERMINISTIC METHODS FOR SPATIAL INTERPOLATION

The search neighborhood

Because things that are close to one another are more alike than
those farther away, as the locations get farther away, the
measured values will have little relationship with the value of the
prediction location. To speed calculations we can discount to
zero these points that are farther away with little influence. As a
result, it is common practice to limit the number of measured
values that are used when predicting the unknown value for a
location by specifying a search neighborhood. The specified
shape of the neighborhood restricts how far and where to look for
the measured values to be used in the prediction. Other
neighborhood parameters restrict the locations that will be used
within that shape. In the following image, five measured points
(neighbors) will be used when predicting a value for the location
without a measurement, the yellow point.
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The shape of the neighborhood is influenced by the input data
and the surface you are trying to create. If there are no directional
influences on the weighting of your data, then you will want to
consider points equally in all directions. To do so, you will
probably want the shape of your neighborhood to be a circle.
However, if there is a directional influence on your data, such as a
prevailing wind, then you may want to adjust for it by changing
the shape of your neighborhood to be an ellipse with the major
axis parallel with the wind. The adjustment for this directional
influence is justified because you know that locations upwind
from a prediction location are going to be more similar at
distances farther away than locations that are perpendicular to
the wind.

Once a neighborhood shape is specified, you can also restrict
which locations within the shape should be used. You can define
the maximum and minimum number of locations to use, and you
can divide the neighborhood into sectors. If you divide the
neighborhood into sectors, then the maximum and minimum
constraints will be applied to each sector. There are several
different sectors that can be used and are displayed below.

One sector—Jl::lll I % ——Eight sectors

Ellipse with four
sectors
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The points highlighted in the data view of the Searching
Neighborhood dialog box identify the locations and the weights
that will be used for predicting a location at the center of the
ellipse. The neighborhood is contained within the displayed
ellipse. In the following example, two points (red) in the sector to
the west and one point in the southern sector will be weighted
more than 10 percent. In the northern sector, one point (yellow)
will be weighted between 3 percent and 5 percent.
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The surface calculated using IDW depends on the selection of a
power parameter (p) and the neighborhood search strategy. IDW
is an exact interpolator, where the maximum and minimum values
(see diagram above) in the interpolated surface can only occur at
sample points. The output surface is sensitive to clustering and
the presence of outliers. IDW assumes that the surface is being
driven by the local variation, which can be captured through the
neighborhood.

The sample
points

The Inverse
Distance Weighted
fitted surface

DETERMINISTIC METHODS FOR SPATIAL INTERPOLATION

117



Creating a map
using IDW

IDW assumes that the surface
is being driven by local
variation. It works better if
sample points are evenly
distributed throughout the area
and if they are not clustered.
The important parameters are
the search neighborhood
specifications, the power
parameter ‘p’, and the anisot-
ropy (see Chapter 3, “The
principles of geostatistical
analysis”) factor if one exists.

Using a database file
instead of a point layer

A database file can be used in place
of an ArcMap layer by clicking the
Browse button and navigating to
the desired database file on the
Choose Input Data and Method
dialog box.

For additional information on
setting the parameters for the
Searching Neighborhood dialog
box and understanding the Cross
Validation dialog box, see
Chapter 7, ‘'Using analytical tools
when generating surfaces’.
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Creating a prediction
map

1. Click on the point layer on
which to perform IDW in the
ArcMap table of contents.

2. Start the Geostatistical
Analyst.

3. Click the Attribute dropdown
menu and click the attribute
on which to perform IDW in
the Choose Input Data and
Method dialog box.

4. Click the Inverse Distance
Weighting method.

Click Next.

Specify the desired param-
eters in the IDW Set Param-
eters dialog box and click
Next.

7. Examine the results on the
Cross Validation dialog box
and click Finish.

8. Click on the Output Layer
Information dialog box and
click OK.

Geostatistical Wizard: Choose Input Data and Method HE
Dataset 1 | (T Walidation
puDate [oaconeps =] @ || metiss [ 5] ]
Algibuts: | OZONE K = e
%Pk [Shape = || e =l
YField  [Shape 52 [} BRARLE [ =

—

™ Use NODATA value

=) sz HEDATA walus:

Tip: Walidation creates a model for 4 subset of data and
predicts walugs using the rest o the lacatians.

About Inverse Distance Weighting

Lacal Polynorrial Interpolation
Riadial Basis Functions
Kiiging way ta take & fist lock ot an interpalated surface, Hawever, there is na assessment of

prediction erors. and

Inverse Distance Weighing [0 is a quick. deteministic interpolator that is sxact
There are very few decisions lo make regarding model parameters. It can be 3 good

can produce "bulls eyes” around data locations. There are
no assumptions equired of the data
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Creating training and test
datasets

When performing validation,

two datasets are used: a training
dataset and a test dataset. The
training dataset contains the
measured locations that will be
used to create an interpolation
model. The test dataset will be used
to validate the predictions. The
training dataset is entered as
Dataset I and the test dataset as
the Validation dataset. See
‘Performing validation on a
geostatistical layer created from a
subset’, in Chapter 9, to obtain
additional information on creating
subsets.

Using validation

Make sure that there are enough
data samples in the training set to
portray an accurate representation
of the surface. If the training set is
too small, abnormal data values
can skew the model parameters
and the output results.

For additional information on
setting the parameters for the
Searching Neighborhood dialog
box and understanding the Cross
Validation dialog box, see
Chapter 7, 'Using analytical tools
when generating surfaces’.

Creating a prediction
map using validation

1. Click on the point layer on
which to perform IDW in the
ArcMap table of contents.

2. Start the Geostatistical
Analyst.

3. Click the Attribute dropdown
menu and specify the field on
which to perfom IDW in the
Choose Input Data and
Method dialog box.

Check Validation.

Pick a point layer file in the
Input Data dropdown menu
or browse for the desired
layer.

6. Click the Attribute dropdown
menu and specify the field on
which to validate the IDW
interpolation within the
Choose Input Data and
Method dialog box.

7. Click the Inverse Distance
Weighting method.

Click Next.

Specify the desired param-
eters in the IDW Set Param-
eters dialog box and click
Next.

10. Examine the results on the
Cross Validation and
Validation dialog boxes and
click Finish.

11. Click on the Output Layer
Information dialog box and
click OK.

DETERMINISTICAL METHODS OF SPATIAL DATA INTERPOLATION

Geostatistical Wizard: Choose Input Data and Method
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How global polynomial interpolation works

Global polynomial interpolation fits a smooth surface that is
defined by a mathematical function (a polynomial) to the input
sample points. The global polynomial surface changes gradually
and captures coarse-scale pattern in the data.

Conceptually, global polynomial interpolation is like taking a
piece of paper and fitting it between the raised points (raised to
the height of value). This is demonstrated in the diagram below
for a set of sample points of elevation taken on a gently sloping
hill (the piece of paper is magenta).

But a flat piece of paper will not accurately capture a landscape
containing a valley. However, if you are allowed to bend the piece
of paper once, you will get a much better fit. Adding a term to the
mathematical formula produces a similar result, a bend in the
plane. A flat plane (no bend in the piece of paper) is a first-order
polynomial (linear). Allowing for one bend is a second-order
polynomial (quadratic), two bends a third-order (cubic), and so
forth, up to 10 in the Geostatistical Analyst. The following image
conceptually demonstrates a second-order polynomial fitted to a
valley.
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Rarely will the piece of paper pass through the actual measured
points, thus making global polynomial interpolation an inexact
interpolator. Some points will be above the piece of paper, and
others will be below. However, if you add up how much higher
each point is above the piece of paper and add up how much
lower each point is below the piece of paper, the two sums should
be similar. The surface, given in magenta, is obtained by using a
least-squares regression fit. The resulting surface minimizes the
squared differences among the raised values and the sheet of

paper.
When to use global polynomial interpolation

The result from global polynomial interpolation is a smooth
mathematical surface that represents gradual trends in the surface
over the area of interest.

Global interpolation is used for:

1. Fitting a surface to the sample points when the surface
varies slowly from region to region over the area of interest
(e.g., pollution over an industrial area).
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2. Examining and/or removing the effects of long-range or global
trends. In such circumstances the technique is often referred
to as trend surface analysis.

Global polynomial interpolation creates a slowly varying surface
using low-order polynomials that possibly describe some
physical process (e.g., pollution and wind direction). However, it
should be noted that the more complex the polynomial, the more
difficult it is to ascribe physical meaning to it. Furthermore, the
calculated surfaces are highly susceptible to outliers (extremely
high and low values, especially at the edges).
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Creating a map
using global
polynomial inter-
polation

Use global polynomial interpo-
lation when producing a
prediction map. It is best used
to fit a surface when the
attribute varies slowly over the
area of interest and for examin-
ing the effects of global trends
or trend surface analysis. The
surface 1s sensitive to outliers,
especially at the edges. The
attribute being modeled should
vary slowly over the area of
interest.
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Creating a prediction
map

1. Click on the point layer on
which to perform Global
Polynomial Interpolation in
the ArcMap table of contents.

2. Start the Geostatistical
Analyst.

3. Click the Attribute dropdown
menu and click the attribute
on which to perform Global
Polynomial Interpolation in
the Choose Input Data and
Method dialog box.

4. Click the Global Polynomial
Interpolation method and
click Next.

5. Specify the desired order of
polynomial in the Global
Polynomial Interpolation Set
Parameters dialog box and
click Next.

6. Examine the results on the
Cross Validation dialog box
and click Finish.

7. On the Output Layer Informa-
tion dialog box click OK.

Geostatistical Wizard: Choose Input Data and Method HE
Dataset 1 | T Validation
Input Data; [ca_ozone_pts ~ EI nput Dt - EI
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prediction emars and it may be too smaath. Locations at the edge of the data can
have a large effect on the surface. There are no assumptions required of the data

< Black I Mext > I Einish Cancel

Geostatistical Wizard - GP Interpolation: Step 1 of 2 - Set Parameters

o 1

e

ravaw

0.0465 0.087468 0107

012024 01736

<Back [ Mew> | Erish |

Cancel |

Using ARcGIS GEOSTATISTICAL ANALYST




How local polynomial interpolation works

Global polynomial interpolation fits a polynomial to the entire
surface. Local polynomial interpolation fits many polynomials,
each within specified overlapping neighborhoods. The search
neighborhood can be defined using the Searching Neighborhood
dialog box (see the Inverse Distance Weighted discussion earlier
in this chapter and discussions in Chapter 7, ‘Using analytical
tools when generating surfaces’). The shape, maximum and
minimum number of points to use, and the sector configuration
can be specified. Alternatively, a slider can be used to define the
width of the neighborhood in conjunction with a power parameter
that will, based on distance, decrease the weights of the sample
points within the neighborhood. Thus, local polynomial
interpolation produces surfaces that account for more local
variation.

A first-order global polynomial fits a single plane through the
data; a second-order global polynomial fits a surface with a bend
in it, allowing surfaces representing valleys; a third-order global
polynomial allows for two bends; and so forth. However, when a
surface has a different shape, such as is the case of a landscape
that slopes, levels out, and then slopes again, a single global
polynomial will not fit well. Multiple polynomial planes would be
able to represent the surface more accurately (see diagram below).

DETERMINISTIC METHODS FOR SPATIAL INTERPOLATION

Local polynomial interpolation fits the specified order (e.g., zero,
first, second, and third) polynomial using all points only within
the defined neighborhood. The neighborhoods overlap, and the
value used for each prediction is the value of the fitted
polynomial at the center of the neighborhood.

In the image below, a cross section of sample elevation data is
taken (a transect). In the first image, three neighbors are used (the
red points) to fit a first-order polynomial, a line (the red line), to
predict the unknown value for the location identified by the blue
point. A second location (the yellow point) is predicted by
another first-order polynomial in the right image below. It is very
close to the first location, and the same measured points are used
in the predictions; but the weights will be a little different, thus
the polynomial fit (the blue line) is slightly different.
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This process continues, centering on subsequent prediction
locations, fitting local polynomials to predict the values. The

two images below show two more arbitrary points being predicted
to create the final surface. The orange point is predicted from the
fitted polynomial (the green line) using the green measured
sample points. And the brown point is predicted from the light
purple polynomial.

In the two images below, two more polynomials are fit (the yellow
and gray lines) to predict two more locations (the bluish green
and green points).
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This process continues for each location. You can see how the
surface is created (the purple surface line) for the sample points
below.

The model is optimized by iteratively cross-validating the output
surfaces that are calculated using different parameters. The
optimal parameter is chosen to minimize the RMSPE similar to the
selection of the ‘p’ value in IDW.

When to use local interpolation

Global polynomial interpolation is good for creating smooth
surfaces and for identifying long-range trends in the dataset.
However, in earth sciences the variable of interest usually has
short-range variation in addition to long-range trend. When the
dataset exhibits short-range variation, local polynomial
interpolation maps can capture the short-range variation.

Local polynomial interpolation is sensitive to the neighborhood
distance. For this reason, you can preview the surface before
producing the output layer.

As with IDW, you can define a model that accounts for
anisotropy (refer to the IDW discussion earlier in this chapter).
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Creating a map
using local
polynomial
interpolation

Local polynomial interpolation
is not an exact interpolator. It
will produce a smooth surface.
It 1s best if the data exhibits
short-range variation.

For additional information on
setting the parameters for the
Searching Neighborhood dialog
box and understanding the Cross
Validation dialog box, see
Chapter 7, ‘Using analytical tools
when generating surfaces’.

Creating a prediction
map

1. Click on the point layer on
which to perform Local
Polynomial Interpolation in
the ArcMap table of contents.

2. Start the Geostatistical
Analyst.

3. Click the Attribute dropdown
menu and click the attribute
on which to perform Local
Polynomial Interpolation in
the Choose Input Data and
Method dialog box.

4. Click the Local Polynomial
Interpolation method.

Click Next.

Specify the desired param-
eters in the LP Interpolation
Set Parameters dialog box
and click Next.

7. Examine the results on the
Cross Validation dialog box
and click Finish.

8. On the Output Layer Informa-
tion dialog box, click OK.

DETERMINISTICAL METHODS OF SPATIAL DATA INTERPOLATION

Geostatistical Wizard: Choose Input Data and Method

[2]x]

Dataset 1| T Yaiidation
Input Data:  [c2_ozore_pts x| =& [ ot Ot 7| &
Aibute: [ SN AR | | 14
KField  [Shape = | #Ee [ =l
YFiekd:  [Shape | e [ =l
™ Use NODATA value J= | Use HEDATE valie
Tip: Yalidafion creates a mods for a subset of data and
priedlicts values using the rest of the locations:

Irwerss Distance Weighting

Global Polynomial Interpolation
Local Polpnomial Interpolalion
Fiadial Basic Functions

Kiiging

Cokiiging

About Lacal Polynomial Interpolation

Lacal Palpnamial [LP) is & moderately quick. deteministc interpolator that s smacth
finewact]. It s more flezitle thar the plobal polynomial methad. but there are more
patameter decisions. There is no assesement of prediction errors. The method provides
prediction surfaces that are comparable Lo kiging with measuiement eriors. Local
palynomial methads da ot allow you to investigate the autaconelstion of the data,
making it less flexible and more automatic than kiiging. There are no assumptions
equired of the dala

CEAo Mest » Einish Cancel

G eostatistical Wizard - LP Interpolation: Step 1 of 2 - Set Parameters [Standard Options)

Advanced Options »»
ElcheX ]

Global: 0%

J Power: [T [

100% :Local

Meighborhood

_—

ravaam

0057468 0107 012024

01736

0.0465
< Back I Negt > I Einish | Cancel |

125



How radial basis functions work

Radial basis functions (RBF) methods are a series of exact
interpolation techniques, that is, the surface must go through
each measured sample value. There are five different basis
functions: thin-plate spline, spline with tension, completely
regularized spline, multiquadric function, and inverse
multiquadric spline. Each basis function has a different shape and
results in a different interpolation surface. RBF methods are a
form of artificial neural networks.

RBFs are conceptually similar to fitting a rubber membrane
through the measured sample values while minimizing the total
curvature of the surface. The selected basis function determines
how the rubber membrane will fit between the values. The
diagram below demonstrates conceptually how an RBF surface
fits through a series of elevation sample values. Notice in the
cross section that the surface passes through the data values.
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Being exact interpolators, RBF methods differ from the global and
local polynomial interpolators, which are both inexact
interpolators that do not require the surface to pass through the
measured points. When comparing RBF to the IDW method,
another exact interpolator, IDW will never predict values above
the maximum measured value or below the minimum measured
value, as you can see in the cross section of a transect of sample
data below.

The sample

points

The Inverse
Distance
Weighted fitted
surface

The sample

points

The radial

basis functions
fitted surface
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However, RBFs can predict values above the maximum and below
the minimum measured values as in the cross section below.

The optimal parameter is determined using cross-validation in a
similar manner, as shown for IDW and local polynomial
interpolation (see the IDW discussion earlier in this chapter).

When to use RBFs

The RBFs are used for calculating smooth surfaces from a large
number of data points. The functions produce good results for
gently varying surfaces such as elevation.

The techniques are inappropriate when there are large changes in
the surface values within a short horizontal distance and/or when
you suspect the sample data is prone to error or uncertainty.

DETERMINISTIC METHODS FOR SPATIAL INTERPOLATION

The concepts behind RBFs

In Geostatistical Analyst, RBFs are formed over each data
location. An RBF is a function that changes with distance from a
location. For example, in the following figure there are

three locations, and the RBF for each location is given in a
different color.

z
1234567
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In this example, the RBF is simply the distance from each location,
so it forms an inverted cone over each location. If you take a
cross section of the x,z plane for y = 5 (the second figure above),
you will see a slice of each RBF. Now suppose that you want to
predict a value aty = 5 and x = 7. The value of each RBF at the
prediction location can be taken from the figure above, given by
the values ¢, ¢, and ¢ which simply depend on the distance
from each data location. The predictor is formed by taking the
weighted average w, @, + w,@, + w. @, +... Now, the question is,
how to determine the weights? So far, you have not used the data
values at all! The weights w,, w,, w_, and so on, are found by
requiring that, when the prediction is moved to a location with a
measured value, the data value is predicted exactly. This forms N
equations in N unknowns and can be solved uniquely. Thus, the
surface passes through the data values, making predictions exact.
The RBF shown above is a special case of the multiquadric RBF.
Geostatistical Analyst also allows you to use other RBFs such as
completely regularized splines, thin-plate splines, splines with
tension, and inverse multiquadric RBFs. Often, the difference
between these is not great, but you may have reasons to choose
one, or you can try several and use validation to pick one. Each
RBF has a parameter that controls the “smoothness™ of the
surface.

Radial Basiz Functions Wizard: Step 1 of 2 - Set Parameters

Femel Functions: Il:ornpletely Regularized Spline j Parameter: ID.DD141548 <-- Optimize Value I

For all methods except the inverse multiquadric, the higher the
parameter value, the smoother the map; the opposite is true for
the inverse multiquadric.
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Creating a map
using RBFs

RBFs are exact interpolators
that create smooth surfaces.
They produce good results for
gently varying surfaces.
Because predictions are exact,
RBFs can be locally sensitive to
outliers.

For additional information on
setting the parameters for the
Searching Neighborhood dialog
box and understanding the Cross
Validation dialog box, see
Chapter 7, ‘'Using analytical tools
when generating surfaces’.

Creating a prediction
map using RBFs

1.

o

Click on the point layer on
which to perform Radial
Basis Functions in the
ArcMap table of contents.

Start the Geostatistical
Analyst.

Click the Attribute dropdown
menu and click the attribute
on which to perfom Radial
Basis Functions in the
Choose Input Data and
Method dialog box.

Click the Radial Basis
Functions method.

Click Next.

Click on the Kernel Functions
dropdown menu and click the
desired Radial Basis
Function in the RBF Interpo-
lation Set Parameters dialog
box.

Specify the desired param-
eters in the RBF Set Param-
eters dialog box and click
Next.

Examine the results on the
Cross Validation dialog box
and click Finish.

On the Output Layer Informa-
tion dialog box, click OK.
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Creating a surface with geostatistical techniques

INTHIS CHAPTER

What are geostatistical interpola-
tion techniques?

Understanding kriging models

Understanding output surfaces

Creating a map using defaults

Understanding transformations
and trends

Understanding and mapping with:

Ordinary kriging
Simple kriging
Universal kriging
Indicator kriging
Probability kriging
Disjunctive kriging

Cokriging

In the previous chapter, you learned about deterministic techniques for
interpolation. Deterministic techniques used the existing configuration of the
sample points to create a surface (Inverse Distance Weighted) or fit a
mathematical function to the measured points (global and local polynomial
and radial basisfunctions). In this chapter, you will get an overview of the
different geostatistical interpolation techniques. Astheir nameimplies,
geostatistical techniques create surfaces incorporating the statistical
properties of the measured data. Because geostatistics is based on statistics,
these techniques produce not only prediction surfaces but also error or
uncertainty surfaces, giving you an indication of how good the predictions
are.

Many methods are associated with geostatistics, but they are all in the kriging
family. Ordinary, smple, universal, probability, indicator, and digunctive
kriging along with their counterpartsin cokriging areavailablein
Geostatistical Analyst. Not only do these kriging methods create prediction
and error surfaces, but they can also produce probability and quantile output
maps depending on your needs.

Krigingisdividedinto two distinct tasks: quantifying the spatial structure of
the data and producing a prediction. Quantifying the structure, known as
variography, is where you fit a spatial-dependence model to your data. To
make a prediction for an unknown value for a specific location, kriging will
use thefitted model from variography, the spatial data configuration, and the
values of the measured sample points around the prediction location.
Geostatistical Analyst provides many toolsto help you determinewhich
parameters to use, but it also provides reliable defaults that you can use to
make a surface quickly.
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What are geostatistical interpolation techniques?

Geostatistics, in its original usage, referred to statistics of the
“earth” such as in geography and geology. Now geostatistics is
widely used in many fields and comprises a branch of spatial
statistics. Originally, in spatial statistics, geostatistics was
synonymous with “kriging”, which is a statistical version of
interpolation. The current definition has widened to not only
include kriging but also many other interpolation techniques
including the deterministic methods discussed in Chapter 5,
‘Deterministic methods for spatial interpolation’. The
Geostatistical Analyst is a realization of this wider definition of
geostatistics. One of the essential features of geostatistics is that
the phenomenon being studied takes values (not necessarily
measured) everywhere within your study area, for example, the
amount of nitrogen in a field or the concentration of ozone in the
atmosphere. It is important to identify the types of data that can
be analyzed appropriately using geostatistics. Think of the
following rectangle as the study area of interest. Spatial locations
within the study area are indexed by the letters s, where each
particular location is indexed by the subscript i.

5q ) 5

5

In the above example, suppose you have collected data at the
locations s, through s., and you wish to predict the value at the
location s, colored in red. This is an example of interpolation.
Kriging assumes that you could put s, anywhere in the study
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area, and you assume that there is some real value at location s,
For example, if the data consists of the concentration of nitrogen
s,. ..., s, then there is also some concentration at s, that you have
not observed but would like to predict. Notice that the data is
collected as point events, but values actually occur everywhere;

so they are said to be spatially continuous.

In statistics, these values are often described as being one of the
following types:

» Continuous; any real number, for example, -1.4789, 10965.6891,
and so on

» Integer; forexample, ... -2,-1,0, 1,2, ...

*  Ordered Categorical; for example, worst, medium, best

* Unordered Categorical; for example, forest, agricultural, urban

» Binary; for example, O or 1

The word “continuous” can cause some confusion here. If the
data is spatially continuous, and continuous in value with a
multivariate normal distribution, and if you know the
autocorrelation of the multivariate distribution, then kriging is an
optimal predictor. However, if different forms of kriging have
been developed to accommodate all the types of data above, then
kriging is an approximate method that works well in practice.
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Understanding the different kriging models

Kriging methods depend on mathematical and statistical models.
The addition of a statistical model, which includes probability,
separates kriging methods from the deterministic methods
described in Chapter 5, ‘Deterministic methods for spatial
interpolation’. For kriging, you associate some probability with
your predictions; that is, the values are not perfectly predictable
from a statistical model. Consider the example of a sample of
measured nitrogen values in a field. Obviously, even with a large
sample, you will not be able to predict the exact value of nitrogen
at some unmeasured location. Therefore, you not only try to
predict it, but you assess the error of the prediction.

Kriging methods rely on the notion of autocorrelation. Correlation
is often thought of as the tendency for two types of variables to
be related. For example, the stock market tends to make positive
changes with lower interest rates, so it is said that they are
negatively correlated. However, it can also be said the stock
market is positively autocorrelated, which means it has correlation
within itself. In the stock market, two values will tend to be more
similar if they are only one day apart, as opposed to being

one year apart. The rate at which the correlation decays can be
expressed as a function of distance.

In the figure that follows, the (auto)correlation is shown as a
function of distance. This is a defining feature of geostatistics. In
classical statistics, observations are assumed to be independent;
that is, there is no correlation between observations. In
geostatistics, the information on spatial locations allows you to
compute distances between observations and to model
autocorrelation as a function of distance.
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A
AUTOCORRELATION

Correlation

>

Distance

Also notice that, in general, the stock market goes up with time,
and this is termed “trend”. For geostatistical data, you have the
same terms, and they are expressed in a simple mathematical
formula,

Z(s) = u(s) + &(s),
where Z(s) is the variable of interest, decomposed into a
deterministic trend £(s), and random, autocorrelated errors form
&(s). The symbol s simply indicates the location; think of it as
containing the spatial x- (longitude) and y- (latitude) coordinates.
Variations on this formula form the basis for all of the different
types of kriging, and it is worth a little effort to become familiar
with it. Let us start on the right and move left.

No matter how complicated the trend in the model is, p(s) still will
not predict perfectly. In this case, some assumptions are made
about the error term &(s); namely, they are expected to be 0 (on
average) and that the autocorrelation between &(s) and &(s+h)
does not depend on the actual location s but on the displacement
of h between the two. This is necessary to ensure replication so
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the autocorrelation function can be estimated. For example, in the
following figure, random errors at location pairs connected by the
arrows are assumed to have the same autocorrelation.

/sl+h /'s2+h

S1 S

Next, examine the trend. It can be a simple constant; that is, z(s) =
ufor all locations s, and if 4 is unknown, then this is the model on
which ordinary kriging is based. It can also be composed of a

linear function of the spatial coordinates themselves, for example,

ws) =B, T BBy FRX TPy By,

where this is a second-order polynomial trend surface and is just
linear regression on the spatial x- and y-coordinates. Trends that
vary, and where the regression coefficients are unknown, form
models for universal kriging. Whenever the trend is completely
known (i.e., all parameters and covariates known), whether
constant or not, it forms the model for simple kriging.

Now look at the left side of the decomposition, Z(s) = z(s) + &(s).
You can perform transformations on Z(s). For example, you can
change it to an indicator variable, where it is 0 if Z(s) is below
some value (e.g., 0.12 ppm for ozone concentration) or 1 ifitis
above some value. Then you may wish to predict the probability
that Z(s) is above the threshold value, and predictions based on
this model form indicator kriging. You can make general
unspecified transformations of the Z(s), calling them f(Z(s,)) for
the ith variable. You can form predictors of functions of variables;
for example, if you want to predict at location s, then you form
the disjunctive kriging predictor of g(Z(s,)) using data f(Z(s)). In
the Geostatistical Analyst, the function g is either the indicator
transformation or no transformation at all.
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Finally, consider the case where you have more than one variable
type and you form the models Z(8)= () * &(s) for the jth
variable type. Here, you can consider a different trend for each
variable, and besides autocorrelation for the errors £(8). you also
have crosscorrelation between the errors &(9) and g(s) for the
two variable types. For example, you can consider the
crosscorrelation between two variables such as ozone
concentration and particulate matter, and they need not be
measured at the same locations. Models based on more than

one variable of interest form the basis of cokriging. You can form
an indicator variable of Z(s) and, if you predict it using the
original untransformed data Z(s) in a cokriging model, you obtain
probability kriging. If originally you have more than one variable
of interest, then you can consider ordinary cokriging, universal
cokriging, simple cokriging, indicator cokriging, probability
cokriging, and disjunctive cokriging as multivariate extensions of
the different types of kriging described carlier.
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Understanding output surface types

Kriging and cokriging are prediction methods, and the ultimate
goal is to produce a surface of predicted values. You would also
like to know, “How good are the predictions?” Three different
types of prediction maps can be produced, and two of them have
standard errors associated with them. On the previous pages, the
kriging methods were organized by the models that they used;
here they are organized by their goals. Consider the following
figure, where predictions at three locations are assumed normally
distributed.

|
Location 1 i“_\ | i 2
2 012 4 -2 0Lz 4
| ]
| H
Location 2 ;_’:i ii !
2 0.2 4 20 4 4
| 1
| !
Location 3 i.l i \
1

Then the prediction will be in the center of each curve, and a
prediction map can be produced for the whole surface. Looking
at the three figures on the left, if you want to predict the
probability that the value is greater than a threshold value of, say,
1, it will be the area under the curve to the right of the dashed
line. The prediction distribution changes for each location. Thus,
when holding the threshold value constant, a probability map is
produced for the whole surface. Looking at the three figures on
the right, if you want to predict the quantile with 5 percent of the
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probability to the right, then it will be the value at the dashed line
(taken from the x-axis). Again, the prediction distribution changes
for each location. Thus, when holding the probability constant, a
quantile map is produced for the whole surface. Standard error
maps can be produced for prediction and probability maps. The
various methods and output maps, along with major assumptions,
are given in the following table.

Standard
Maps /
ndicators

I riging and II

okl iging

II ummle
vd

* Requires assumption of multivariate normal distribution

+ Requires assumption of pairwise bivariate normality
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Creating a Using the defaults
krlglng map USing 1. Click the point layer on which

you wish to perform kriging in S e
defaults the ArcMap table of contents. M e

An output surface is created 2. a}.art the Geostatistical
using the ordinary kriging izard.
method with default parameters. 3. Click the Attribute dropdown

Use this method when you are menu,. and C”Ck_ the attribute J ‘ Geostatistical Analyst |

not familiar with geostatistics on. wthh you wish to perform

and the many parameters in the kriging.

wizard dialog boxes; second, 4. Click the Kriging method.

when you wish to visually 5. Click Next.

explore your data in the map

representation; and, finally, 6. On all subsequent dialog

When yOll want to create an boxes, CliCk Next_ Geostatistical Wizard: Choose Input Data and Method — HE

initial surface to compare how 7. On the Cross Validation Tata{‘:‘[‘llm, = o —

the refinement of the parameters dialog box, click Finish. A:M ;l A:”bute : = e

may affect the output surface. onthe O L Int e [ S -

The data points need to be > tionntdiealomgg:( ct?I)I/(:el(r Cr;Korma- v e l—j e ,—j

Sampled from a phenomenon g , . e Tip: Validatiun:e:s:sZ?HZ:;AFD\:E;IU:.IbSetofdata and
predicts values using the rest of the locations.

that 1s continuous in space.

Inverse Distance Weighting About Kriging

Globel Folnomial Interpolstion
Local Polyromial Interpolation Kiiging is a moderatel quick interpolator thal can be exact or smoothed depending on

f Fadicl Bl Furiclions Y measursment smor madel, I is very Hewible and slows pou o investigabe oraphs of
Ti o] spatial autocomelation. Kiiging uses statistical models that sllow a variety of map
outputs including predictions. prediction standard ermors, probability, ete. T he fesibiity
Usi the Finish butt of Kiging car requie = ot of decisiormaking. Kriging assumes e data came Hom &
sing e Finis ution

Stationary stochastic process, and some methods assume nomal-distibLted data,
Once the data and the method have
been identified in the initial dialog

box, you can click the Finish s [ ] e —
button and a surface will be

created using the default options o é

for the method.
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Understanding transformations and trends

Kriging as a predictor does not require that your data have a
normal distribution. However, as you saw in the previous section,
normality is necessary to obtain quantile and probability maps for
ordinary, simple, and universal kriging. When considering only
predictors that are formed from weighted averages, kriging is the
best unbiased predictor whether or not your data is normally
distributed. However, if the data is normally distributed, kriging is
the best predictor among all unbiased predictors, not only those
that are weighted averages. Kriging also relies on the assumption
that all of the random errors are second-order stationarity, which
is an assumption that the random errors have zero mean and the
covariance between any two random errors depends only on the
distance and direction that separates them, not their exact
locations. Transformations and trend removal can help justify
assumptions of normality and stationarity. Prediction, using
ordinary, simple, and universal kriging for general Box—Cox
transformations and arcsine transformations, is called
Transgaussian kriging. The log transformation is a special case of
a Box—Cox transformation, but it has special prediction properties
and is known as Lognormal kriging. Here, the transformation and
trend options that are available for each kriging method are
shown. The tables below also show whether the transformation
or the trend removal is performed first when both are selected.
Further details on transformation and trend are given in

Chapter 7, ‘Using analytical tools when generating surfaces’.

Transformation and trend for primary variable:

@ﬂﬂl_ BAL | InsT ] II_ end |
| wpe | | ] ]
[no  [[[TR 2ndif BAL)]

o |

TR (Istif NST,
2nd if BAL)
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Transformation and trend for secondary variable (cokriging):
I ___
I-III
o |
T (ndif BAL) |
o

(0]
| PK___ if [TR (@nd if BAL) |
(DK [lyes (St TR) ||

Definitions

Trend: fixed effects composed of spatial coordinates used in
linear model

Primary Variable: variable to be predicted when using kriging or
cokriging

Secondary Variables: covariables (not predicted) when using
cokriging

Abbreviations

BAL—Box-Cox, arcsine, and log transformations
NST—normal score transformation

TR—trend removal, that is, external trend

T—trend, that is, internal trend

SV—secondary variable, that is, covariates for cokriging

*Note: For PK, the primary variable is composed of indicators of
the original variable—this original variable is then considered a
secondary variable for cokriging.
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Understanding ordinary kriging

Ordinary kriging assumes the model,
Z(s) = put &s),

where x is an unknown constant. One of the main issues
concerning ordinary kriging is whether the assumption of a
constant mean is reasonable. Sometimes there are good scientific
reasons to reject this assumption. However, as a simple prediction
method, it has remarkable flexibility. The following figure is an
example in one spatial dimension.
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It looks like the data is elevation values collected from a line
transect through a valley and over a mountain. It also looks like
the data is more variable on the left and becomes smoother on the
right. In fact, this data was simulated from the ordinary kriging
model with a constant mean . The true but unknown mean is
given by the dashed line. Thus, ordinary kriging can be used for
data that seems to have a trend. There is no way to decide, based
on the data alone, whether the observed pattern is the result of
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autocorrelation alone (among the errors &£(s) with  constant) or
trend (with z«(s) changing with s). This is often a decision based
on the scientific problem.

Ordinary kriging can use either semivariograms or covariances
(which are the mathematical forms you use to express
autocorrelation), it can use transformations and remove trends,
and it can allow for measurement error; see Chapter 7, ‘Using
analytical tools when generating surfaces’, for more details.
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Creating a map
using ordinary
Kriging

Use ordinary kriging to produce
prediction, quantile, probability,
or standard error maps. It will
assume an unknown constant
mean. The data points need to

be sampled from a phenomenon
that 1s continuous in space.

Important parameters

An appropriate transformation,

a possible detrending surface,
covariance/semivariogram models,
and search neighborhoods.

Using a database file
instead of a point layer

On the Choose Input Data and
Method dialog box, a database file
can be used in place of an ArcMap
layer by clicking the Browse button
and navigating to the desired

database file.

For additional information on
transformations, detrending, setting
the parameters for the
Semivariogram/Covariance
Modeling and Searching Neighbor-
hood dialog boxes, and understand-
ing the Cross Validation dialog box,
see Chapter 7, ‘Using analytical
tools when generating surfaces’.

Creating a prediction
map

1. Click the point layer on which
you wish to perform Ordinary
Kriging in the ArcMap table of
contents.

2. Start the Geostatistical
Analyst.

3. Click the Attribute dropdown
list, and click the attribute on
which you wish to perform
ordinary Kriging.

Click the Kriging method.
Click Next.

Click Prediction under
Ordinary Kriging.

Click Next.

Specify the desired param-
eters in the Semivariogram/
Covariance Modeling dialog
box and click Next.

9. Specify the desired param-
eters in the Searching
Neighborhood dialog box and
click Next.

10. Examine the results on the
Cross Validation dialog box
and click Finish.

11. On the Output Layer Infor-
mation dialog box, click OK.
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Creating training and test
datasets

When performing validation,

two datasets are used: a training
dataset and a test dataset. The
training dataset contains the
measured locations on which the
interpolation will be performed.
The test dataset will be used to
validate the predictions. The
training dataset is entered as
Dataset I and the test dataset as
the Validation dataset. See
‘Performing validation on a
geostatistical layer created from a
subset’ in Chapter 9 to obtain
additional information on creating
subsets.

Using validation

Make sure that there are enough
data samples in the training set to
portray an accurate representation
of the surface. If the training set is
too small, abnormal data values
can skew the model parameters
and the output results.
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Creating a prediction
standard error map

1. Right-click on the prediction
surface in the ArcMap table of
contents that was created
using Ordinary Kriging and
click Create Prediction
Standard Error Map.
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Creating a prediction map
using validation

1. Click the point layer on which
you wish to perform ordinary
kriging in the ArcMap table of
contents.

Start Geostatistical Analyst.

Click the Attribute dropdown
list and specify the field on
which you wish to perform
ordinary kriging.

Click the Kriging method.

Check Validation and specify
the validation dataset and
attribute.

Click Next.

Follow steps 6 through 10 in
‘Creating a prediction map’ on
the previous page and
examine the results on the
Validation dialog box and
then click Finish.

Geostatistical Wizard: Choose Input Data and Method
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autputs including predictions, prediction standard enors, probabilly, etc. The flesibiy
of kiiging can requie a lot of decision-making. Kriging assumes the data come from 2
stationany stochasic procsss, and some methods assume nomalky distibuted data
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Creating a prediction
map while applying a
transformation

Utilizing ESDA for
determining model
parameters

Use exploratory spatial data
analysis to help make decisions on
transformations, detrending, and
the effect of unusual observations
on covariance/variogram models.
Confirm your decision using
validation and cross-validation.

For additional information on
transformations, setting the
parameters for the
Semivariogram/Covariance
Modeling and Searching Neigh-
borhood dialog boxes, and
understanding the Cross Valida-
tion dialog box, see Chapter 7,
‘Using analytical tools when
generating surfaces’.

1.

Click the point layer on which
you wish to perform ordinary
kriging in the ArcMap table of
contents.

Start the Geostatistical
Analyst.

Click the Attribute field on
which you wish to perform
ordinary Kriging.

Click the Kriging method.
Click Next.

Expand the list under
Ordinary Kriging and click
Prediction.

Click the desired transforma-

tion from the Transformation
dropdown menu.

Click Next.

Follow steps 9 through 12 in
‘Creating a prediction map
using detrending’ on the
following page.
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Detrending

Once a trend is removed from the
input data points,ordinary kriging
is performed on the residuals.

For additional information on
transformations, detrending, setting
the parameters for the
Semivariogram/Covariance
Modeling and Searching Neighbor-
hood dialog boxes, and under-
standing the Cross Validation
dialog box, see Chapter 7, ‘Using
analytical tools when generating
surfaces’.
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Creating a prediction
map using detrending

1. Click the point layer on which
you wish to perform ordinary
kriging in the ArcMap table of
contents.

Start Geostatistical Analyst.

Click the Attribute dropdown
list and select the attribute on
which you wish to perform
ordinary kriging.

Click the Kriging method.
Click Next.

Click Prediction under
Ordinary Kriging.

7. Click the Order of Trend
Removal dropdown menu and
choose an option.

Click Next.

Specify the desired param-
eters in the Detrending dialog
box and click Next.

10. Specify the desired param-
eters in the Semivariogram/
Covariance Modeling dialog
box and click Next.

11. Specify the desired param-
eters in the Searching
Neighborhood dialog box
and click Next.

12. Examine the results on the
Cross Validation dialog box
and click Finish.

13. On the Output Layer Informa-
tion dialog box, click OK.
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Understanding simple kriging

Simple kriging assumes the model, kriging on the residuals, assuming the trend in the residuals is
Z(s) = u + &s) known to be zero.

Simple kriging can use either semivariograms or covariances
(which are the mathematical forms you use to express
autocorrelation), it can use transformations, and it can allow for
measurement error; see Chapter 7, ‘Using analytical tools when
! ! . . ! . , generating surfaces’, for more details.

where £ is a known constant. For example, in the following figure,
which uses the same data used for ordinary kriging and universal
kriging concepts,
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the observed data is given by the solid circles. The known
constant—the solid line—is x. This can be compared to ordinary
kriging. For simple kriging, because you assume that you know u
exactly, then at the data locations you also know &(s) exactly. For
ordinary kriging, you estimated £, so you also estimated &(s). If
you know &(s), then you can do a better job of estimating the
autocorrelation than if you are estimating &(s). The assumption of
exactly knowing the mean z is often unrealistic. However,
sometimes it makes sense to assume a physically based model
gives a known trend. Then you can take the difference between
that model and the observations, called residuals, and use simple
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Creating a map
using simple
kriging

Use simple kriging to produce
prediction, quantile, probability,
or standard error maps. Simple
Kriging assumes a known
constant mean. The data points
need to be sampled from a

phenomenon that 1s continuous
in space.

For additional information on
transformations, setting the

parameters for the Semivariogram/

Covariance Modeling and
Searching Neighborhood dialog
boxes, and understanding the
Cross Validation dialog box, see
Chapter 7, ‘'Using analytical tools
when generating surfaces’.
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Creating a prediction
map

1.

N

10.

11.

12.

Click the point layer on which
you wish to perform simple
kriging in the ArcMap table of
contents.

Start the Geostatistical
Analyst.

Click the Attribute field on
which you wish to perform
simple kriging.

Click the Kriging method.
Click Next.

Expand the list under Simple
Kriging and click Prediction.

Specify the Mean Value.
Click Next.

Specify the desired param-
eters in the Semivariogram/
Covariance Modeling dialog
box and click Next.

Specify the desired param-
eters in the Searching
Neighborhood dialog box
and click Next.

Examine the results on the
Cross Validation dialog box
and click Finish.

On the Output Layer Informa-
tion dialog box, click OK.
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Checking for bivariate
distribution

Try checking your data for
bivariate normality. See Chapter 7,
‘Using analytical tools when
generating surfaces’.

For additional information on
transformations, setting the

parameters for the Semivariogram/

Covariance Modeling and
Searching Neighborhood dialog
boxes, and understanding the
Cross Validation dialog box, see
Chapter 7, ‘'Using analytical tools
when generating surfaces’.

Creating a quantile map

1.

Follow the steps in ‘Creating
a prediction map’ on the
previous page, except click
Quantile Map in step 6,
rather than Prediction.

Click the Quantile up and
down arrow buttons to
specify the quantile level.

Follow steps 7 through 12 in
‘Creating a prediction map’
on the previous page.

Geostatistical Wizard: Step 1 of 4 - Geostatistical Method Selection
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Creating a probability
map

1.

Follow the steps in ‘Creating
a prediction map’ on the
previous page, except click
Probability Map in step 6,
rather than Prediction.

Type a value in the Threshold
input or click the Set... button
and set the threshold on the
Primary Threshold selection
dialog box.

Click either the Exceed or
NOT Exceed radio buttons.

Click Next.

Follow steps 7 through 12 in
‘Creating a prediction map’
on the previous page.
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Creating a prediction = ;
apers N

Creating training and test standard error map EEI -l oy

redn
datasets 1. Right-click on the prediction oo X Remave
Whenperformtngvalldatzonf ' surface in the ArcMap table UFlgids@ Zoom To Loy
ataset st dotase, The. - of contents that was created o e ’
training dataset contains the using simple kngl.ng. and 0067 EDTpa.[e”
measured locations on which the click Create Prediction - gggg: feidton
Ay — Standard Error Map. :31?3 Prediction...
The test dataset will be used to W05
validate the predictions. The mos 098 ’
training dataset is entered as = Pl Soooslamfle.
Dataset 1 and the test dataset as B # ca_outing @ Method Propeties...
the Validation dataset. See ‘Per- = Properties

forming validation on a I
geostatistical layer created from a

subset’ in Chapter 9 to obtain

additional information on creating

subsets.

Using validation

Make sure that there are enough
data samples in the training set to
portray an accurate representation
of the surface. If the training set is
too small, abnormal data values
can skew the model parameters
and the output results.
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Exploratory Spatial Data
Analysis tools

Use exploratory spatial data
analysis to help make decisions on
transformations and the effect of
unusual observations on covari-
ance/variogram models and
confirm your decisions using
validation and cross-validation.

For additional information on
transformations, setting the
parameters for the Semivariogram/
Covariance Modeling and
Searching Neighborhood dialog
boxes, and understanding the
Cross Validation dialog box, see
Chapter 7, ‘'Using analytical tools
when generating surfaces’.

Creating a prediction
map while applying a
transformation

1. Click the point layer on which
you wish to perform simple
kriging in the ArcMap table of
contents.

2. Start the Geostatistical
Analyst.

3. Click the Attribute field on
which you wish to perform
simple kriging.

Click the Kriging method.
Click Next.

Expand the list under simple
kriging and click Prediction.

7. Click the desired transforma-
tion from the Transformation
dropdown menu.

Click Next.

Follow steps 9 through 12 in
‘Creating a prediction map’,
earlier in the chapter.
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Using declustering

If you use the normal score
transform, and your data has been
preferentially sampled with higher
densities of points in some areas,
try declustering the data. See
Chapter 7, ‘'Using analytical tools
when generating surfaces’.

For additional information on
transformations, setting the
parameters for the Semivariogram/
Covariance Modeling and the
Searching Neighborhood dialog
boxes, and understanding the

Cross Validation dialog box, see
Chapter 7, ‘Using analytical tools
when generating surfaces’.
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Creating a prediction
map while applying a
transformation with
declustering

1. Click the point layer on which
you wish to perform simple
kriging in the ArcMap table of
contents.

2. Start the Geostatistical
Analyst.

3. Click the Attribute field on
which you wish to perform
simple kriging.

Click the Kriging method.
Click Next.

Expand the list under Simple
Kriging and click Prediction.

7. Click Normal Score under the
Transformation dropdown
menu.

8. Check Declustering before
Transform.

9. Click Next.

10. Specify the desired param-
eters in the Declustering
dialog box and click Next.

11. Specify the desired param-
eters in the Normal Score
Transformation dialog box
and click Next.

12. Follow steps 9 through 12 in
‘Creating a prediction map’,
earlier in the chapter.
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Bivariate distribution
Try checking your data for
bivariate normality. See Chapter 7,

‘Using analytical tools when
generating surfaces’.

See Also

For additional information on
setting the parameters for the
Detrending, Semivariogram/
Covariance Modeling and
Searching Neighborhood dialog
boxes and understanding the Cross
Validation dialog box, see

Chapter 7, 'Using analytical tools
when generating surfaces’.

Examining the bivariate
distribution when
creating a prediction map

1. Click the point layer on which
you wish to perform simple
kriging in the ArcMap table of
contents.

Start Geostatistical Analyst.

Click the Attribute field on
which you wish to perform
simple kriging.

4. Click the Kriging method.
Click Next.

Expand the list under Simple
Kriging and click Prediction.

7. Check Examine Bivariate
Distribution.

8. Specify Mean Value and the
number of Quantiles to
check.

9. Click Next.

10. Specify the desired param-
eters in the Semivariogram/
Covariance Modeling dialog
box and click Next.

11. Explore the Semivariogram/
Covariance Modeling
(Examine Bivariate Distribu-
tion) dialog box and click
Next.

12. Follow steps 10 through 12
in ‘Creating a prediction
map’, earlier in the chapter.
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Understanding universal kriging

Universal kriging assumes the model,
Z(s) = u(s) + &),

where £(s) is some deterministic function. For example, in the
following figure, which has the same data that was used for
ordinary kriging concepts, the observed data is given by the solid
circles.
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A second-order polynomial is the trend—the long dashed line—
and it is z(s). If you subtract the second-order polynomial from
the original data, you obtain the errors, &(s), which are assumed
to be random. The mean of all &(s) is 0. Conceptually, the
autocorrelation is now modeled from the random errors &(s). The
figure above looks just like a polynomial regression from any
basic statistics course. In fact, that is what universal kriging is.
You are doing regression with the spatial coordinates as the
explanatory variables. However, instead of assuming the errors
&(s) are independent, you model them to be autocorrelated.
Again, the advice from ordinary kriging: there is no way to decide
on the proper decomposition, based on the data alone.
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Universal kriging can use either semivariograms or covariances
(which are the mathematical forms you use to express
autocorrelation); it can use transformations, in which trends
should be removed; and it can allow for measurement error. See
Chapter 7, ‘Using analytical tools when generating surfaces’, for
more details.
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Creating a map
using universal
kriging

Use universal kriging to
produce prediction, quantile,
probability, or standard error
maps. It will assume a trending
mean. The data points need to

be sampled from a phenomenon
that 1s continuous in space.

For additional information on
transformations, detrending,
setting the parameters for the
Semivariogram/Covariance
Modeling and Searching Neighbor-
hood dialog boxes, and under-
standing the Cross Validation
dialog box, see Chapter 7, ‘Using
analytical tools when generating
surfaces’.

Creating a prediction
map

1. Click the point layer on which
you wish to perform universal
kriging in the ArcMap table of
contents.

2. Start Geostatistical Analyst.

Click the Attribute field on
which you wish to perform
universal kriging.

4. Click the Kriging method and
click Next.

5. Under Universal Kriging,
expand the list and click
Prediction.

Click the Order of Trend
dropdown menu and click the
desired order.

Click Next.

Specify the desired param-
eters in the Detrending
dialog box and click Next.

N

9. Specify the desired param-
eters in the Semivariogram/
Covariance Modeling dialog
box and click Next.

10. Specify the desired param-
eters in the Searching
Neighborhood dialog box
and click Next.

11. Examine the results on the
Cross Validation dialog box
and click Finish.

12. On the Output Layer Infor-

mation dialog box, click OK.
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Utilizing ESDA for
determining
transformations

Use Exploratory Spatial Data
Analysis to help make decisions on
transformations, detrending, and
the effect of unusual observations
on covariance/variogram models.
Confirm your decisions using
validation and cross-validation.
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Creating a prediction
standard error map

1. Right-click on the prediction
surface in the ArcMap table of
contents that was created
using universal kriging and
click Create Prediction
Standard Error Map.
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Understanding thresholds

A variable that is continuous may be made into a binary (0 or 1)
variable by choosing some threshold. In the Geostatistical
Analyst, if values are above the threshold, they become a 1, and
if they are below the threshold, they become a 0.
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Understanding indicator kriging

Indicator kriging assumes the model,

1(s) =+ &(9).
where m is an unknown constant and /(s) is a binary variable. The
creation of binary data may be through the use of a threshold for
continuous data, or it may also be the case that the observed data
is 0 or 1. For example, you may have a sample that consists of
information on whether or not a point is forest or nonforest
habitat, where the binary variable indicates class membership.
Using binary variables, indicator kriging proceeds exactly as for
ordinary kriging. For example, in the following figure, which has
the same data that was used for ordinary kriging, universal
kriging, and simple kriging concepts, the data has been converted
to binary values using the threshold shown in the
‘Understanding thresholds™ concepts on the previous page.
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The observed binary data is given by the open squares. The
unknown mean for all indicator variables is shown by the dashed
line, and it is 4 This can be compared to ordinary kriging. As for
ordinary kriging, you assume that &(s) is autocorrelated. Notice
that because the indicator variables are 0 or 1, the interpolations
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will be between 0 and 1 and predictions from indicator kriging can
be interpreted as probabilities of the variable being a 1 or of being
in the class that is indicated by a 1. If a threshold was used to
create the indicator variable, then the resulting interpolation map
shows the probabilities of exceeding (or being below) the
threshold.

It is also possible to create several indicator variables for the
same dataset by choosing multiple thresholds. In this case,
one threshold creates the primary indicator variable, and the
other indicator variables are used as secondary variables in
cokriging.

Indicator kriging can use either semivariograms or covariances
(which are the mathematical forms you use to express
autocorrelation); see Chapter 7, ‘Using analytical tools when
generating surfaces’, for more details.
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Creating a map
using indicator
kriging

Use indicator kriging to produce
a probability or standard error of

indicators map. Indicator kriging
assumes an unknown constant

Creating a probability
map

1. Click the point layer on which
you wish to perform indicator
kriging in the ArcMap table of
contents. Start the Geostatis-
tical Analyst.

2. Click the Attribute field on

Geostatistical Wizard: Choose Input Data and Method [71x]
Dataset 1 | T Walidation
InpuiDatz [eaomonepts o] @ || peoa= [ & e
Attribute: 54 EEE| =
KField  [Shape | | =re [ =
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autputs including predictions, prediction standard errors, probabiliy, eto. The fesdbiity
of kiiging can require a lot of decision-making. Kriging assumes the data come fiom a

statianaly stochastic pracess, and some methods assume nomaly-ditiibuted data.

mean. The data points need to be indicator krigi
sampled from a phenomenon that n . Icator ”.g'.ng'
is continuous in space. 3. Click the Kriging method.

4. Click Next.

5.
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Indicator Kriging and click

Probability Map. 6 o

Type the Threshold value or
e v 5 click the Set... button and set
receive a “17), covariance/ the threshold on the Primary

semivariogram models, and search Threshold selection dialog
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Method: Indicator Kriging
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rily all zeros or ones. Choose a
threshold that gives a mix of zeros
and ones.

9. Set additional cutoffs on the

dialog box.

10. Specify the desired param-
eters in the Semivariogram/
Covariance Modeling and

~Pitnary Thizshold

(=% Excesd
—+ Value:
== NOT Exczed

009899 Set.. T
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| Exanmifie Bivariate istitution

See Also S.earchlng Nelghbo.rhood e | o
dialog boxes and click Next |

For additional information on in each dialog box.

transformations, setting the cgsch [ Mg | Ensh | Caedl |

parameters for the Semivariogram/
Covariance Modeling and
Searching Neighborhood dialog
boxes, and understanding the
Cross Validation dialog box, see
Chapter 7, ‘Using analytical tools
when generating surfaces’.

11. Examine the results on the
Cross Validation dialog box
and click Finish.

12. On the Output Layer Infor-
mation dialog box, click OK.

CREATING A SURFACE WITH GEOSTATISTICAL TECHNIQUES
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Understanding probability kriging

Probability kriging assumes the model,
)= I((8) > ) = 4, + £,(s)

2(8)= p, + £(9).

where £, and p, are unknown constants and /(s) is a binary
variable created by using a threshold indicator /(Z(s) > ¢ ). Notice
that now there are two types of random errors, &,(s) and £,(s), so
there is autocorrelation for each of them and cross-correlation
between them. Probability kriging strives to do the same thing as
indicator kriging, but it uses cokriging in an attempt to do a better
job. For example, in the following figure, which uses the same
data used for ordinary kriging, universal kriging, simple kriging,
and indicator kriging concepts, notice the datum labeled Z(u=9),
which has an indicator variable of /(u) =0, and Z(s=10), which has
an indicator variable of /(s) = 1.
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If you wanted to predict a value halfway between them, at
x-coordinate 9.5, then using indicator kriging alone would give a
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prediction near 0.5. However, you can see that Z(s) is just barely
above the threshold, but Z(u) is well below the threshold.
Therefore, you have some reason to believe that an indicator
prediction at location 9.5 should be less than 0.5. Probability
kriging tries to exploit the extra information in the original data
in addition to the binary variable. However, it comes with a price.
You have to do much more estimation, which includes estimating
the autocorrelation for each variable as well as their cross-
correlation. Each time you estimate unknown autocorrelation
parameters, you introduce more uncertainty, so probability
kriging may not be worth the extra effort.

Probability kriging can use either semivariograms or covariances
(which are the mathematical forms you use to express
autocorrelation) and cross-covariances (which are the
mathematical forms you use to express cross-correlation); see
Chapter 7, ‘Using analytical tools when generating surfaces’, for
more details.
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Creating a map
using probability
kriging

Use probability kriging to
produce a probability or standard
error of indicators map. The data
points need to be sampled from a

phenomenon that is continuous
in space.

Important parameters

The specified threshold (which
determines which predictions will
receive a ‘0" and which will
receive a ‘1”), covariance/
variogram models, and search
neighborhoods establishing the
model.

Selecting a threshold
Estimation of semivariogram/
covariance becomes difficult when
the indicator variables are
primarily all zeros or ones. If
possible, choose a threshold that
gives a mix of zeros and ones.

For additional information on
transformations, detrending,
setting the parameters for the
Semivariogram/Covariance
Modeling and Searching Neigh-
borhood dialog boxes, and
understanding the Cross Valida-
tion dialog box, see Chapter 7,
‘Using analytical tools when
generating surfaces’.

Creating a probability
map

1. Click the point layer on which
you wish to perform probabil-
ity kriging in the ArcMap
table of contents.

2. Start the Geostatistical
Analyst.

3. Click the Attribute field on
which you wish to perform
probability kriging.

Click the Kriging method.
Click Next.

Expand the list under
Probability Kriging and click
Probability Map.

7. Type in the Threshold value
or click the Set... button and
set the threshold on the
Primary Threshold selection
dialog box.

8. Click either the Exceed or
NOT Exceed radio buttons.

9. Click Next.

10. Specify the desired param-
eters in the Semivariogram/
Covariance Modeling and
Searching Neighborhood
dialog boxes and click Next
in each dialog box. »
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12. Examine the results on the
Cross Validation dialog box
and click Finish.

13. On the Output Layer Infor-
mation dialog box, click OK.
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Understanding disjunctive kriging

Disjunctive kriging assumes the model,
f(Z(s) = p, + &(s)

where g, is an unknown constant and f{”(s)) is some arbitrary
function of Z(s). Notice that you can write {Z(s)) = I(Z(s) > c).
so indicator kriging is a special case of disjunctive kriging. In the
Geostatistical Analyst, you can predict either the value itself or an
indicator with disjunctive kriging.

By way of comparison, ordinary kriging uses linear combinations
of the data so that the final predictor is,

Z(sg)= Y K Z(s)),

i=1

where Z (8o) is the predicted value, {Z(s)} is the data, and {4} is
the kriging weights. Ordinary kriging tries to find the optimal
weights, {4 }. Indicator kriging forms the predictor,

[(Z(s0)>c) = KlZis)>c,),

i=1

and tries to find the optimal weights, {4 }. However, you might
be able to find more general functions of the data that will help
you predict some function of the variable at the prediction
location.

CREATING A SURFACE WITH GEOSTATISTICAL TECHNIQUES

Disjunctive kriging generalizes indicator kriging to form the
predictor,

§Zisp) =Y fi(Z(s)),

i=1

In the Geostatistical Analyst, the functions g(Z(s,)) available are
simply Z(s ) itself and /(Z(s ) > c). In general, disjunctive kriging
tries to do more than ordinary kriging. While the rewards may be
greater, so are the costs. Disjunctive kriging requires the bivariate
normality assumption (see Chapter 7, ‘Using analytical tools
when generating surfaces’) and approximations to the functions
J(Z(s)). the assumptions are difficult to verify, and the solutions
are mathematically and computationally complicated.

Disjunctive kriging can use either semivariograms or covariances
(which are the mathematical forms you use to express
autocorrelation), and it can use transformations and remove
trends; see Chapter 7, ‘Using analytical tools when generating
surfaces’, for more details.
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Creating a map
using disjunctive
kriging

Use disjunctive kriging to
produce a prediction, probabil-

ity, standard error of indicators,
or standard errors map.

The data points need to be
sampled from a phenomenon that
is continuous 1n space and have a
bivariate normal distribution.

Important parameters
An appropriate transformation and
detrending, covariance/semivari-

ogram models, and search
neighborhoods.

Using a database file
instead of a point layer

On the Choose Input Data and
Method dialog box, a database file
can be used in place of an ArcMap
input layer by clicking the Browse
button and navigating to the
desired database file.

For additional information on
transformations, detrending, setting
the parameters for the
Semivariogram/Covariance
Modeling and Searching Neighbor-
hood dialog boxes, and understand-
ing the Cross Validation dialog box,
see Chapter 7, ‘Using analytical
tools when generating surfaces’.
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Creating a prediction
map

1. Click the point layer on which
you wish to perform disjunc-
tive kriging in the ArcMap
table of contents.

2. Start the Geostatistical
Analyst.

3. Click the Attribute field on
which you wish to perform
disjunctive kriging.

Click the Kriging method.
Click Next.

Expand the list under
Disjunctive Kriging and click
Prediction. Specify Mean
Value. Optionally, specify
Normal Score Transformation
(NST) and click Next.

7. If an NST was indicated,
specify the desired param-
eters in the NST dialog box
and click Next.

8. Specify the desired param-
eters in the Semivariogram/
Covariance Modeling dialog
box and click Next.

9. Specify the desired param-
eters in the Searching
Neighborhood dialog box and
click Next.

10. Examine the results on the
Cross Validation dialog box
and click Finish.

11. On the Output Layer Infor-
mation dialog box, click OK.
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A prediction standard error
map

A standard error map quantifies
the uncertainty of the prediction. If
the data comes from a normal
distribution, the true value will be
within + 2 times the prediction
standard errors about 95 percent
of the time.

For additional information on
transformations, detrending,
setting the parameters for the
Semivariogram/Covariance
Modeling and Searching Neighbor-
hood dialog boxes, and under-
standing the Cross Validation
dialog box, see Chapter 7, ‘Using
analytical tools when generating
surfaces’.

Creating a probability
map

1. Follow the steps in ‘Creating
a prediction map’ on the
previous page, except click
on Probability Map in step 6
rather than Prediction.

2. Type in the Threshold value
or click the Set... button and
set the threshold on the
Primary Threshold selection
dialog box.

3. Click either the Exceed or
NOT Exceed radio buttons.

4. Specify Mean Value and
Normal Score Transformation.
Click Next.

5. Follow steps 7 through 11 in
‘Creating a prediction map’
earlier in the chapter.
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Creating a prediction
standard error map

1. Right-click on the prediction
surface in the ArcMap table of
contents that was created
using disjunctive kriging and
click Create Prediction
Standard Error Map.
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Creating a standard error
of indicators map

1.

Follow the steps for ‘Creating
a probability map’ previously
in this chapter, except click
Standard Error of Indicators
in step 6 rather than Predic-
tion.
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Using declustering

If you use the normal score
transform, and your data has been
preferentially sampled with higher
densities of points in some areas,
try declustering the data. See
Chapter 7, ‘'Using analytical tools
when generating surfaces’.

Creating a prediction
map with declustering

1. Click the point layer on which
you wish to perform disjunc-
tive kriging in the ArcMap
table of contents.

2. Start the Geostatistical
Analyst.

3. Click the Attribute field on
which you wish to perform
disjunctive kriging.

Click the Kriging method.
Click Next.

Expand the list under
Disjunctive Kriging and click
Prediction.

7. Click Normal Score under the
Transformation dropdown
menu.

8. Check Declustering before
Transform.

9. Click Next.

10. Specify the desired param-
eters in the Declustering
dialog box and click Next.

11. Specify the desired param-
eters in the Normal Score
Transformation dialog box
and click Next.

12. Follow steps 8 through 11 in
‘Creating a prediction map’,
previously in this chapter.
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Examining bivariate
distribution

Try checking your data for
bivariate normality. See Chapter 7,
‘Using analytical tools when
generating surfaces’.

For additional information on
transformations, detrending,
setting the parameters for the
Semivariogram/Covariance
Modeling and Searching Neigh-
borhood dialog boxes, and
understanding the Cross Valida-
tion dialog box, see Chapter 7,
‘Using analytical tools when
generating surfaces’.
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Examining the bivariate
distribution when
creating a prediction map

1. Click the point layer on which
you wish to perform disjunc-
tive kriging in the ArcMap
table of contents.

2. Click the Geostatistical
Analyst toolbar and click
Geostatistical Wizard.

3. Click the Attribute field on
which you wish to perform
disjunctive kriging.

4. Click the Kriging method.
Click Next.

5. Expand the list under
Disjunctive Kriging and click
Prediction.

6. Check Examine Bivariate
Distribution and specify
Mean Value or NST.

7. Specify the desired param-
eters in the Semivariogram/
Covariance Modeling dialog
box and click Next.

8. Explore the Semivariogram/
Covariance Modeling dialog
box (Examine Bivariate
Distribution) and click Next.

9. Follow steps 9 through 11 in
‘Creating a prediction map’,
previously in this chapter.
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Understanding cokriging

Cokriging uses information on several variable types. The main
variable of interest is 7, and both autocorrelation for Z, and
cross-correlations between 7 and all other variable types are
used to make better predictions. It is appealing to use information
from other variables to help make predictions, but it comes at a
price. Cokriging requires much more estimation, which includes
estimating the autocorrelation for each variable as well as all
cross-correlations. Theoretically, you can do no worse than
kriging because, if there is no cross-correlation, you can fall back
on just autocorrelation for Z,. However, each time you estimate
unknown autocorrelation parameters, you introduce more
variability, so the gains in precision of the predictions may not be
worth the extra effort.

Ordinary cokriging assumes the models,
Z,(8) = 1, + £()
Z,(8) = i, + &(9),

where x4, and x, are unknown constants. Notice that now you
have two types of random errors, &(s) and &,(s). so there is
autocorrelation for each of them and cross-correlation between
them. Ordinary cokriging attempts to predict Z (s ), just like
ordinary kriging, but it uses information in the covariate {Z,(s)}in
an attempt to do a better job. For example, the following figure
has the same data that was used for ordinary kriging, only here a
second variable is added.

Notice that the data 7, and 7, appears autocorrelated. Also notice
that when 7 is below its mean p . then Z, is often above its mean
W, and vice versa. Thus, Z, and Z, appear to have negative cross-
correlation. In this example, each location s had both 7 (s) and
Z,(s); however, this is not necessary, and each variable type can
have its own unique set of locations. The main variable of interest
is Z,, and both autocorrelation and cross-correlation are used to
make better predictions.
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The other cokriging methods, including universal cokriging,
simple cokriging, indicator cokriging, probability cokriging, and
disjunctive cokriging, are all generalizations of the foregoing
methods to the case where you have multiple datasets. For
example, indicator cokriging can be implemented by using
several thresholds for your data, then using the binary data on
each threshold to predict the threshold of primary interest. In this
way, it is similar to probability kriging but can be more robust to
outliers and other erratic data.

Cokriging can use either semivariograms or covariances (which
are the mathematical forms you use to express autocorrelation)
and cross-covariance (which is the mathematical form you use to
express cross-correlation), it can use transformations and remove
trends, and it can allow for measurement error in the same
situations as for the various kriging methods (ordinary kriging,
simple kriging, and universal kriging); see Chapter 7, ‘Using
analytical tools when generating surfaces’, for more details.
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Creating a map
using cokriging

Use cokriging to produce
prediction, probability, quantile,
standard error of indicators, and
standard error maps under the
same conditions as for each
kriging method discussed
earlier throughout this chapter.

For additional information on
transformations, detrending,
setting the parameters for the
Semivariogram/Covariance
Modeling and Searching Neigh-
borhood dialog boxes, and
understanding the Cross Valida-
tion dialog box, see Chapter 7,
‘Using analytical tools when
generating surfaces’.
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Creating a prediction
map

1. Click the point layers on
which you wish to perform
cokriging in the ArcMap table
of contents.

2. Click the Geostatistical
Analyst toolbar and click
Geostatistical Wizard.

3. Click the CoKriging method.

4. Click the Attribute field on
which you wish to perform
cokriging for all datasets
(switch between dataset tabs
to specify the parameters).

5. Click Next.

6. Click the desired cokriging
method and output layer type
in the Geostatistical Methods
list. Click Next.

7. Specify the parameters in the
Detrending dialog box if the
Order of Trend Removal was
specified for all datasets.
Click Next.

8. Specify the parameters in the
Semivariogram/Covariance
Modeling dialog box for all
datasets. Click Next.

9. Specify the desired param-
eters in the Searching
Neighborhood dialog box for
all datasests and click Next.

10. Examine the results on the
Cross Validation dialog box
and click Finish.

11. On the Output Layer Informa-
tion dialog box, click OK.
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Using analytical tools when generating surfaces

INTHIS CHAPTER

 Investigating spatial structure:
variography

e Determining the neighborhood
search size

e Performing cross-validation to
assess parameter selections

» Assessing decision protocol using
validation

e Comparing one model with
another

* Modeling distributions and deter-
mining transformations

e Checking for the bivariate normal
distribution

e Implementing declustering to
adjust for preferential sampling

« Removing trends from the data

There are many steps that you go through when creating a surface. In each
of these steps, you specify a number of parameters. Geostatistical Analyst
provides a series of dialog boxes containing analytical toolsto assist youin
determining the values for the parameters. Some of these dialog boxes and
toolsare applicableto almost all interpolation methods such as specifying
the search neighborhood, cross-validation, and validation. Othersare
specific to the geostatistical methods (kriging and cokriging), such as
modeling semivariograms, transformations, detrending, declustering, and
checking for bivariate normal distributions.

Within each dialog box, there are a series of tasks that can be accomplished
using the tools. In this chapter, the concepts for the most frequently
performed tasks are discussed and the steps identified. Depending on your
data, none, some, or all of the tasks and their parameters might be explored.
Aswith all parameters, Geostatistical Analyst providesreliable defaults,
some of which have been calculated specifically for your data. However,
you may have additional insight into your datafrom prior knowledge of the
phenomena under study or that you gained through the exploratory tools
provided with Geostatistical Analyst, which you can useto refine the
parameters to create an even more accurate surface.
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Investigating spatial structure: variography

Semivariograms and covariance functions

The semivariogram and covariance functions quantify the
assumption—that things nearby tend to be more similar than
things that are farther apart. They both measure the strength of
statistical correlation as a function of distance. The
semivariogram is defined as,

V(8,.8) = V2 var(Z(s) - (s)).
where var is the variance.

If two locations s, and s, are close to each other in terms of the
distance measure of d(s,, sj), then they are expected to be similar,
and so the difference in their values, Z(s,) - Z(s). will be small. As
s, and s, get farther apart, they become less similar, and so the
difference in their values, Z(s)) - Z(s). will become larger. This can
be seen in the following figure, which shows the anatomy of a
typical semivariogram.

¥(si,8i)
Partial
Sill
N ; Range
e
vo9 { A
0 Distance

Notice that the variance of the difference increases with distance,
so the semivariogram can be thought of as a dissimilarity
function. There are several terms that are often associated with
this function, and they are also used in the Geostatistical Analyst.
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The height that the semivariogram reaches when it levels off is
called the sill. It is often composed of two parts: a discontinuity
at the origin, called the nugget effect, and the partial sill, which
added together give the sill. The nugget effect can be further
divided into measurement error and microscale variation and
since either component can be zero, the nugget effect can be
comprised wholly of one or the other. The distance at which the
semivariogram levels off to the sill is called the range.

The covariance function is defined to be,
C(s,.8)) = cOV(Z(s). Z(8)).
where cov is the covariance.

Covariance is just a scaled version of correlation. So, when two
locations, s, and s, are close to each other, then they are expected
to be similar, and so their covariance (correlation) will be large. As
s, and s, get farther apart, they become less similar and so their
covariance becomes zero. This can be seen in the following
figure, which shows the anatomy of a typical covariance function.

C(s;s8y)

Nugget {

Partial
Sill

} Sill

v

0 Distance

Notice that the covariance function decreases with distance, so it
can be thought of as a similarity function.
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There is a relationship between the semivariogram and the
covariance function, which is,

y(s,.8) = sill - C(s,.8).

and this relationship can be seen from the figures. Because of this
equivalence, you can do prediction in the Geostatistical Analyst
using either function. (Recall that all semivariograms in the
Geostatistical Analyst have sills.)

Semivariograms and covariances cannot be just any function. In
order for the predictions to have nonnegative kriging standard
errors, only some functions may be used as semivariograms and
covariances. The Geostatistical Analyst offers several choices
that are acceptable, and you can try different ones for your data.
You can also have models that are made by adding several
models together—this construction provides valid models, and
you can add up to four of them in the Geostatistical Analyst.
There are some instances when semivariograms exist, but
covariance functions do not. For example, there is a linear
variogram, but it does not have a sill, and there is no correspond-
ing covariance function. Only models with sills are used in the
Geostatistical Analyst. There are no hard-and-fast rules on
choosing the “best” variogram model. You can look at your
empirical semivariogram or covariance function and pick a model
that looks appropriate. You can also use validation and cross-
validation as a guide.

USING ANALYTICAL TOOLS WHEN GENERATING SURFACES

Understanding measurement error

Three of the kriging methods—ordinary, simple, and universal—
allow the use of measurement error models. Measurement error
occurs when it is possible to have several observations at the
same location, and they differ. For example, you might extract a
sample from the ground or air and then divide that sample into
several subsamples to be measured. You may want to do this if
the instrument that measures the samples has some variation. As
another example, you may send subsamples of a soil sample to
different laboratories for analysis. There may be other times when
the variation in instrument accuracy is documented. In this case,
you may want to simply input the known measurement variation
into your model. The measurement error model is,

Z(8)= (s) + &8) + As),
where &(s) is measurement error and z«(s) and &(s) are the same as
for the kriging models in Chapter 6. In this model, the nugget
effect is composed of the variance of £(s) (called microscale
variation) plus the variance of &(s) (called measurement error). In
the Geostatistical Analyst, you can specify a proportion of the
estimated nugget effect as microscale variation and measurement
variation, or you can have Geostatistical Analyst estimate
measurement error for you if you have multiple measurements per
location, or you can input a value for measurement variation. The
default is absent of (zero) measurement variation. When there is
no measurement error, kriging is an exact interpolator, meaning
that if a prediction is made at a location where data has been
collected, then the predicted value is the same as the measured
value. However, when measurement errors exist, consider
predicting the filtered value, (s ) +&(s,), which does not have the
measurement error term. At locations where data has been
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collected, the filtered value is not the same as the measured value.

The effect of choosing measurement error models is that your
final map can be smoother and have smaller standard errors than
the exact kriging version. This is illustrated with an example in the
figures below; exact one-dimensional kriging and smooth kriging
are shown when there are only two data locations (at 1 and 2)
with values -1 and 1 for a model without measurement variation
and one where the nugget effect is all measurement variation.

o

—o— Bact
—— Smooth

o

o
0

Predictions
o

Prediction Standard Errors

o
o

X X

Anisotropy: Directional semivariograms and
covariances functions

Because you are working in two-dimensional space, you might
expect that the semivariogram and covariance functions change
not only with distance but also with direction. This is called
anisotropy. Consider two points, s, and s, and the vector that
separates them, which we denote as s,- s_. This vector will have a
distance on the x-coordinate as well as the y-coordinate. Alterna-
tively, you can think of the vector as having a distance and an
angle in polar coordinates. Here anisotropy is described for the
semivariogram; similar ideas for the covariance function should
be obvious. The semivariogram, when plotted on the two-
dimensional coordinate axes, looks like the following diagram:
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Isotropic Anisotropic

Semvaniogram

Major Minor Angle
Range Direction

N

-~ Direction of Search

— g

The isotropic model is the same in all directions, whereas the
anisotropic model reaches the sill more rapidly in some directions
than others. The length of the longer axis to reach the sill is called
the major range, and the length of the shorter axis to reach the sill
is called the minor range, and you also have the angle of rotation
of the line that forms the major range. In the Geostatistical
Analyst, an outline of the range is given in blue, over the
empirical semivariogram surface.
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Empirical semivariograms and covariance
functions

The semivariogram and covariance functions are theoretical
quantities that you cannot observe, so you estimate them from
your data, using what is called the empirical semivariogram and
empirical covariance functions. Often, you can gain insight into
the quantities by looking at the way they are estimated. Look at
the empirical semivariogram first. Suppose that you take all pairs
of data that are a similar distance and direction from each other
such as those connected by the green lines in the following

figure.
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For all of the pairs of locations s, and s, that are joined by lines,
compute

average|(z(s) -z(s))’].
where z(s) is the measured value at location s,. If all of the pairs of
locations s, and s, are close to each other. it is expected that z(s))
and z(s,) will be similar in value so that when you take the
differences and square them, the average should be small. As s,
and s, get farther apart, it is expected that their values will become

USING ANALYTICAL TOOLS WHEN GENERATING SURFACES

more dissimilar so that when you take their differences and
square them, the average will get larger.

Look at the covariance function. For all of the pairs of locations s,
and s, that are joined by lines, you compute,

average[ (z(s;) —2)(z(s;) —2) I.

where z(s)) is the measured value at location s, and 7 is the mean
of all of the data. If all of the pairs s, and s, are close to each other,
it is expected that either both z(s)) and z(s ) will be above the
mean z or that they will both be below the mean. Either way,
their product is positive so that when you average all of the
products, you expect a positive value. If s, and s, are far apart,
then it is expected that about half the time the products will be
negative and half the time they will be positive, so it is expected
their average will be near zero.

In the Geostatistical Analyst, the average values calculated
above, for all pairs that have a similar distance and angle, are
plotted on a semivariogram or covariance surface. For example,
here is an empirical semivariogram surface.

The size of the cells is called lag size, and the number of cells is
called number of lags, and they can be set in the Geostatistical
Analyst. The number of lags in this example is 12, counted as the
number of adjacent cells in a straight horizontal or straight
vertical line from the center to the edge of the figure.
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Using the empirical data to estimate theoretical
models

Now you need to use the empirical semivariogram and covariance
functions to estimate the theoretical models, which are what are
actually used to develop the kriging predictors and standard
errors. In the following figure,the estimated theoretical model is
shown, along with the empirical values.
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Cross-Covariance models

When you have multiple datasets and you want to use cokriging,
then you need to develop models for cross-covariance. Because
you have multiple datasets, you keep track of the variables with
subscripts, with Z(s) indicating a random variable for the kth
data type at location s.Then the cross-covariance function
between the kth data type and the mth data type is defined to be,

Ckm(sl,s]) =Cov(Z,(s), Zm(s])).
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Now here is a subtle and often confusing fact: Ckm(sl,s]) can be
asymmetric. In general, Ckm(sl,s]) #* ka(sl,s]) (notice the switch in
the subscripts). To see why, let us look at the following example.

Suppose that you have data arranged in one dimension, along a
line, and it is

Zi(s1) le(Sz) Z4(83) Z1|(54)

Za(s1) Za(52) Z,(s3) Za(ss)

In the example above, the variables for type 1 and 2 are regularly
spaced along the line, with the thick red line indicating highest
cross-covariance, the green line indicating less cross-covariance,
and the thin blue line the least cross-covariance, with no line
indicating 0 cross-covariance. This figure shows that Z (s) and
Z,s) have the highest cross-covariance when s = S and the
cross-covariance decreases as s,and s, get farther apart. In this
example, Ckm(sl,s]) = ka(sl,s]). However, the cross-covariance can
be “shifted”:

C12(52,83) C>1(85.83)
Zy(s1) le(Sz) le(s3) le(S4)
Zx(s1) Z5(s2) Z(s3) Z(S4)
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Now notice that, for example, C|(s..s,) has the minimum cross-
covariance (thin blue line) while C, (s,.s,) has the maximum cross-
covariance (thick red line), so here Ckm(sl,sj) # ka(sl,sj). Relative
to Z,, the cross-covariances of Z, have been shifted -1 unit. In
two dimensions, the Geostatistical Analyst will estimate any shift
in the cross-covariance between the two datasets if you click on
the shift parameters.

The empirical cross-covariances are computed as,

average[ (2,(8;) —Z,)(2,(8;) — 2,) 1.

where Z (s,) is the measured value for the kth dataset at location
S. 7, is the mean for the kth dataset, and the average is taken for
all s, and s, separated by a certain distance and angle. As for the
semivariograms, the Geostatistical Analyst shows both the
empirical and fitted models for cross-covariance.
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Choosing different covariance models, using compound covari-
ance models, and choosing anisotropy will all cause the theoreti-
cal model to change, and you can make a preliminary choice of
model by seeing how well it fits the empirical values. Changing
the lag size and the number of lags and adding shifts will change
the empirical covariance surface, which will cause a correspond-
ing change in the theoretical model. The Geostatistical Analyst
computes default values, but you should feel free to try different
values and use validation, cross-validation, and scientific
judgment to choose the best model.
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The Semivariogram/Covariance Modeling dialog box

Available
Omnidirectional ~ Semivariogram semivariogram
model cloud models

Geostatistical Wizard: Step 2 of 4 - Semivariogram/Covariance Modeling
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surface
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Modeling
semivariograms
and covariance
functions

Modeling semivariograms and
covariance functions fit a
semivariogram or covariance to
your data. The goal is to fit the
best model (yellow line) to the
semivariogram. The model will
then be used in your predic-
tions.

Explore for directional autocor-
relation in your data. The sill,
range, and nugget are the
important characteristics of the
model. If there is measurement
error in your data, use measure-
ment error models.

Selecting the model

Choose a semivariogram model
that looks like it fits the empirical
semivariogram cloud. Use
validation and cross-validation to
help choose from among similar
models.

Chapter 3, ‘The principles of
geostatistical analysis’, has a
general discussion on spatial
autocorrelation and modeling
semivariograms and covariances.
You may also want to look at
Appendix A for the formulas.

Selecting a model

1. On the Semivariogram/
Covariance Modeling dialog
box, click on the desired
semivariogram model.

You will notice that the yellow
line modeling in the
Semivariogram dialog box
will change to reflect the
model that is selected.

USING ANALYTICAL TOOLS WHEN GENERATING SURFACES

Geostatistical Wizard: Step 2 of 4 - Semivariogram,/Covariance Modeling
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Autocorrelation in your
data

Watch the scatter of the points in
the semivariogram around the
yellow line (model). If the points
are close to the line in one direction
and are spread out in another,
there may be a directional
autocorrelation in your data.

This is a graphical
exploration only

The exploration for directional
autocorrelation using the Search
Direction in conjunction with the
directional indicator in the
semivariogram map is only
graphical (around the isotrophic
fitted model). To fit a model with
directional autocorrelation, check
the Anisotropy box.
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Exploring for directional
autocorrelation

1. Check Show Search Direc-
tion.

2. Click the up or down arrows
of the Angle Direction to
explore for the desired
directional angle.

Alternatively, in the
semivariogram map, click
and hold the middle blue line
and drag to the desired
direction.

3. Click the up or down arrows
of the Angle Tolerance to
adjust the angle of tolerance.

Alternatively, in the semivari-
ogram map, click and hold
either of the red directional
indicator lines and drag to
the desired angle.

4. Click the up or down arrows
of the Bandwidth.

Alternatively, in the
semivariogram map, click
and hold either of the purple
lines located on the bound-
ing square. Drag to the
desired width.

Geostatistical Wizard: Step 2 of 4 - Semivariogram,/Covariance Modeling
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| Tip
Checking the anisotropy
check box
Notice the single yellow line becomes
many lines when anisotropy is
checked. The yellow lines show the
semivariogram model for many
different directions. The models (the
yellow lines) are a theoretical “best
fit” semivariogram model to the
empirical semivariogram. The
Geostatistical Analyst automatically
calculates the optimum parameters
(e.g., the Major Range, Minor
Range, and Angle of Direction) to
account for the anisotropic
influence.

T
Checking the
semivariogram after
anisotropy is checked
Check Show Search Direction after
checking Anisotropy. If the model
fitswell, the yellow line should
change to fit the changing scatter of
empirical semivariogram values
when the angle of search direction
is changed.

TP
Calculating the optimal
parameters
The pencil icon above the major
and minor range and direction
input boxes allows you to edit the
input values. By clicking the
calculator icon to the left of the
pencil, the optimal values will be
calculated and set for the input
parameters.

Modeling anisotropy

1. Check Anisotropy on the
Semivariogram/Covariance
Modeling dialog box.

Notice the single yellow line
becomes many lines when
anisotropy is checked.
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Altering the anisotropy
parameters

1. Check Anisotropy on the
Semivariogram/Covariance
Modeling dialog box.

Note: The Minor Range and
Direction check boxes
become active.

2. To change the major range,
click the pencil icon above
the Major Range input
(which makes the input box
active) and type in the
desired range.

3. To change the minor range,
click the pencil icon above
the Minor Range input
(which makes the input box
active) and type in the
desired range. »
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4. To change the angle direc-
tion, click the pencil icon
above the Direction input
(which makes the input box
active) and type in the
desired angle.
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Choosing a lag size

A rule of thumb is that the lag size
times the number of lags should be
less than one-half of the largest
distances in your dataset.

Calculating the optimal
parameters

The pencil icon above the partial
sill and nugget input boxes allows
you to edit the input values. By
clicking the calculator icon to the
left of the pencil, the optimal values
will be calculated and set for these
input parameters.

Changing the lag size
and number of lags

1. On the Semivariogram/
Covariance Modeling dialog
box, type the desired Lag
Size.

2. Click the up or down arrows
or type in the desired value
in order to change the
Number of Lags.
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Changing the partial sill
and nugget

1. On the Semivariogram/
Covariance Modeling dialog
box, click on the pencil
above the Partial Sill input
(which makes the input box
active) and type in the
desired value.

2. Check the Nugget check box,
click on the pencil icon
above the Nugget input
(which makes the input box
active), and type in the
desired value.
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Multiple measurements

If you have multiple measurements
per location, let the Geostatistical
Analyst compute measurement
error for you by checking the ME
box then Click the Estimate button.

Instrument error
Many scientific instruments
document known accuracy. You can

input measurement errors based
on this information.

Zero measurement error

If the measurement error is zero,
you will get “exact” kriging.
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Handling measurement
error

1. Check the Error Modeling
check box.

2. Move the scroll bar to
determine the percentages of
MicroStructure and Measure-
ment Error for the nugget.

Alternatively, type the
percentages or values into
the input boxes.
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Determining the neighborhood search size

Things that are closer to one another are more alike—as the data
locations become farther away from a location where the value is
unknown, they may not be as useful when predicting the value at
an unmeasured location. At some distance, the points will have
no correlation with the prediction location, and it is possible that
they may even be located in an area much different than the
unknown location. Therefore, it is common practice to specify a
search neighborhood that limits the number and the configuration
of the points that will be used in the predictions. There are

two controlling mechanisms to limit the points used, namely
specifying the shape of the neighborhood and establishing
constraints on the points within the shape.

The shape of the search neighborhood will be dictated by the
input data. For instance, if your data is evenly sampled and has
no directional autocorrelation (isotropy), you will want to include
points evenly in all directions from the unknown location. To do
so, you will probably want to specify your neighborhood shape
to be a circle. However, if you know that there is directional
autocorrelation (anisotropy), such as is caused by wind pollut-
ants, you may wish to use an elliptical search neighborhood
scheme with the major axis parallel to the wind when interpolating
a surface. You will do so because you know that points upwind
and downwind from the prediction location are more like the
prediction location’s value at longer distances than those
perpendicular to the wind’s direction.

The search neighborhood shape should be based on an under-
standing of the spatial locations and the spatial autocorrelation of
the dataset. Understanding the spatial locations and
autocorrelations is done through the ESDA tools and with the
tools within the Geostatistical Analyst Wizard. For instance, in

the dialog box below, you can see that a directional autocorrela-
tion (i.e., anisotropy) is influencing the shape of the semivari-
ogram. The semivariogram curve increases slowly in the NNW

USING ANALYTICAL TOOLS WHEN GENERATING SURFACES

direction (approximately 340°) and reaches its range at approxi-
mately 114 km (the lowest yellow line in the variogram). In the
WSW direction, the semivariogram curve increases more rapidly
(the uppermost yellow line). The range in this direction is
approximately 84 km. Since points separated by a distance greater
than the range are not correlated, the information can be used to
define the search strategy.

Check Anisotropy to show

semivariogram envelope

(i.e., semivariogram curves
for all directions).

Semivariogram
envelope
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Use the Search Direction tool to
determine the location of the
range in a particular direction.
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The search neighborhood in this example can be defined as an
ellipse with semimajor and semiminor axes of 128 km and 74 km,
respectively, and with a rotation angle of 340°.

» A
340° ., - N

74 km

128 km

The Searching Neighborhood dialog box allows you to define the
length of the semimajor and semiminor axes and the direction of
the semimajor axis. A circle will have equal lengths for semimajor
and semiminor axes.
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Once the shape is defined, the second mechanism for controlling
the neighborhood involves establishing constraints within the
shape. First, the number of points to be used within the neighbor-
hood for the predictions must be defined. The Geostatistical
Analyst allows you to select the desirable and minimum number
of points to use. Second, to avoid bias in a particular direction,
the circle or ellipse can be divided into sectors from which an
equal number of points are selected.

One sector—{:}l % ':E:'I l%'——Eight sectors

Ellipse with four sectors

This is particularly useful when the sample points have been
collected on transects or a grid. The diagram below demonstrates
a case in which the points closest to the unknown location are
those on a single transect. The constraints of the circle neighbor-
hood below are that it should contain five neighbors in each
prediction. The unknown location is identified in green, and the
five closest neighbors are in yellow. Other points within the circle
are not included because they are farther away.
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A better prediction might be made if points from the other
transects are included in the prediction. The diagram below
shows a four-sector neighborhood that should include at least
three points in each sector but no more than five. A total of

16 points will be used in predicting the unknown point below (in
green). The points that will be used from each sector are colored
by sector.

The number of points and sectors used should be defined
objectively and based on the spatial locations of the sample data.
You need enough points to provide a meaningful prediction at
any given location; however, you do not want to include points
that are too far away from the prediction location. For example, if
you selected a maximum of five points and a minimum of

two points (i.c., the least amount to be included) and four sectors,
the total number of points to be used would be 20. If the minimum
required points are not available in any given sector, the software
selects the nearest available point(s) outside that sector. How-
ever, the search outside the sector will be limited to the arca that
falls within the area defined by extending the sector lines
indefinitely. If five points are not available in any given sector
extension, the total number of points will be less than 20.

The points highlighted in the data view window give an indica-
tion of the absolute value of the weights that will be associated
with each point in the calculation of the value at the prediction
location (the center of the circle or ellipse). In the example below,
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the prediction location is at the intersection of the sectors, and
four points (red) will have weights of more than 10 percent. The
larger the absolute value of the weight, the more impact the point
will have on the calculation of the value at the prediction location.

If not enough points are
available within the search
neighborhood, the software
selects the nearest available
points (this yellow point
belongs to the upper-right
sector).

Only two points are available
in this sector.

Besides using the semivariogram, there are several other means
for determining the search neighborhood shape and constraints.
And the examination of the spatial locations of the samples in
ArcMap can also assist in the neighborhood definition. For
example, the samples may have been taken on transects, creating
a grid with the points closer together in the east—west direction
than in the north—south direction. In this situation, an appropriate
search ellipse may have the semimajor axis in the north-south
direction. The axes of the ellipse can be defined in such a way
that a relatively equal number of points are within the bounds (or
limits) of that ellipse in both directions.
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The Searching Neighborhood dialog box

Number of points used The minimum number of points
to predict a value at a to be used (they may lie outside
test location. the search ellipse).

Geostatistical Whizard: Step 4 of 5 - Searching Heighborhood
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Geometry and
number of sectors
used in the search.

Prediction for
test location.

Click to preview
the surface.



Determining the
neighborhood
search size

The neighborhood search size
defines the neighborhood
shape and the constraints of
the points within the neighbor-
hood that will be used in the
prediction of an unmeasured
location.

You set the neighborhood
parameters by looking for the
locations of the points in the
data view window and using
prior knowledge gained in
ESDA and semivariogram/
covariance modeling.

Tip

Assessing a neighborhood
The impact of the search neighbor-

hood can be assessed using the
cross-validation and validation
tools that are available in Geo-

statistical Analyst. If necessary, the

search neighborhood can be
redefined and another surface
created.

Changing the number of
points to include in a
neighborhood

1. On the Searching Neighbor-
hood dialog box, click the
Neighbors to Include up and
down arrows.

Alternatively, type in the
desired value.

2. To set a minimum of points to
include in the neighborhood,
check the Include at Least
check box and click the up
and down arrows until the
desired value is reached.

Alternatively, type the value
in the input field.
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Tip
Weight values
Weights are displayed as absolute

values, that is, -6 percent and
6 percent are therefore “equal’.

Tip
It is possible for the Minor

semiaxis value to be greater than
the Major semiaxis.
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Altering the shape of the
neighborhood

1.

On the Searching Neighbor-
hood dialog box, click the
desired ellipse icon to
change the default neighbor-
hood shape type.

Check the Shape check box.

The controls in the shape
frame will become active.

Click the Angle up or down
arrows or type in the desired
angle to alter the angle of the
ellipse.

Type the desired value in the
Major and Minor Semiaxis
input fields to alter the shape
of the ellipse.

In the display window of the
dialog box, the ellipse will
reflect the changes.

leane
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Tip Determining the
prediction for a specific

The predicted value A
location

On the Searching Neighborhood
dialog box go to the Test Location
frame, there the values in the X and
Y input fields represent the map
coordinates for the prediction
(which is also the center of the
ellipse in the display window).

1. The number of neighbors
used for prediction and the
prediction are displayed
below the input fields (in the
bottom right of the dialog
box). To initiate a new
prediction location, click the
desired location in the
display area of the dialog
box.

2. Alternatively, enter the
location in the X and Y input
fields.

The prediction and number of
neighbors are updated
immediately with the new
location.
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Altering the map view

1. On the Searching Neighbor-
hood dialog box, to zoom in
on the map display, click the
Zoom In button, then drag a
box around the area of the
map on which the zoom will
occur.

2. To zoom out on the map
display, click the Zoom Out
button.

3. To pan around in the map
display, click the Pan button
and move the mouse into the
map display, hold down the
left mouse button, and move
the cursor.

The map will move in
coordination with the cursor.

4. To display the map using the
full extent, click the Full
Extent button.

5. To preview the output
surface, click the Preview
type dropdown menu and
click Surface. To return to the
previous view, click Neigh-
bors.
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Performing cross-validation and validation

Before you produce the final surface, you should have some idea
of how well the model predicts the values at unknown locations.
Cross-validation and validation help you make an informed
decision as to which model provides the best predictions. The
calculated statistics serve as diagnostics that indicate whether
the model and/or its associated parameter values are reasonable.

Cross validation and validation withhold one or more data
samples and then make a prediction to the same data location. In
this way, you can compare the predicted value to the observed
value and from this get useful information about the kriging
model (e.g., the semivariogram parameters and the searching
neighborhood). The difference between cross-validation and
validation will be discussed next.

Cross-validation uses all of the data to estimate the autocorrela-
tion model. Then it removes cach data location, one at a time, and
predicts the associated data value. For example, the diagram
below shows 10 randomly distributed data points. Cross-
validation omits a point (red point) and calculates the value of
this location using the remaining nine points (blue points). The
predicted and actual values at the location of the omitted point
are compared. This procedure is repeated for a second point, and
so on. For all points, cross-validation compares the measured and
predicted values. In a sense, cross-validation “cheats™ a little by
using all of the data to estimate the autocorrelation model. After
completing cross-validation, some data locations may be set
aside as unusual, requiring the autocorrelation model to be refit.

(o] .. L] ..
® o
And so on for all points
® e @ ® ®
_—
] ®
e * e *
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Validation first removes part of the data—call it the test dataset—
and then uses the rest of the data—call it the training dataset—to
develop the trend and autocorrelation models to be used for
prediction. In the Geostatistical Analyst, you create the test and
training datasets using the Create Subset tools. Other than that,
the types of graphs and summary statistics used to compare
predictions to true values are similar for both validation and
cross-validation. Validation creates a model for only a subset of
the data, so it does not directly check your final model, which
should include all available data. Rather, validation checks
whether a “protocol” of decisions is valid, for example, choice of
semivariogram model, choice of lag size, choice of search
neighborhood, and so on. If the decision protocol works for the
validation dataset, you can feel comfortable that it also works for
the whole dataset.

Geostatistical Analyst gives several graphs and summaries of the
measurement values versus the predicted values.Starting with the
plots, a scatter plot of predicted versus measurement values is
given. One might expect that these should scatter around the 1:1
line (the black dashed line below). However, the slope is usually
less than one. It is a property of kriging that tends to
underpredict large values and overpredict small values, as shown
in the following figure.
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The fitted line through the scatter of points is given in blue with

the equation given just below the plot. The error plot is the same

as the prediction plot, except here the true values are subtracted
from the predicted values. For the standardized error plot, the

measurement values are subtracted from the predicted values and
then divided by the estimated kriging standard errors. All three of

these plots help to show how well kriging is predicting. If all the

data was independent (no autocorrelation), all predictions will be

the same (every prediction would be the mean of the measured
data), so the blue line would be horizontal. With autocorrelation

and a good kriging model, the blue line should be closer to the 1:1
(black dashed) line. You can also see the scatter about the line (a

few are given in the figure above as green lines). The tighter the
scatter about the 1:1 line, the better.

The final plot is a QQPlot. This shows the quantiles of the
difference between the predicted and measurement values
divided by the estimated kriging standard errors and the corre-
sponding quantiles from a standard normal distribution. If the
errors of the predictions from their true values are normally

distributed, the points should lie roughly along the dashed line. If
the errors are normally distributed, you can be confident of using

methods that rely on normality (e.g., quantile maps in ordinary
kriging).
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See Chapter 4, ‘Exploratory Spatial Data Analysis’, for more on
QQPlots.

Finally, some summary statistics on the kriging prediction errors
are given in the lower left. You use these as diagnostics for
three basic ideas:

1. You would like your predictions to be unbiased (centered on
the measurement values). If the prediction errors are unbiased,
the mean prediction error should be near zero. However, this
value depends on the scale of the data, so to standardize
these the standardized prediction errors give the prediction
errors divided by their prediction standard errors. The mean of
these should also be near zero.

2. You would like your predictions to be as close to the
measurment values as possible. The root-mean-square
prediction errors are computed as the square root of the
average of the squared distances of the green lines in the
prediction plot above. The shorter the green lines, the closer
the predictions are to their true values, and the smaller the
root-mean-square prediction errors. This summary can be
used to compare different models by seeing how closely they
predict the measurement values. The smaller the root-mean-
square prediction error, the better.

3. You would like your assessment of uncertainty, the prediction
standard errors, to be valid. Each of the kriging methods gives
the estimated prediction kriging standard errors. Besides
making predictions, we estimate the variability of the predic-
tions from the measurement values. It is important to get the
correct variability. For example, in ordinary kriging (assuming
the residuals are normally distributed) the quantile and
probability maps depend on the kriging standard errors as
much as the predictions themselves. If the average standard
errors are close to the root-mean-square prediction errors,
then you are correctly assessing the variability in prediction.
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If the average standard errors are greater than the root-mean-
square prediction errors, then you are overestimating the
variability of your predictions; if the average standard errors
are less than the root-mean-square prediction errors, then you
are underestimating the variability in your predictions.
Another way to look at this is to divide each prediction error
by its estimated prediction standard error. They should be
similar, on average, and so the root-mean-square standardized
errors should be close to one if the prediction standard errors
are valid. If the root-mean-square standardized errors are
greater than 1, you are underestimating the variability in our
predictions; if the root-mean-square standardized errors are
less than 1, you are overestimating the variability in your
predictions.
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The Cross Validation and Validation dialog box

Cross-validation

Line of best fit scatter plot 1:1 Line
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Performing cross-
validation to as-
sess parameter
selections

Cross-validation allows you to
determine “how good” your
model 1s. Your goal should be to
have standardized mean
prediction errors near 0, small
root-mean-square prediction
errors, average standard error
near root-mean-square predic-
tion errors, and standardized
root-mean-square prediction
errors near 1.

The spread of the points should
be as close as possible around
the dashed gray line. Look for
points that deviate greatly from
the line.

Selecting points

When a row is selected, the point is
highlighted in the chart above.
Click a column to sort by. This can
help find specific points in the
graph.

Viewing all rows and
columns

Use the scroll bars to view all rows
and columns in the table.

Examining the predicted

fit

1. On the Cross Validation
dialog box, select either the
Predicted, Error, Standard-
ized Error, or QQPlot tab
according to the desired
method in which you want to
view the results.

Geostatistical Wizard: Step 5 of 5 - Cross Validation
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Selecting a particular
point

1. On the Cross Validation
dialog box, in the table at the
bottom right, click on the row
representing the point of
interest.

When a row is selected, the
point is highlighted in the
chart above.
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Geostatistical Wizard: Step 5 of 6 - Cross Validation
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Viewing a saved table

To view the saved table, click Add
on the Standard toolbar, navigate
to the database, double-click it,
then add the tables. Right-click on
them in the ArcMap table of
contents and click Open.
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Saving the cross-
validation statistics to a
file

1. Click Save Cross Validation.

2. Navigate to the location to
save the dataset.

Type the name of the dataset.

Click the type of dataset.
Click Save.

Geostatistical Wizard: Step 5 of 5 - Cross Validation
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Assessing
decision protocol
using validation

Validation allows you to
evaluate your predictions.

Your goal should be to have
standardized mean prediction
errors near 0, small root-mean-
square prediction errors,
average standard errors near
root-mean-square prediction
errors, and standardized root-
mean-square prediction errors
near 1.

The spread of the points should

be as close as possible around
the dashed gray line. Look for
points that deviate greatly from
the line.

Tip
Dividing the training and
test data

Keep the slider in the center to split

the data in half equally between
training and test data.

See ‘Performing cross-validation
or validation to see how well the
parameters fit’ (prior to these
tasks) for a comparison of cross-
validation and validation.

Creating the subsets to
use for validation

1.

Add the dataset that you wish
to subset to ArcMap.

Click Create Subsets.

Click the dropdown arrow
and click on the dataset that
you wish to subset.

Click Next.

Optionally, change the
location and/or name for the
output geodatabase file.

Optionally, change the
default subset names.

Click and drag the slider to
the required position.

Click Finish.
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Viewing all rows and
columns

Use the scroll bars to view all rows
and columns in the table.

Highlighting values

When a row is selected, the point is
highlighted in the chart above.
Click a column to sort by. This can
help find specific points in the
graph.

Opening a saved table

To view a saved table, click Add on
the Standard toolbar of ArcMap,
navigate to the database, double-
clickit, then add the tables. Right-
click on them in the ArcMap table
of contents and click Open.
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Performing validation

1.

10.

Click the Add Data button
and navigate to the test and
training datasets (created
following the steps on the
previous page). Click Add.

Start the Geostatistical
Analyst Wizard.

Click the Input Data
dropdown arrow and click
the training layer (created by
subsetting the original
dataset on the previous
page).

Click the Attribute dropdown
arrow and click the attribute
you want to use in the
interpolation.

Check the Validation check
box.

Click the Input Data
dropdown arrow and click
the test dataset (created by
subsetting the original
dataset on the previous
page).

Click the Attribute dropdown
arrow and click the same
attribute you chose for the
training dataset.

Click the Method you wish to
use.

Click Next on this and all
subsequent dialog boxes
until you reach the Validation
dialog box.

Optionally, click to save the
validation table to a data-
base.
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Comparing one model with another

Comparison helps you determine how good the model that
created a geostatistical layer is relative to another model. The two
geostatistical layers that you are comparing could have been
created by two different models (e.g., IDW and ordinary kriging),
or they could have been created with the same model but with
different parameters. In the first case, you are comparing which
method is best for your data and, in the second, you are examin-
ing the effects of different input parameters on a model when
creating the output surface.

The Comparison dialog box uses the cross-validation statistics as
discussed in the previous section. However, it allows you to
examine the statistics and the plots side by side. Generally, the
best model is the one that has the standardized mean nearest to
zero, the smallest root-mean-square prediction error, the average
standard error nearest the root-mean-square prediction error, and
the standardized root-mean-square prediction error nearest to
one.

It is common practice to create many surfaces before one is
identified as “best” and will be final in itself or will be passed into
a larger model (e.g., a suitability model for siting houses) to solve
an existing problem. You can systematically compare each surface
with another, eliminating the “worst” of the two being compared,
until the two “best” surfaces remain and are compared with one
another. You can conclude that for this particular analysis the
best of the final two surfaces is the “best” surface possible.
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Concerns when comparing methods and models

There are two issues when comparing the results from different
methods and/or models: one is optimality, and the other is
validity.

For example, the root-mean-square prediction error may be smaller
for a particular model. Therefore, you might conclude that this is
the “optimal” model. However, when comparing to another model,
the root-mean-square prediction error may be closer to the
average estimated prediction standard error. This is a more valid
model because when you predict at a point without data, you
only have the estimated standard errors to assess your uncer-
tainty of that prediction. When the average estimated prediction
standard errors are close to the root-mean-square prediction
errors from cross-validation, then you are confident that the
prediction standard errors are appropriate.

As well as the statistics provided in the Comparison dialog box,
you should also use prior information that you have on the
dataset and that you derived in ESDA when evaluating which
model is “best”. Refer to the previous section on cross-validation
and validation for a complete discussion on how the statistics
have been derived and how they should be used.
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The Cross Validation Comparison dialog box

Cross-
validation
scatter plot for
layer 1

1:1 line for
layer 1

Summary
statistics for
layer 1
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Fitted line
for layer 1

Cross-validation
scatter plot for
layer 2
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Comparing
one model with
another

When comparing models you
should look for one with the
standardized mean nearest to
zero, the smallest root-mean-
square prediction error, the
average prediction standard error
nearest the root-mean-square
prediction error, and the stan-
dardized root-mean-square
prediction error nearest to one.

To compare models you must
have two geostatistical layers for
comparison (created using the
Geostatistical Analyst). These
two layers may have been
created using different interpola-
tion methods (e.g., IDW and
ordinary kriging) or that were
created using the same method
with different parameters.

See ‘Performing cross-validation
or validation to see how well the
parameters fit’ (prior to these
tasks) for a comparison of cross-
validation and validation.

Performing comparison

1.

Right-click one of the layers
in the ArcMap table of
contents you wish to com-
pare and click on Compare.

Click the second layer in the
comparison in the To
dropdown menu.

Click the various tabs to see
the different results of the
comparison.

Click Close to close the
Cross Validation Comparison
dialog box.
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Modeling distributions and determining transformations

Box-Cox, arcsine, and log transformations

The Geostatistical Analyst allows the use of several transforma-
tions including the Box—Cox (also known as power transforma-
tions), logarithmic, and arcsine. Suppose you observe data Z(s),
and there is some transformation Y(s) = #(Z(s)). Usually, you want
to find the transformation so that ¥(s) is normally distributed.
Now, what often happens is that the transformation also yields
data that has constant variance through the study area. Now
examine each transformation.

The Box—Cox transformation is
Y(8)=(Z(s)*- D)/A

for L # 0. For example, suppose that your data is composed of
counts of some phenomenon. For these types of data, the
variance is often related to the mean. That is, if you have small
counts in part of your study area, the variability in that local
region will be smaller than the variability in another region where
the counts are larger. In this case, the square root transformation
will help to make the variances more constant throughout the
study area and often makes the data appear normally distributed
as well. The square root transformation is a special case of the
Box—Cox transformation when A = /5.

The log transformation is actually also a special case of the Box—
Cox transformations when A = 0; the transformation is

Y(s) = In(Z(s))

for Z(s) > 0, and In is the natural logarithm. A consequence of the
log transformation is the prediction method known as lognormal
kriging, whereas for all other values of ., the associated predic-
tion method is known as transgaussian kriging. The log transfor-
mation is often used where the data has a skewed distribution
and there are few very large values. These large values may be
localized in your study area, and the log transformation will help
to make the variances more constant and normalize your data.
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The arcsine transformation is
Y(s) =sin'(Z(s))

for Z(s) between 0 and 1. The arcsine transformation can be used
for data that is proportions or percentages. Often, when data is
proportions, the variance is smallest near 0 and 1 and largest near
0.5. Then the arcsine transformation often yields data that has
constant variance throughout the study area and often makes the
data appear normally distributed as well.
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Normal score transformation

The normal score transformation ranks your dataset, from lowest
to highest values, and matches these ranks to equivalent ranks
from a normal distribution; then the transformation is defined by
taking values from the normal distribution at that rank. This can
be seen from the following figures. In the first, see a histogram of
the data, which is commonly plotted when doing exploratory data
analysis. However, an equivalent expression of the data is to use
the cumulative distribution, given on the right.
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Work with the cumulative distribution to obtain the normal score
transformation. Take the observed cumulative distribution and
match it with a cumulative distribution of a standard normal

distribution. This can best be seen via the graphic procedure
given below.
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In this example, a value near 0.09 in the original data is trans-
formed to a value just above zero as a normal-score transforma-
tion. In the Geostatistical Analyst, there are three approximation
methods: direct, linear, and Gaussian kernels. The direct method
uses the observed cumulative distribution; the linear method fits
lines between each “step” of the cumulative distribution; and the
Gaussian kernels method approximates the probability distribu-
tion by fitting a linear combination of density cumulative distribu-
tions. After making predictions on the transformed scale, it is
necessary to back-transform to get the predictions back to the
original scale. For example, if you use direct approximation of
normal distribution, the back transformation will look like this:
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Normal Scores

The choice of approximation method depends on the assump-
tions you are willing to make and the smoothness of the approxi-
mation. The direct method is the least smooth and has the fewest
assumptions; the linear method is in between; and the Gaussian
kernels method has the smoothest back transformation, but it also
has the strongest assumptions (that the data distribution can be
approximated by a finite mixture of normal distributions).
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The Normal Score Transformation distribution dialog box

Geostatistical Wizard: Step 2 of 5 - Noimal Score Transformation
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Comparing normal score transformation to other
transformations

The normal score transformation (NST) can be compared to the
Box—Cox, arcsine, and log (BAL) transformations. The most
fundamental difference is that the NST transformation function
changes with each particular dataset, whereas BAL does not
(e.g., the log transformation function is always the natural
logarithm). However, the goal of the NST is to make all random
errors for the whole population (not only the sample) normally
distributed. Thus, it is important that the cumulative distribution
from the sample reflects the true cumulative distribution of the
whole population. From the point of view of classical statistics,
the NST transformation when applied to nonspatial data could be
viewed as a rank-based method. However, NST can be useful for
geostatistics because when the data is dependent it may be casier
to detect and model autocorrelation using the NST. For this
reason, the NST must occur after detrending since covariance
and variograms are calculated on residuals after trend correction.
Contrast this with BAL transformation, where any relationship
between the variance and the trend is removed. Hence, after the
BAL transformation the trend and model autocorrelation is
removed (optionally). It is often a consequence that residuals that
are approximately normally distributed appear, but it is not a
specific goal of BAL transformation like it is for the NST transfor-
mation.
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Using transformations

Using
transformations 1. On the Geostatistical Method

Selection dialog box, click
(IOg, BOX—COX, the desired transformation in
and arcsine)

the Transformation dropdown
menu.

Click Next.

Follow the dialog boxes to
create a surface.

Using transformations makes

variances constant throughout
your study area and makes the
data more normally distributed.

Use the histogram and normal
QQPlots in ESDA to try
different transformations to
attain a normal distribution.

Some geostatistical methods are
critically dependent on the data
coming from a normal distribu-
tion—for example, disjunctive
kriging and quantile and
probability maps for ordinary,
simple, and universal kriging.
So, transformatting the data can
make the data more normal.

Tip

When you can transform
The transformation option can be
accessed using either the kriging or
the cokriging methods on the
Choose Input Data and Method
dialog box.
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Geostatistical Wizard: Step 1 of 4 - Geostatistical Method Selection
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Using the normal
score
transformation

The normal score transforma-
tion transforms your data to
univariate normality for use
with simple and disjunctive
kriging.

It is a good 1dea to compare the
fitted model to the empirical
cumulative distribution function
for each of the three NST
approximation methods.

Modeling distributions

1. Click the Simple or Disjunc-
tive Kriging interpolation
method to use for the
distribution.

2. On the Geostatistical Method
Selection dialog box, click
Normal Score in the Transfor-
mation dropdown list.

3. Click Next.

Alternatively, click Cumula-
tive Distribution to switch the
display of the graph.

5. Alternatively, type the number
of bars you wish to display in
the chart.

6. Click the Dataset Selection
dropdown arrow to switch
between datasets (only for
cokriging where you have
two or more datasets).
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Checking for the bivariate normal distribution

Disjunctive kriging requires that the data has a bivariate normal
distribution. Also, to develop probability and quantile maps,
assume that the data comes from a full multivariate normal
distribution. To check for a univariate normal distribution, you
can use normal QQPlots. Now check for bivariate normality.
(Neither of these checks guarantees that the data comes from a
full multivariate normal distribution, but it is often reasonable to
assume so based on these diagnostic tools.) Consider the
following probability statement:

fip,h)=Prob|Z(s) <z, Z(s+h) ézp]

where z_is the standard normal quantile for some probability p.
For example, a familiar standard normal quantile occurs when p =
0.975, thenzp =1.96; whenp=0.5, thenzp =0 and when p =
0.025, then z,=-1.96. The probability statement above takes a
variable Z at location s, and another variable Z at some other
location s + h, and gives the probability that they are both less
than z, This probability statement is a function f{p.h), depending
on p (and consequently z ) and h. The function will also depend
on the amount of autocorrelation between Z(s) and Z(s + h).

Now assume that Z(s) and Z(s + h) have a bivariate normal
distribution. If the autocorrelation is known, then there are
formulas for f{p,h). First, suppose h is constant, and only p
changes. Then, we would expect the function to look like this:

0.2 04 0.6 0.8 1.0 -1.5 -1.0 05 0.0 05 1.0 15
P Yo

The right panel looks like a cumulative probability distribution.
Now, suppose that p is fixed, and f{(p.h) changes with h.

206

First, suppose that h is very small. In that case, Prob[Z(s) < Z, Z(s
+h)< zp] is very nearly the same as Prob[Z(s) < zp] = p. Next,
suppose that h is very large. In that case, Prob[Z(s) < z, Z(s +h)
<z] is very nearly the same as Prob[Z(s) < z] xProb[Z(s+h) < z]
= p* (because Z(s) and Z(s + h) are very nearly independent).
Thus, for fixed p, it is expected that f{p,h) varies between p and
p*. Now, considering f(p,h) as a function of both p and the length
of h, you might observe something like the following figure.
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This function can be converted to semivariograms and covari-
ance functions for indicators. If Prob[Z(s) < z, Z(sth)<z]=
E[I(Z(s) < zp)xI(Z (s+h)< zp)], where I(statement) is the indicator
function that is 1 if statement is true, otherwise it is 0, then the
covariance function for the indicators for fixed p is

C (hp)=fip.h)-p
and the variogram for indicators for fixed p is,

v,(hp)=p-fp.h)
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Therefore, you can estimate the variogram and covariance function on the indicators of the original data and use these to obtain the
expected variograms and covariance functions of indicators for various values of p. For example, they will look like this:
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The red dots in the figure above (from the Semivariogram/Covariance Modeling dialog) are the values for the empirical covariance and
semivariogram on the indicator variables. The green line is the theoretical curve of an indicator semivariogram or indicator covariance,
assuming the data comes from a bivariate normal distribution, and the yellow line is fitted to the observed indicator data. Thus, the
green line and the yellow line should be similar if the data has a bivariate normal distribution.
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The Examine Bivariate Distribution dialog box

Empirical
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indicators
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Checking for
bivariate
distribution

This 1s a means to determine 1f

the data comes from a bivariate
normal distribution. The yellow
and green lines should be close
to each other if the data comes

from a bivariate normal distribu-
tion.

Disjunctive kriging requires the
data to come from a bivariate
normal distribution. Probability
and quantile maps in simple
kriging require that the data
comes from a multivariate
normal distribution, and the
bivariate check can help justify
the multivariate assumption.

Tip

Methods that enable the
bivariate distribution to be
checked

Use either kriging or cokriging
and then either a simple kriging/
cokriging method or a disjunctive
kriging/cokriging method in the
Geostatistical Method Selection
dialog box.

Checking for bivariate

Geostatistical Wizard: Step 1 of 5 - Geostatistical Method Selection

distribution = o
* Quantile Map
1. Click the Add Data button on - Puobakiiy Hap

9.

*.Prediction Standard Error

the ArcMap toolbar and add I Simle Kiiging

Selection
Method Simple Kiiging
Output Map: Prediction

Datacet 1|

Transfomation: | More =

I | Deslustering before Transfom

000

the layer you wish to check [t N
for bivariate distribution. b o andard 1t N |
[ Indicatr Kriging

Start the Geostatistical £ Prbabily Ky ~Pimay Thesheld

) isiunctive Kriging & Ersend
Wizard. el e ==
Click either Kriging or e e ) |

kri in i I vamine Bivanste Distiibutior

Co ging Datasels: | Dataset 14 Dalasel 1 =i
Click Next on the Choose T
Input Data and Method

X <Back. [ Erich | Concel |
dialog box.
Click the Simple or Disjunc- 0

tive Kriging/Cokriging
method to use.
Check Examine Bivariate

Distribution and select
Normal Score Transformation.

Choose the Dataset combi-
nation you wish to use
(cokriging only).

Type the number of quantiles
to check.

Click Next.

10. Click the Approximation

Method in the dropdown
menu, set the parameters,
and click either Probability
Density or Cumulative
Distribution radio buttons on
the Normal Score Transfor-
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11.

12.

Specify the desired param-
eters in the Semivariogram/
Covariance Modeling dialog
box and click Next.

Explore the bivariate
distribution on the Examine
Bivariate Distribution dialog
box. Click Next.
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Implementing declustering to adjust for preferential sampling

Very often the spatial locations of your data are not randomly or regularly spaced. For various reasons, the data may have been sampled
preferentially, with a higher density of sample points in some places than in others. As you saw in the previous section, it is important
that for proper implementation of the normal score transformation, the histogram (and so also the cumulative distribution) of the sample
properly reflect the histogram of whole population. If data is preferentially sampled when it is spatially autocorrelated, the resulting
histogram from the sample may not reflect the histogram of the population. The following figures give an example.
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In the upper-left figure, the whole population of values at 100 locations along a line are given as solid circles. These were simulated from
a spatially autocorrelated process with a constant mean and strong positive autocorrelation. The sampled data is every other point,
beginning with the first one, and is shown with circles. To the right, the histogram of the population is given in blue, and the histogram
of the sample is given in violet.
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Because the sample is half of the whole population, the sample
histogram bars should be about half as high as for the popula-
tion, with some variation, and this appears to be the case. In the
lower left, the data is preferentially sampled, with samples
occurring at every fifth location up to location 34, then it is every
location up to location 70, and then every fifth location again to
the end. The end result is, again, that half of the whole population
is sampled. The preferential sampling toward the middle of the
spatial locations causes a higher proportion of the middle data
values to occur in the sample, and hence the histogram bars are
nearly equal to the population bars for values ranging from -

3 to 1. In conjunction with this, the lower and higher values are
underrepresented in the sample histogram.

One solution to preferential sampling is to weight the data, with
data in densely sampled areas receiving less weight (which would
shrink the sample histogram bars for the values between -3 and 1
in the preferentially sampled example above) and data in sparsely
sampled areas receiving greater weight (which would expand the
sample histogram bars at the lower and higher data values). The
Geostatistical Analyst allows for two methods. The default
method is cell declustering. Here, rectangular cells are arranged
over the data locations in a grid, and the weight attached to each
data location is inversely proportional to the number of data
points in its cell. An example is given in the following figure.

Weight o< 1 _ -\_» .
Weight o< 1/4 \._ _ . Weight o< 1/2
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Choosing the grid size is all that remains. Several schemes can be
adopted, and you can consult the literature to choose one. One
tool the Geostatistical Analyst provides is a graph that shows the
weighted mean value among all the data for various cell sizes. It
has been suggested to choose the cell size corresponding to the
minimum weighted mean if the data has been preferentially
sampled in areas of high values and, conversely, pick the cell size
corresponding to the maximum weighted mean if the data has
been preferentially sampled in areas of low values.

Another scheme uses a polygonal method that defines a polygon
around each spatial data location such that all locations within
that polygon are closer to the data location than any other data
location, as shown in the following figure.

The data locations are shown as small dots, and the polygons are
drawn around them, with color shading indicating the size of the
polygons. The idea is to weight each data location in proportion
to the area that it “represents”. The problem with this method is
that it is difficult to define weights toward the edge. The edge
points can often receive large weights unless a border encloses
the data. In the Geostatistical Analyst, the border is a rectangle,
which often gives too much weight to edge locations.
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The Declustering dialog box
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to the size of the polygons

Geostatistical Wizard: Step 2 of 6 - Declustering
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Declustering to
adjust for
preferential
sampling

There are two ways to decluster
your data: by the cell method
and by Voronoi polygons.

Samples should be taken so
they are representative of the
entire surface. However, many
times the samples are taken
where the concentration is most
severe, thus skewing the view
of the surface. Declustering
accounts for skewed represen-
tation of the samples by
weighting them appropriately
so that a more accurate surface
can be created.

Tip

Using declustering
Declustering is only used when you
choose normal score transforma-
tion as the transformation method.
Use probability, simple, or
disjunctive kriging/cokriging to
access the normal score transfor-
mation method.
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Performing cell
declustering

1. Click Kriging or Cokriging on
the Choose Input Data and
Method dialog box.

2. Click either Probability,
Disjunctive, or Simple
Kriging or Cokriging meth-
ods.

3. Click the Normal Score
transformation in the Trans-
formation dropdown menu.

4. Check Declustering before
Transform.

5. Click Next.

6. Click the Dataset Selection
dropdown arrow and click
the dataset you wish to
display (cokriging only).

7. Specify the desired param-
eters.

8. Click the tabs to switch
between the Cell Size,
Anisotropy, and Angle charts.

9. Change cell size, anisotropy,
shift, and angle to find the
extremum in the graph.

10. Alternatively, click the
Declustering Method
dropdown arrow and click
Polgonal to switch to a
polygon declustering
display.

11. Click Next. »
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12. Click the Approximation
Method in the dropdown
menu, set the parameters,
and click either Probability
Density or Cumulative
distribution radio buttons on
the Normal Score Transfor-
mation dialog box. Click
Next.

13. Specify the desired param-
eters in the Semivariogram/
Covariance Modeling dialog
box and click Next.

14. Specify the desired param-
eters in the Searching
Neighborhood dialog box
and click Next.

15. Examine the results on the
Cross Validation dialog box
and click Finish.

16. On the Output Layer Informa-
tion dialog box, click OK.
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Removing trends from the data

Sometimes you may want to remove a surface trend from your
data and use kriging or cokriging on the detrended (called
residual) data. Consider the additive model,

Z(8)= u(s) + &(s)

where £4(s) is some deterministic surface (called the trend) and
&(8) is spatially autocorrelated error. Conceptually, the trend is
fixed, which means that if you simulate data again and again, then
the trend never changes. However, you do see fluctuations in the
simulated surfaces due to the autocorrelated random errors.
Usually, the trend changes gradually through space, while the
random errors change more quickly. A meteorological example of a
trend might be where you observe (and know theoretically) a
temperature gradient with latitude. However, observations on any
given day show local variations due to weather fronts, ground
cover, cloud patterns, and so on, that are not so predictable, so
the local variations are modeled as being autocorrelated.

Unfortunately, there is no magical way to decompose data
uniquely into a trend and random errors. The following is offered
to serve as a useful guide. In the following figure, data was
simulated from two models. One was from the ordinary kriging
model, where Z(s) = £+ &(s) and the errors &(s) were
autocorrelated. The process had a mean = 0 with an exponential
semivariogram. Another dataset was simulated from a universal
kriging model with z(s) = £, + B,x(s) + Bx*(s), shown by the solid
line, but the errors were independent, with mean 0 and variance 1.

As you can see, it is difficult to tell which is which (the blue
circles are from the ordinary kriging model, and the red circles are
from the universal kriging model with independent errors). Spatial
autocorrelation can allow flexible prediction surfaces, and this
example shows that it can be difficult to decide among the models
based on the data alone. In general, you should stick to ordinary
kriging unless you have strong reasons to remove a trend
surface. The reason is that it is best to keep your models as

216

0 5 10 15 20 25 30

simple as possible. If you remove a trend surface, then there are
more parameters to estimate. A two-dimensional quadratic surface
adds five parameters beyond the intercept parameter that need to
be estimated. The more parameters that are estimated, the less
precise the models become. However, there may be times when
the spatial coordinates serve as a proxy to some known trend in
the data. For example, crop production may change with lati-
tude—not because of the coordinates themselves but because
temperature, humidity, rainfall, and so on, change with latitude. In
these cases, it may make sense to remove trend surfaces. Again,
keep the surfaces as simple as possible such as first- or second-
order polynomials. The Geostatistical Analyst also allows local
polynomial smoothing as an option to remove a trend. There is a
very real danger of overfitting data when using trends and
leaving too little variation in the residuals to properly account for
the uncertainty in prediction. Always be sure to check your
models with cross-validation, and especially validation, when you
use trend models.
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The Detrending dialog box (Standard option)

The dataset The neighborhood The power of
being detrended search size the polynomial

Geostatistical Wizard: Step 2 of 5 - Detrending [Standard Dptions]

Datzsett ¥
Searching
Neighborhood
settings

Controls for the
trend display

The estimated
trend display

Map legend
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Removing global
and local trends
from the data:
detrending

Use the ESDA Trend Analysis
tool (see Chapter 4, ‘Exploratory
Spatial Data Analysis’) to
examine if there is a global trend
in the data.

Basically, you are decomposing
your data into a deterministic
trend component and an
autocorrelated random compo-
nent. Once the trend is re-
moved, you will carry out
kriging on the residuals. Before
the final predictions are actually
calculated, the trend 1s added
back to the output surface.

Tip
The order of your trends
Keep your trends as low-order

global polynomials unless you have
good reason to do otherwise.
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Using the slider to
estimate the trend

1. On the Geostatistical Method
Selection dialog box, click
either Ordinary Kriging,
Universal Kriging, or Disjunc-
tive Kriging and the desired
output surface type in the
Geostatistical Method tree
view.

2. Click the dropdown arrow on
the Order of Trend Removal
and click the order for the
trend.

3. Click Next.

Note: If the order of trend is
anything but None, then the
Detrending dialog box will
follow when clicking Next.

4. On the Detrending dialog
box, by moving the slider
between the two extremes,
you define the window size
for fitting the polynomial from
Global to Local.

Alternatively, to set the
neighborhood parameters
click Advanced Options>>.

5. Click Next.
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Displaying and managing geostatistical layers

INTHIS CHAPTER

* What is a geostatistical layer?
e Adding layers

* Working with layers in a map
e Managing layers

* Viewing geostatistical layers in
ArcCatalog

* Representing a geostatistical layer

e Changing the symbology of a
geostatistical layer

e Data classification

e Setting the scales at which a
geostatistical layer will be
displayed

* Predicting values for locations
outside the area of interest

e Saving and exporting geostatisti-
cal layers

ArcMap and Geostatistical Analyst provide awide variety of toolswith
which to display and manage your data. With the display tools, you can
create fine cartographic output and explore or analyze your datato gain
greater insightsin order to make more effective decisions. Exploration is
particularly important when using Geostatistical Analyst because through
these insights you are able to build better models and create more accurate
surfaces.

Even though the management tools may not directly aid in the creation of
surfaces with Geostatistical Analyst, these tools are indispensable for
organizing and ordering the map session as well as your own thinking.

Many of the display and management tools that are applicable to any
ArcMap layer are also applicable to a geostatistical layer. In this chapter, we
will only discuss the general layer tools that are most often used when
working with Geostatistical Analyst and the tools that are specific to a
geostatistical layer. Please refer to Using ArcMap for additional tools that
can be applied to all layer types, including geostatistical layers.

219



What is a geostatistical layer?

In ArcMap, geographic data is represented in layers. There are
different layer types to represent different data. An ArcMap
feature layer may contain polygons representing soil types, points
identifying biomass measured at specific locations, or lines
presenting a network of trails. A raster layer can represent an
aerial photograph or a grid of distances from roads. Other layer
types include a TIN layer for three-dimensional surfaces, a CAD
layer to store CAD map sheets, and a geostatistical layer to store
the results of analysis from the Geostatistical Analyst.

A geostatistical layer’s functionality is similar to all ArcMap
layers. You can add it to ArcMap, remove it, display it, and alter
the symbology in countless ways. However, a geostatistical layer
differs from other layers because of the way it is created and
stored. A geostatistical layer can only be created by the
Geostatistical Analyst. Most ArcMap layer types store the
reference to the data source, the symbology for displaying the
layer, and other defining characteristics. A geostatistical layer
stores the source of the data from which it was created (usually a
point feature layer), the symbology, and other defining
characteristics, but it also stores the model parameters from the
interpolation. From the Properties dialog for a geostatistical
layer, you can view both the original data source and the model
parameters.
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Not only can you identify the source of the input points and the
model parameters, but you can also retrieve general information
with the General tab, see and alter the layer’s map extent with the
Extent tab, change the symbology with the Symbology tab, and
set the transparency and whether to show map tips with the
Display tab.

A geostatistical layer can be viewed in four different formats:
filled contours, contours, grid, or hillshade. You can also
combine multiple formats in a single display of the layer to
achieve various effects. A full range of symbology and
controlling parameters exists for each format.

Filled contours

Sipty | Rocte sz
S P s e
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Contours Hillshade

Grid
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Adding layers

In ArcMap, geographic data is
represented in layers. There are
several different types of layers,
but the ones of particular interest
to the Geostatistical Analyst are
point, polygon, and raster.

The feature layer can represent
polygon features such as soil
types or land use, linear features
such as road networks, or point
features such as incidents of
crime or samples taken of a
pollutant. A point feature layer is
typically used as input into the
Geostatistical Analyst. The
geostatistical layer represents the
surface created from analysis in
the Geostatistical Analyst. A
raster layer may represent a
satellite scene, a scanned image,
or the grid representation of
forest-stand types. Many times,
a geostatistical layer is con-
verted into a raster layer for
further analysis.

Revealing hidden layers
Layers that you add may be
“hidden”. To view a layer that you
can t see, right-click the layer and
click Zoom To Layer.
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Adding layers
1. Click the Add Data button on
the ArcMap Standard toolbar.

2. Click the Look in dropdown
arrow and navigate to the
folder that contains the layer.

3. Click the layer.
4. Click Add.

Adding a group layer

1. Right-click on Layers in the
ArcMap table of contents and
click New Group Layer.

2. Right-click the resulting New
Group Layer in the table of

contents and click Properties.

3. Click the General tab.
4. Optionally, name the group
layer.

5. Optionally, check the Visible
check box to make the Group
Layer visible.

6. Optionally, set the Scale
Range.

7. Click the Group tab.

8. Click Add and navigate to a
dataset you wish to add.

9. Click Add.

10. Continue adding the desired
datasets to the group by
repeating steps 8 and 9.

11. Click OK.
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Working with
layers in a map

There are many tools in ArcMap
that allow you to work with
layers in a map. Some of the
more common ones that are
particularly useful to the
Geostatistical Analyst user are
turning the display of the layer
on or off, controlling the order of
the display of the layers, and
zooming and panning around in a
layer. These tools can be used for
analysis or for the creation of
fine cartographic output.

When using these tools for
analysis, you can explore the
input point layer to be interpo-
lated, as well as investigate the
resulting geostatistical layer.

Once a desirable presentation of
the results is achieved, the output
can then be saved in the map
session.

See also Using ArcMap for
additional tools that manipulate
the display of a layer in a map.

Turning the display of a
layer on or off

1. Check the check box to the
left of the layer name to turn
the layer on or off.

B £F Layers
= B Sample Points

*
0__5' Ordinary Kriging
Prediction

[oa_ozone._pts} [0ZONE]
Filed contours
0045500 - 0.065771
0065771 - 0078867
0.078867 - 0.087768
0.087768 - 0.093817
0.093617 - 0.097928
[ 0.097328 - 0103976
1 0103575 - 0112877
I 0112877 - 0125973
I 0125573 - 0145244
I 0145244 - 0173600

Moving a layer to change
its drawing order

1. In the table of contents, click
and drag the layer up or
down to the desired position.

A black line indicates where
the layer will be placed.

2. Release the mouse pointer to
drop the layer into the new
position.
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Zooming and panning a
layer

1. Click View in the ArcMap
menu bar, click Toolbars, and
check Tools.

2. Various tools, accessed
through icons on the Tools
toolbar, can be used to
explore the map.
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Zoom In
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Select Graphics
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Managing layers Changing the name of a
layer

ArcMap provides a suite of tools
to manage layers. Although these
tools do not aid in exploration or
analysis, they order your map 2. Click again on the name.
session. Some of the most
relevant tools to the Geostatisti-
cal Analyst are saving, renaming,
copying, and removing geostatis- 3. Type the new name.
tical layers.

1. Click the layer in the table of
contents to select it.

This will highlight the name
and enable it to be changed.

You may wish to rename a e NG AR S N I
geostatistical layer, because, by

default, a geostatistical layer is
named according to the method

that was used to create it, Copying a Iayer

followed by a number (e.g.,

Ordinary Kriging_2). This will 1. Right-click the layer you want

become confusing when you are to copy and click Copy.

creating several surfaces using 5 Right-click the L dat —

the same method but with - Jgnrelekine Layers dala T

frame.

different parameters or when you .
are using the same method on 3. Click Paste Layer(s).
different datasets.

Copying a geostatistical layer is
particularly useful when you
wish to create another output
surface type with the same model
parameters.

Removing a geostatistical layer is
useful so that you can delete

layers that were used when )
exploring parameters. Removing a layer

1. Right-click the layer you want
to remove and click Remove.
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Viewing Starting ArcCatalog and
enabling Geostatistical

geostajustlcal Analyst e —
Iayers In 1. Click the Start button on the ¢ @

AI’CC atalog Windows taskbar.

2. Point to Programs.

Geostatistical layers can be )
viewed and managed with 3. Point to ArcGIS.
ArcCatalog. ArcCatalog allows 4. Point to ArcCatalog.

you to browse your data quickly .
and to establish links to data- The ArcCatalog \{VIndOW
appears. Now, click the Tools (n s 0 A-be ez

bases and folders residing locally . . S 7 B8 Ve Pt [Pkt it | Qi i
or on the network. menu, click Extensions, and

check Geostatistical Analyst.
You can preview the map Click Close.

representation of the geostatisti-
cal layer, or you can view the
metadata associated with it in

ArcCatalog. PreVieWing data w’Em—]ﬂE

jma@unx -2 Haadw aane o

fot [0 e O el

1. Start ArcCatalog.

2. Navigate to the desired

Metadata geostatistical layer in the
A comprehensive metadata table of contents.
strategy is es.sentlal to keep t;fack 3. Click the Preview tab.

of geographical or geostatistical

data.

Accessing ArcCatalog
ArcCatalog can also be accessed
from ArcMap by clicking on the
ArcCatalog icon on the Standard
toolbar.

DISPLAYING AND MANAGING GEOSTATISTICAL LAYERS 225



Viewing layer metadata

See Using ArcCatalog for more
information about metadata and
how to create it.
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. Start ArcCatalog.
. Navigate to the desired

geostatistical layer in the
table of contents.

3. Click the Metadata tab.
4. Click the Description tab to

retrieve a general description
of the layer.

. Click the Spatial tab to

explore the spatial character-
istics of the layer such as its
bounding coordinates.

. Click the Attributes tab to

examine other information
about the layer.

. Input or change any meta-

data information.

?96

Cordaets | Poaews Motac |
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Layer
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Theme:
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Representing a
geostatistical
layer

There are four ways a geostatis-
tical layer can be represented.

Filled contours is the polygon
representation of the geostatis-
tical layer. It is assumed for the
graphical display that the
values for all locations inside
the polygon are the same.

Grid 1s the raster representation
of the geostatistical layer. It is
assumed that the prediction 1s
for the center of each cell or
average for each cell (when
prediction 1s used).

Contours is the isoline repre-
sentation of the geostatistical
layer. You can choose to
display the lines in either draft
or presentation quality.

Hillshade creates a shaded
relief representation of the
geostatistical layer.

Combinations of the
four representations above can
be used simultaneously.

Viewing multiple datasets
To view two datasets at the same
time, represent one as contours
and superimpose it over the other
surface.

Displaying a

geostatistical layer as

filled contours

1. Right-click the desired
geostatistical layer in the

ArcMap table of contents and
click Properties.

2. Click the Symbology tab.

3. Click Filled Contours in the
Show list and check the
accompanying check box.

4. Set the desired parameters.
5. Click OK.

General| Source | Display | Extert  Symbelomy | Method Parameters |

| Draw surface as filled contours

Color Ramp

Duality: Diaft B

Classify

™ Refine ar zoom

Gymbal | Range [

Label

0046500001 - 0065770775 0046500 - 0065771
0.0B5770775 - 0.078867239  DWOBS/71 - 0078867
0078867333 - 0087767854 0078867 - 0087763
0087767854 - 0.093316705  00B77ES - 0093817
0033816705 - 0037927555 0053817 - 00597328

[

L.

Display NoData as

| cancel Ll

Displaying a

geostatistical layer as a

grid

1. Right-click the desired
geostatistical layer in the

ArcMap table of contents and
click Properties.

2. Click the Symbology tab.

3. Click Grid in the Show list
and check the accompanying
check box.

4. Set the desired parameters.
5. Click OK.
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Layer Properties

General| Souse | Display | Extent Symbciogy | Methed Parameters

Show: | Draw surface as a giid

Color Famp

e [ |

[ Filed Cortours - Grid

Cell size: S0E0.3

Classiy.
Humber o eells ¢ [100 EAE g

Number of predictions in each cell [Block prediction]
’V % 3 B vl g

Symbal | Range

o) &0
I 0086315180 - 0105689577

| &
0105683377 - 0114410631

0114410631 - 01331 84335
I 0133184835 - 0173600003

Label

5180
0.086915180 - 0105689377
0105683377 - 0114410631
0114410631 - 0133184835
0.133124835 - 0173600003

Display MoData as: [N

0f | Camcel | e

(5]
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The Hillshade Z factor
Increasing the Z factor will
increase the proportion of the z
units relative to the x and y units.
If the z values are very small and
the x and y are large, you will have
to specify a large Z factor to see
any changes.

Tip

Viewing combinations of
representations together
Having the filled contours and the
hillshade representations both
checked can give particularly
stunning effects. Many more
parameters are accessible using
the Effects toolbar and Layers
properties.

Shortcut to the layer
properties

Double-click the layer in the table
of contents of ArcMap for quick
access to the Layer Properties
dialog box.
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Displaying the
geostatistical layer as a
hillshade

1. Click the desired geostatisti-
cal layer in the ArcMap table
of contents and click Proper-
ties.

2. Click the Symbology tab.

3. Click Hillshade in the Show
list and check the accompa-
nying check box.

4. Set the desired parameters.
5. Click OK.

General | Source | Displap | Eent Symbology | bethod Parameters

O Filed Contours

| Hillshade the suface
Cell

of hillshading

o B v B Use squae cells

Tip: A leige number of cells increases the display quallty and

calculation time.

Nurmber of cells into which the surface will be: divided for calculation

Z Unit Conversion Factor

Tip: 412 values in the surface will be multiphed by the

conversian factor,

—

Cancel Lealy

Displaying the
geostatistical layer as
contours

1. Click the desired geostatisti-
cal layer in the ArcMap table
of contents and click Proper-
ties.

2. Click the Symbology tab.

3. Click Contours in the Show
list and check the accompa-
nying check box.

4. Set the desired parameters.
5. Click OK.

General| Souwss | Display | Evtont Smbology | bethod Paremeters |

0 Filled Cortours

| Draw surtace as contours

Color Ramp

. -
Qualiy: Draft B

Classiy

I™ Refine on z0om

Symbol | Range

[ Label [~

0.065770775
0.078867333
0.087767854
0.093816705

0.085771
0.078867
0.087768
0.093817

0097927555 0097928 d
1] 4]
A=A
[i | Cancel Apply

(5]
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Changing the
symbology of a
geostatistical
layer

ArcMap provides many tools to
aid in the display of layers. Using
these tools you can make
attractive maps but, more
importantly, the tools allow you
to explore and analyze the data in
the layer in a wide variety of
ways.

ArcMap displays the layer using
system-defined defaults. How-
ever, these defaults can be
adjusted. An overall color
scheme can be selected from a
set of predefined color schemes,
or the color scheme can be
changed interactively.

Zooming

As you zoom in on the map, the
graduated symbols of the input
point feature layer will not
increase in size. If you want them
to get bigger, you need to set a
reference scale. Right-click the
data frame and click Set Reference
Scale.

Changing the color
scheme

1. Right-click the geostatistical
layer and click Properties.

General | Source | Display | Extent  Symbalogy | Methad Parameters |

Show | Draw surface as filled contours

6 [T Hilshade Color Famp:
2. Click the Symbology tab. g™ Gl |
. . G’—— Filed Cantours X
3. Click on either Contours, DN | [ Refmonzom
Grid, or Filled Contours for I | [ -
the layer from the Show list. o | ot Ll
_ |4 0078867 - 0087768
4. Click the Color Ramp T - f 0057768 - DOSB1T
dropdown arrow and C||Ck a 0.093816705 - 0.097927955  0.093817 - 0.097928 j
Display NoD ata as: [ ]
color scheme. | ¥ -
5. Click OK. D
0| I Cancel Apply
Changing the color — =
. - = Layers
|nteract|ve|y = Ordinary Kriging
Prediction

1. Right-click a symbol from the
legend of a geostatistical
layer.

2. Click a color for the symbol.

All values in the display
represented with this symbol
will be displayed in the
chosen color.
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Data classification

When you perform a classification, you group similar features
into classes by assigning the same symbol to each member of the
class. Aggregating features into classes allows you to spot
patterns in the data more easily. The definition of a class range
determines which features fall into that class, which affects the
appearance of the map. By altering the class breaks (the
boundary between classes), you can create very different-looking
maps. Classes can be created manually, or you can use a standard
classification scheme.

Why set your class ranges manually?

Create classes manually if you are looking for features that meet a
specific criterion or if you are comparing features to specific,
meaningful values. To do this, you would manually specify the
upper and lower limit for each class.

You may also manually classify data to emphasize a particular
range of values such as those above or below a threshold value.
For example, you may wish to emphasize areas below a certain
elevation level that are susceptible to flooding.

Manual assignment of classes can also be a useful technique for
isolating and highlighting ranges of data. For example, if your
dataset had an overall range of 0.0465 to 0.1736 and you wish to
isolate the higher values, to do so you might manually assign all
values below 0.15 to one class and all values above to a second
class.
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The diagram shows how selected ranges of data can be
highlighted using a manual assignment of classes.

Using a standard classification scheme

How the class ranges and breaks are defined will determine the
amount of data that falls into each class and the appearance of the
map. There are two main components in a classification scheme:
the number of classes into which the data is to be organized and
the method by which classes are assigned. The number of classes
is dependent on the objective of the analysis. The rules by which
the data is assigned to a class, however, require a bit of
explanation. For a geostatistical layer, there are three standard
ways in which data can be assigned to classes:

* Equal interval
* Quantile
* Smart quantiles

These will be described on the following pages.
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Equal interval

The range of possible values is divided into equal-sized intervals. Because there are usually fewer endpoints at the extremes, the
numbers of values are less in the extreme classes. This option is useful to highlight changes in the extremes. It is probably best applied
to familiar data ranges such as percentages or temperature. This option is most useful for Probability and Standard Error Map.
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Quantile

The range of possible values is divided into unequal-sized intervals so that the number of values is the same in each class. Classes at
the extremes and middle have the same number of values. Because the intervals are generally wider at the extremes, this option is useful
to highlight changes in the middle values of the distribution.
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Smart quantiles

Smart quantiles are used to delineate classes based on natural groupings of data values. Break points are identified by looking for
groupings and patterns inherent in the data. The features are divided into classes whose boundaries are set where there are relatively
big jumps in the data values, so groups with similar values are placed in the same class. This is a compromise method between equal
interval and quantile, with unequal-sized intervals such as quantile that generally get a bit wider at the extremes, but not so much as
with the quantile method, so there is also a decreasing number of values in the extreme classes. This option tries to find a balance
between highlighting changes in the middle values and the exteme values. It is useful for datasets such as rainfall, which may have more

than 50 percent of the records equal to zero.
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Classifying data

When you classify your data, you
can use one of the standard
classification schemes provided
for geostatistical layers or create
custom classes manually based
on class ranges you specity.

If you choose one of the standard
methods, simply choose the
classification scheme and set the
number of classes.

If you define your own classes,
you can manually alter the class
breaks or specify exact values for
the class breaks that are suitable
for your data.

Setting a predefined
classification method

1. In the table of contents, right-
click the geostatistical layer
you want to classify and click
Properties.

Click the Symbology tab.
Click Classify.

Click the Method dropdown
arrow and click a classifica-
tion method.

5. Click the up/down arrows on
the Classes input box to set
the desired number of
classes.

6. Click OK on the Classification
dialog box.

7. Click OK on the Layer
Properties dialog box.
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Manually altering the T
class breaks R

Filed |,
0oy R Zoue TaLam

1. In the table of contents, right-
click the geostatistical layer
you want to classify manually
and click Properties.

Click the Symbology tab.
Click Classify.

Click the Method dropdown
arrow and click Manual.

5. Click the up/down arrow of
the Classes input box until
the desired number of
classes is reached.

6. Click and drag the class
breaks to the desired posi-
tion.

7. Alternatively, type in specific I I . | @
class breaks.
8. Alternatively, check the 6
Custom Min & Max check
box, then type specific assilicatio 7[x
minimum and maximum Freerey 1,001 - Iuaé:n;sug -
values to include in the S ol 1 [oET L
e . - 2 0.078867
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198 4 nnaaaw_'j
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Setting the scales

at which a
geostatistical
layer will be
displayed

ArcMap will not usually display
the landscape at the same size

that it exists; thus, it must change

the scale of the landscape to fit

on the screen. A kilometer on the

ground may be represented by a
centimeter on the screen. The
scale 1s the reduction (or

enlargement) necessary to display

the desired area.

As you zoom 1n and out of a
map, the scale of the display
changes. It may not be desirable
for every layer to be viewed at
every scale. For example, it
would not be appropriate to
display county boundaries when
viewing a map of the world.

You can control what layers are
displayed at what scales on the
Properties dialog box for the
layer.

Setting the scale range
1. Right-click the geostatistical

layer and click Properties.
2. Click the General tab.

3. Click Don’t show layer when
zoomed.

4. Set the scale range by
inputting the out beyond and
in beyond entries.

5. Click OK.
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Predicting values
for locations
outside the area
of interest

By default, the Geostatistical
Analyst interpolates the values of
the selected variable at all
locations that lie within the
minimum spatial bounding box.
The minimum spatial bounding
box 1s the smallest box that can
be created to encompass all the
input sample points. However,
this bounding box may not
produce a map to fully cover the
area of interest. To create a
prediction map that exceeds the
bounding box is called extrapola-
tion. The resulting geostatistical
layer from an extrapolation will
cover the area that you have
1dentified.

Note that it is not recommended
to extrapolate values for very
distant locations. It is acceptable
to extrapolate values close to
actual sample points (for
example, around the boundary of
a geostatistical layer), but any
further extrapolation may result
in unreliable predictions.

To return to the default extent after

specifying a new visible extent,
click Default on the Extent tab.
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Extrapolating values

1. Right-click the geostatistical
layer that you want to
extrapolate values for in the
ArcMap table of contents and
click Properties.

2. Click the Extent tab.
3. Click a custom extent entered

below in the Set the extent to
dropdown list.

4. Type the new values into the

Visible Extent.

Alternatively, use the extent
of any other available layer.

5. Click OK.
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Layer Properties

General | Source | Display  Extent | Symbology | Methed Parameters

Tip: You can specily the gengraphic extent of this layer's data source that will be
represented by this layer

Set the extent to:
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Top: FHO085.2424
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- Full Extent
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Saving and

Saving a map

exportin composition

g . 1. Click the File menu and click
geostatistical Save As.
IayerS 2. Navigate to the directory in

An ArcMap geostatistical layer
comprises a reference to the data
stored on disk, the symbology
used to display the layer, and a
variety of other information 4
relevant to the mode which may

be used to create a layer.

If the ArcMap session is saved,
the layers in the table of contents
and their accompanying defini-
tions are stored in a file with an

which you want to save the
map.

Change the map name if
desired.

. Click Save.

& Untitled - Arcinfo - ArcMap

File Edit Wiew Insett Selection Tools Window Help

. O+l | ‘i"/ |F
pen Chl+0

S

= 1=

I

e Ctiks

& AddData

& Add Data from Geography Network...
] Pags Setup

[B, Print Preview...

Save in

Jol=il =)

Prin...
& fin Geacods

Map Propeties loans
Styles
TemplateD ata
Export Map.. Templates

Exit Al+F4

Impart from Achiew project.

.
= ca_outline
O

‘ e—-me pve: [T

Save & ype: [Archlap Documents (~rmxd)

Save

Cancel J

=

.mxd extension. However, if you
want to add a layer to another
ArcMap session while preserving
the symbology, the layer can be

saved to a file with an lyr 1.

extension. The .lyr file does not
make a copy of the source data
but only references it.

To make a geostatistical layer 2.

persistent, a copy can be written
to disk (excluding the layer
definition) as either an
ArcInfo™ grid or shapefile.

K

Distributing a
geostatistical layer

If you plan to distribute your map
to others, they will need access to
both the map document and the
data your layer references.

Saving individual layers

Right-click the geostatistical

layer you wish to save in the

ArcMap table of contents and
click Save As Layer File.

Navigate to the directory in
which you want to save the
layer.

Change the layer name if
desired.

Click Save.

DISPLAYING AND MANAGING GEOSTATISTICAL LAYERS

[cat % Remaove

Fill
U'U:E &, Zoom To Layer

0.08F Wisible Scale Range 13

[Eompere)
¥ Valdation

2 Prediction.

Create Prediction Standard Error Map

moie D8 4

a ca_ozon
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BB ca_outli g Method Properties.
= Propeties

] colseles = s
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Exporting a geostatistical
layer to a raster

1. Right-click the geostatistical
layer in the ArcMap table of
contents, click Data, and click
Export to Raster.

2. Set the desired properties for
the resulting raster such as
the number of rows and
columns, cell size, number of
predictions in each cell
(Block Interpolations), and
the name and location for the
raster.

3. Click OK.

i )

Crwaty Pracdcror “arcart [ ase S

S Lo Pl al
A Mt Pt gt s nctn

Export to Raster [2]x]

Cell Size:  [7655.861080
Columns: |10 g

Block Interpolation (Points in the Cell]
’7 Horizontal : E oveis [ H
Output Raster: D:\dataSelvaa_grid_ordinar_kriging EI
ak | Cancel

Rows: 170

o

Exporting a geostatistical
layer to a vector format

1. Right-click the geostatistical
layer in the ArcMap table of
contents, click Data, and click
Export to Vector.

2. Specify the output format
(e.g., shapefile, personal
geodatabase, or SDE
database).

3. Select Contours or Filled
Contours from the Export
dropdown menu.

4. Click OK.

e |
- T
K P
3 Toom Tulawm
e e 0

o Vadoan

Export to Yector 2]

Expoart: I Contours j'_e

Specify output shapefile or feature clazs:

ta4E SR WArcT utorGeoStatshga vector. shpl @l

Ok I Caricel |
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Additional geostatistical analysis tools

IN THIS CHAPTER There are many supporting tools in ArcMap and Geostatistical Analyst to
_ assist in geostatistical analysis. You can change the parametersin amodel,
* Changing the parameters of a retrieve predictionsfor specific locations, perform validation from subsets,

geostatistical layer: method spatially divideyour data, interpolate each division, and then combinethe

Propggites results. This chapter isnot an exhaustive list of toolsthat will help with
« Predicting values for specified geostatistical analysis. Instead, it discusses some of the more commonly
locations used toolsthat will aid in your analysis. But you should be aware that
because Geostatistical Analyst isintegrated into ArcMap, there are
+ Performing validation on a countless functions that you can and will usein your analysis. The more
gfgssé?tiStica' layer created froma  famjliar you become with ArcMap and the supporting Geostatistical Analyst

extensions, the more tools you will find that meet your specific need to

e Stratifying your data for better create even more accurate surfaces.

predictions
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Changing the
parameters of a
geostatistical
layer: method
properties

After creating a surface with the

Geostatistical Analyst, you are
able to view it in ArcMap. By
using the multitude of display
tools for a geostatistical layer,
you may notice that certain
areas of the newly created
surface do not match with your
knowledge of the area. Rather
than produce a new surface,
you may decide to improve the
surface by changing the
parameters that were used to
create it. Through the method
properties, you can return to
the dialog boxes in the wizard
environment and change any
model parameter and examine
the new output results.

Tip

Understanding method
properties

The Method Properties dialog box
will help you gain a better under-
standing of how the various
available options affect the output
surface.
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Using method properties

Right-click the geostatistical
layer in the ArcMap table of
contents and click Method
Properties.

The options available
depend on the technique
used to create the original
surface. Follow these steps
when the prediction surface
is created by a kriging
method.

. Click on the desired kriging

method.

Click Next on the Geostatisti-
cal Method Selection dialog
box.

. Optionally, change any of the

model parameters and click
Next on the Semivariance/
Covariance Modeling dialog
box.

. Optionally, define a new

search neighborhood and
click Next on the Searching
Neighborhood dialog.

. Assess the cross-validation

results. Has the output
improved? If not, repeat steps
2 to 5. If yes, Click Finish on
the Cross Validation dialog
box.

. Click OK on the Output Layer

Information dialog box.
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Prec Copy

lea K Remove
Filles
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Predicting values
for specified
locations

Sometimes you are interested in
predicting a value for a specific
location or multiple locations
and are not necessarily inter-
ested in the entire surface. For
example, you may be concerned
about the level of radiation at a
particular house or the eleva-
tion at a proposed lookout
tower.

If looking for prediction values
for a few individual locations,
the easiest way is to use map
tips. However, if you wish to
save the specific location
predictions to an output layer
for additional analysis, it is best
to use the Prediction dialog box.

Tip

Selecting points using the
attribute table

In addition to using the selection

tool, points of interest can be
selected using the attribute table

(right-click the layer of interest and

click Open Attribute Table).

Using map tips

1.

ADDITIONAL GEOSTATISTICAL ANALYSIS TOOLS

o o M

Create a geostatistical layer
using any of the methods

discussed in Chapters 5 or 6.

Right-click the geostatistical
layer and click Properties.

Click the Display tab.
Check Show MapTips.
Click OK.

Place the cursor over a point
of interest on the layer.

The value at that location is
displayed.

General] Saurce  Display | Evtert | Sumbologn | Methad Parameters

7 S el

Transparency
( 0 %

Eql

0 I

Cancel

Apply

0.11 2663
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Tip

Other ways to view the

results

The results from the prediction can

also be viewed using
ArcCatalog™.
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Predicting at specific
locations from a point
layer

1.

Right-click in the ArcMap
table of contents the
geostatistical layer that was
created using observed data
and click Prediction.

Click the Input Data
dropdown arrow and click
the layer containing the
locations for which you want
to obtain predictions.

Identify the directory to store
the output dataset in by
clicking the browse button
next to Specify output
shapefile or feature class.

Browse or type the directory
and name for the output file.

5. Click Save and OK.
6. Add the prediction file to the

ArcMap table of contents
when prompted.

Right-click the prediction
layer and click Open Attribute
Table to display the results.

The predicted values at the
specified locations will be
displayed in the table.

Prediction [7]

Tip: Predict values at known locations using specifisd
interpolation model,

Input

Input Data -l =

ca_nzone_pts
ca_outline
i

# Field:

Prediction 7]

Tip: Predict walues at known locations using specified
interpolation model

Irput

Input Datst [T st Locations | =
' Field: Shape 'I
7' Field: Shape 'I

Specify output shapsfle of feature class:

;4 Cancel

Y Field:

Specify autput shapefile or feature class:

2]

=

(] Cancel
Select Output Dataset [x]
Lookin |4 Geoslatlical Ansyl -| E‘ ag[,_—@”ﬁma&
i sy
{Z1 b
bags «ci
b s
4 et chys
Name: JTest Locanons

Swmashpe: [Shapeic

i o

:mg;l_-_-p_l] S [ St | P 1500 o 5 et | Doters
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Performing

validation on a 1.
geostatistical
layer created 2.

from a subset

The most rigorous way to
assess the quality of an output
surface 1s to compare the
predicted values for specified
locations with those measured
in the field. For some reason
(time, money, and so on), it is
often not possible to go back to
the study area to collect an
independent validation dataset.
One solution is to divide the
original dataset into two parts.
One part can be used for
modeling, that is, to create the
output surface and the other for
testing, that is, to validate the

output surface. 5.

Tip

Dividing the dataset

The relative percentages into which
the dataset should be divided
should be based on the number of
available samples. You need
enough sample points to create the
output surface and to make the
validation of that surface meaning-
ful. Therefore, if the original
sample number is small, it may be
inappropriate to divide the dataset.

ADDITIONAL GEOSTATISTICAL ANALYSIS TOOLS

Creating subsets

Click the Geostatistical
Analyst toolbar and click
Create Subsets.

Click the Input Layer
dropdown arrow and click
the layer to be divided.

3. Click Next.
4. Click and drag the slider bar

to an appropriate location to
select the relative percent-
ages of training and test
data.

By default, the output dataset
is named according to the
following convention: “input
filedataset’+“_sets.mdb”, for
example,
inputpoints_sets.mdb, where
inputpoints is the name of the
input dataset containing the
points.

Click Finish.

The training and test
datasets form two tables in
the personal geodatabase.

J Geostatistical Analyst = |

Explore D ata »
ﬁ Genstatistical Wizard

J Cr

Create Subsets E

Tip: Subsetting is the process of randamly dividing the database into
bwio parts, the training and test datasets. Create a model using the
training datazet and by uzsing the validation tool you can evaluate how
good the predictions are relative to the known values in the test
datazet.

Input Layer

~
I ca_ozone_pts _'J,_g_

Create Subsets E

— Subsets [Percent/S amples)
(50% / 96) [50% / 97)

Training:

3 T estity

— Dutput Personal Geodatabaze

[:hGeostatistical Analysthca_ozone_pts setz.mdb @l

Subszets Mame

Training: Ica_ozone_pts_train

Testing: Ica_ozone_pts_test

< Back Finizh Cancel
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Tip

Performing validation from
the Geostatistical Wizard
The training and test datasets can
be entered directly into the first
dialog box in the Geostatistical
Wizard, namely, the Choose Input
Data and Method dialog box. Once
the parameters have been selected
in the wizard dialog boxes, the
validation statistics are displayed
in a subsequent dialog box for
analysis before the surface is
created.

Tip

Viewing the summary
statistics

The summary statistics from the
validation exercise can be viewed
using either ArcMap or ArcCata-
log.

See also Chapter 7, ‘Using
analytical tools when generating
surfaces’, for a discussion on
cross-validation and validation
and the meaning of the resulting
statistics.
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Performing validation
using subsets

1. Click the Add Data icon on
the Standard toolbar in
ArcMap. Navigate to the
folder in which the subset
data was saved (if it is not in
the ArcMap table of con-
tents).

2. Click both the training and
test layers (click one layer,
then hold down the Shift key
and click the other).

3. Click Add.

4. Click the Geostatistical
Analyst toolbar and click
Geostatistical Wizard.

5. Click the Input Data
dropdown menu and click the
training dataset.

6. Click an appropriate method.

Click Next and follow the
dialog boxes to create a
surface.

8. Right-click the newly created
geostatistical layer and click
Validation....

9. Click the test dataset in the
Input Data dropdown menu.

10. Click the same attribute in
the Attribute dropdown menu
that the surface was created
in.

11. Type a name and location
for saving the output
(validation) dataset.

12. Click OK. »
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19, When queied add e gy

The resulting output files Xalllc\jﬂatlo? It;e:yerfto thte t o n‘m,n?::..

Two files are created from the revap fable of contents. e

validation process: a shapefile 14. Right-click the new layer E\;;“?;& ﬁ?::” 4
containing the location of the test and click Open Attribute b Vebiason i
sample points and associated Table. E

validation data and a table that

H H . A
provides a summary of the The r.esults of the validation B0 ot
o A are displayed for assess- 5 1 ca v 4 BT >
validation statistics, similar to ===
ment. 1 B o oo, R S

those presented in the dialog box :

Jfor cross-validation (see | 1n
Chapter 7, ‘Using analytical tools
when generating surfaces’).
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Appendix

IN THIS APPENDIX There are many formulas and unigue implementation concepts underlying
Geostatistical Analyst. The formulas and technical concepts are presented
here in this appendix. It isassumed that you have sometraining in
« Inverse distance weighted mathematics or geostatistics before reading this appendix.

interpolation

¢ Deterministic methods

Following the appendix are references from commonly used textbooks and
journal articlesfor the mathematical details of the methods used in
Geostatistical Analyst. In some cases, when the details are not easily found
» Local polynomial interpolation in textbooks, we give greater detail.

e Global polynomial interpolation

» Radial basis function interpola-
tion

* Geostatistical methods

e Declustering dialog box

Distribution modeling dialog box

e Semivariogram/Covariance
dialog box

Bivariate distribution dialog box
* Kriging formulas

* Cross Validation dialog box
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Deterministic methods

Inverse distance weighted interpolation

Inverse distance weighted interpolation is relatively simple and
adequately described in Chapter 5, ‘Deterministic methods for
spatial interpolation’.

Global polynomial interpolation

Global polynomial interpolation simply uses multiple regression
methods on all of the data. A response or trend surface is fitted to
the x- and y-coordinates, which are the covariates. For a first-
order trend, the model is,

Z(x;,y,) :ﬁo +131x1 +132y1 +&(x, ),

where Z(x,.y) is the datum at location (x ), BJ are parameters, and
&(x,y) is a random error. For the second-order trend, the model is

For the third-order trend, the model is
Z(x,y,)= ﬂo + ﬂlxi + ﬂZyi + ﬂsxiz + ﬂ4yi2 + ﬂﬁxiyi +&(x;, 5,)-

Z(x,y) =Py + Bx, + By, + ﬂaxiz + ﬂ4y12 + Boxy, + ﬂGx? +
ﬂ7y13 + ﬂ%xizyi + ﬂ9xiy12 +e(x;,y,),
and so on, up to a 10th order in the Geostatistical Analyst. Fitting
regression models by estimating parameters {3} uses ordinary
least squares, which can be found in many statistical textbooks,
for example, Snedecor and Cochran (1989).

Local polynomial interpolation

Local polynomial interpolation is similar to global polynomial
interpolation, except that it uses data within localized “windows”
rather than using all of the data, so it fits local trends and it uses
weights. The window can be moved around, and the surface
value at the center of the window, call it £ (x.y). is estimated at
each point. Weighted least squares is used by minimizing,
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Zwi(z(xi’yi) _lu()(xi’yi))z,
i=1
where 7 is the number of points within the window. Here, w isa
weight,
w, =exp(-3d,,/ a),

where d is the distance between the point and the center of the
window and a is a parameter that controls how fast weights
decay with distance. Finally, 4 (x.y)) is the value of the
polynomial.

For first-order polynomial:
Mo (X, y) = By + Bix + Boyis

For second-order polynomial:

Uo(x,y) = By + Bx + By, + ﬂzxiz + ﬂ4yi2 + 555y,

and so on. The minimization occurs for the parameters { 3}. The
parameters are reestimated whenever the center point and,
consequently, the window moves (Gandin, 1963).

Radial basis function interpolation

The Geostatistical Analyst uses a set of # basis functions, one
for each data location. The predictor is a linear combination of the
basis functions,

S; _SOH)+ @, .,

ZA(So)zzn:wl(D(

where ¢(r) is a radial basis function, » = |s - s || is Euclidean
distance between the prediction location s and each data
location s, and {o:i= 1,2, ..., n+ 1} are weights to be estimated.
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Letw= (0, o,
equations,

..., @), which are found by solving the system of

v olan

where @ is a matrix with i jth element ¢(|s, - sj||) for the 7,jth data
pair, 1 is a column vector of all ones, and z is a column vector
containing the data. If ¢ is the vector containing ¢(|[s, - s ||), then
the predictor is,

2(s0) =Wo+a,,,.

Where @, ., is a bias parameter.

An equivalent predictor is to use,

2(s0) =1z,

where A solves the equation,

o)

which has the advantage of showing the weights for each data.
The weights are displayed in the Searching Neighborhood dialog
box.

The radial basis functions used in the Geostatistical Analyst are:

1. Completely regularized spline function,

() =—27(_1)"('0") " —ln(o r2f +Elo-r/2f +C,.
ol nln

APPENDIX A

where In is the natural logarithm, 7 (x) is the exponential integral
(Abramowitz and Stegun, 1965, p. 227) function, and C, is the
Euler constant (Abramowitz and Stegun, 1965, p. 255),

2. Spline with tension function,
¢(ry=In(c-r/2)+K,(o-r)+C,,

where X (x) is the modified Bessel function (Abramowitz and
Stegun, 1965, p. 374),

3. Multiquadric function,
o) =(r+0?)",

4. Inverse multiquadric function,
o =(+0’)",
5. Thin-plate spline function,

¢(r)=(c-rfIn(c-r).

The optimal smoothing parameter ois found by minimizing the
root-mean-square prediction errors using cross-validation.

Radial basis functions are described in Bishop (1995, p. 164).
Further descriptions of radial basis functions and their
relationships to splines and kriging can be found in Cressie (1993,
p. 180) and Chiles and Delfiner (1999, p. 272).
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Geometric anisotropy

Geometric anisotropy is accounted for by a coordinate
transformation:

. Jr 0 cos(@) sin(@)
S = S
0 1+r \—sin(@) cos(®)

where @is the rotation angle and r is the ratio of the major and
minor axes of the resulting ellipse. Distance is then calculated as

+ +
Si =S
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Geostatistical methods

Declustering dialog box

Cell declustering

For various reasons, the data may have been sampled
preferentially, with a higher density of sample points in some
places than in others. For some transformation methods, such as
the normal score transformation, it is important that the histogram
of the sample properly reflect the histogram of the whole
population. The solution to preferential sampling is to weight the
data, with data in densely sampled areas receiving less weight.
See explanations in Journel (1983), Isaaks and Srivastava (1989,

p. 421), Cressie (1993, p. 352), and Goovaerts (1998, p. 76).

Default—Morisita’s index

The default method in Geostatistical Analyst is to use a square
grid of cells with a cell size that is determined from the maximum
value of Morisita’s index (Morisita, 1959 see also Cressie, 1993,
p- 590), where Morisita’s index is a function of cell size.

Polygonal method

An optional method is to allow the weights to depend on the size
of polygons that surround each point. The polygons are
constructed by finding all possible points that are closer to a
sample point than any other sample point. Thus, each sample
point has a polygon of influence. In mathematics, these are called
Voronoi diagrams and Thiessen polygons. For explanations, see
Isaaks and Srivastava (1989, p. 238), and Goovaerts (1998, p. 79).
In Geostatistical Analyst, the outer boundary is a little larger than
the smallest (unrotated) rectangle that contains all of the
locations. The rectangle is formed by taking the largest x-
coordinate and y-coordinate plus 1/2 *+/S/N, where S is the area
of the rectangle and N is the number of datasets. The smallest
x-coordinate and y-coordinate are likewise made a bit smaller. The
outer boundary has considerable effect on the weights for edge
points.

APPENDIX A

Distribution modeling dialog box

Normal-score transformation

For some of the kriging methods, it is important that the data be
normally distributed. One way to force the data to be normally
distributed is to use the normal score transformation. For
explanations, see Journel and Huijbregts (1978, p. 478), Isaaks and
Srivastava (1989, p. 469), Cressie (1993, p. 281), Rivoirard (1994,

p. 46), Goovaerts (1998, p. 266), and Chiles and Delfiner (1999,

p- 380). However, many of the figures given in these references
are misleading by showing that the cumulative distribution
function for the raw data is continuous. In reality, it is a step
function. Let the order statistics for the data be Z(sm), Z (Sm)’

Z (s<n)), where Z(s <1)) is the lowest value and Z(s<n)) is the highest
value. Suppose that there are only four values (n = 4); then the
empirical cumulative distribution function will look something like
the following:

Cumulative probability

A
1 4 o*o—)
3/4 -
172 4 [ W—
1/4 A r —
d »
N i T I T »
Zsay) Zse) Zsa) Z(s@)
Value

This function can be smoothed in various ways. Also note that
the weights on the y-axis need not be increments of (1/#) if cell
declustering is used. The Geostatistical Analyst gives several
methods to provide transformations.
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Direct

From the empirical distribution function, it uses values that are
halfway up the “step”. Here is the correspondence between the
original data and the transformed data.

Normal-score
transformation

an

Cumulative
distribution for
standard normal

0 » 0 |
Zsw) Zse) Zse)  Zsw) -3 0 3

Original data Normal scores

Empirical cumulative
distribution

TN _ T

1

Linear

The linear method makes piece-wise linear interpolations from the
original cumulative distribution function. It is easily grasped from
afigure,

Piece-wise linear interpolations

of empirical cumulative Normal-score

distribution transformation
A
T N | T
7 Cumulative
. distribution for
- standard normal
0 » 0 |
Zsw)  Zse) Asz)  Zsw) -3 0 3
Original data Normal scores
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Gaussian mixture

A mixture of Gaussian distributions can be used to smooth the
probability density function. We model the probability density
function as

K
p() =Y 0p (2 44;,07)

i=1
where

1 (z—m)’

2 i

Pi(Z 1;,07) = exp| —

V2ro, { 207}

The parameters ¢, . and o, are estimated by maximum likelihood,
assuming a mixture of normal distributions and independent data.

The cumulative distribution is found through numerical
integration,

mm=jmmw

and a correspondence is set up with P(z) and the cumulative
distribution for a standard normal, just as was done for the direct
and linear methods.
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Semivariogram/Covariance dialog box

Variogram definitions

Definitions of the variogram and semivariogram are given in
virtually all texts on geostatistics (e.g., Journel and Huijbregts,
1978, p. 31; Cressie, 1993, p. 58; Goovaerts, 1997, p. 68;
Armstrong, 1998, p. 19; Chiles and Delfiner, 1999, p. 31; Stein,
1999, p. 39). Note that some authors define it as 2y(h) and others
as y(h). Here, the convention that 2y(h) is the variogram and y(h)
is the semivariogram, is maintained.

Covariance definitions

Definitions of the covariance function in a spatial setting are also
given in virtually all texts on geostatistics (e.g., Journel and
Huijbregts, 1978, p. 31; Isaaks and Srivistava, 1989, p. 221;
Cressie, 1993, p. 53; Goovaerts, 1997, p. 68; Armstrong, 1998,

p. 19; Chiles and Delfiner, 1999, p. 30; Stein, 1999, p. 15).

Estimating the variogram

The empirical semivariogram is an estimator for the theoretical
quantity given by the definition of a semivariogram. The empirical
semivariogram estimator is given in virtually all texts on
geostatistics (e.g., Journel and Huijbregts, 1978, p. 194; Isaaks
and Srivastava, 1989, p. 60; Cressie, 1993, p. 69; Goovaerts, 1997,
p. 82; Armstrong, 1998, p. 47; Chiles and Delfiner, 1999, p. 36
Stein, 1999, p. 39).

APPENDIX A

Estimating the covariance

The empirical covariance is an estimator for the theoretical
quantity given by the definition of the covariance function. The
empirical covariance estimator is given in texts on geostatistics
(e.g., Journel and Huijbregts, 1978, p. 192; Isaaks and Srivastava,
1989, p. 59; Cressie, 1993, p 70; Goovaerts, 1997, p. 86; Chiles and
Delfiner, 1999, p. 31: Stein, 1999, p. 39).

Binning the variogram and covariance estimates into
lag classes

The empirical variogram and covariance estimates are usually
binned into lag classes based on the vector h = (h,. hy)l that
separates the pair of locations, and then the semivariogram or
covariance values are averaged within each bin. Most often,
binning is done in radial sectors; we will call this the sector
method.
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For example, this is the method that is used most commonly in However, for regularly spaced data, the borders of the lag bins
software packages, including GSLIB (Deutsch and Journel, 1992, present problems. In order to get around this problem and make
p. 45), Splus (Splus Spatial Stats User Manual), and SAS the empirical semivariogram smoother, the Geostatistical Analyst
(Technical Report). Instead, the Geostatistical Analyst assigns uses a kernel method to assign weighted semivariogram values
lags to a regular grid; we will call this the grid method. for each cell, depending on how close it is to the center of the

cell. The weights for the cell containing the dot can be taken as
the product of the two marginal profiles, as seen in the following
figure. All cells are computed in a similar fashion. Note that there
will be four weights for any lag, and they will sum to one.
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Here, any lag vector that falls within the area shaded in yellow
contributes to the lag bin with the red dot in the center. The
closer to the center of the lag bin, the higher the weight. This is
done for all lag bins.

Semivariogram and covariance models

Relationship between semivariograms and covariance

In the following, the formulas for only the semivariograms will be
presented. It is easy to get covariances from semivariograms, and
vice versa, using the relationships between semivariogram and
covariance models. For intrinsically stationary processes,

C(h:0) = y(e0:0) — y(h:0),

APPENDIX A

and
y(h:0) = C(0:0) - C(h:0),

where y(°°:0) is the sill of the semivariogram and C(0:0) is the
origin of the covariance function. These relationships only hold
for semivariograms that have sills, and all semivariogram models
in Geostatistical Analyst have sills.

Geometric anisotropy

Geometric anisotropy can be created through the transformation
v, (h:6,0) = v(|©h]]:0),

where O is a 2x2 matrix and y(h; 0) is one of the isotropic
variogram models given below. Here, the vector h= (2,4 ) is
rotated and scaled to a new coordinate system where the range of
the variogram is an ellipse. In the Geostatistical Analyst, the major
range is the long axis of the ellipse, and the minor range is the
short axis of the ellipse. The major and minor range parameters are
the values where the range equals the sill for models that attain
sills or 95 percent of the sill for models that approach the sill
asymptotically. For more details, see Journel and Huijbregts (1978,
p. 175), Isaaks and Srivastava (1989, p. 377), Cressie (1993, p. 64),
Goovaerts (1997, p. 90), or Armstrong (1998, p. 28), Chiles and
Delfiner (1999, p 93).

Linear combinations of models

Here the basic semivariogram models are combined in linear
combinations,

y(h:0) =y, (h:0) +y,(h:6) + ...

The Geostatistical Analyst allows up to three models as a linear
combination in addition to the nugget-effect model.
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Nugget effect

The semivariogram model is

0 for h=0

h;0) =
r:6) {GS for h#0

where 6 >0.

Circular

The semivariogram model is,

20, |, (], i
7(h:6) = 7r|:9r 1= g | +amcsing™| for 0<[h<e,

6 for 6,< HhH

s

where 6 >0 is the partial sill parameter and 6, > 0 is the range
parameter.

Spherical

The semivariogram model is

3
ex!”—l[h” for 0<[n]<6,

0 for 6 < HhH

where 6 >0 is the partial sill parameter and 6, > 0 is the range
parameter.
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Tetraspherical

The semivariogram model is

7(h:6)=

3
2 2 \y

26, arcsin("h"]+"h" 1—[”11”] +EH 1—["11"]

™ 6, 6, 6, 36, 0,
95‘

for 0<|n|<e,

for 6, <[h|

where 6 > 0 is the partial sill parameter and 6, > 0 is the range
parameter.

Pentaspherical

The semivariogram model is

15[n] s

3 5
h] +3[h” for 0<|h[<6,

y(h;8) = {8 0, 4[9, 8l 6,
6 for 6, <|h|

s

where 6 >0 is the partial sill parameter and 6, > 0 is the range
parameter.
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Exponential

The semivariogram model is

y(h;0)=46 {l—ex [—3”11”]:|f I1h
; E p 0 orallh,

where 6 > 0 is the partial sill parameter and 6, > 0 is the range
parameter.

Gaussian

The semivariogram model is
| Y
y(h;0)=6_|1-exp —3[6] for all h,

where 6 >0 is the partial sill parameter and 6, > 0 is the range
parameter. Because this model has unstable behavior without
nugget, by default the Geostatistical Analyst adds a small nugget
to the model, equal to 1/1000 of the sample variance computed for
the data.

Rational quadratic

The semivariogram model is

2
of )
o
y(h;0) =6, d s for all h,
1+19[h]
91‘

APPENDIX A

where 6 >0 is the partial sill parameter and 6, > 0 is the range
parameter.

Hole effect

The semivariogram model is

for h=0
for h#0

y(h;0) =1, 1-sin &””h"/ 6,)
sin (27z]h]/6,)
where 6 >0.
K-Bessel

The semivariogram model is

(@, [nir6,

h;0)=0|1-———"—
ri®)=6, 2%7'1(6,)

K, (@, [n]/6,)| foralin,

where 6 >0, 0,20, 6,>0, ngis avalue found numerically so that

10)=0.95 @ for any 6, 1'(6) is the gamma function,

I'(y) = J‘: X Lexp(—x)dx

and Ky (e)is the modified Bessel function of the second kind of
order ¢, (Abramowitz and Stegun, 1965, p. 374).
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J-Bessel

The semivariogram model is

2%T(0, +1)

y(h;0) =06 |1- —————<"—
(@, Infs6, )"

J,, (@, [n]/6, )| forain

where 6 >0, 0.>0, 6,>0, di must satisfy,

s Ya=

B>0,y(B)=6,.7'(B)<0

I'(8)) is the gamma function,
I'(y) = J‘m xLexp(—x)dx
0

and J 0, (e) is the J-Bessel function (Abramowitz and Stegun,
1965, p. 358).

Stable
The semivariogram model is
0,
020 | 1—ex| -5 I
yh;0)=60_|1-exp| -3 o

r

for all h,

where 6 >0and 0 < 6, <2. Because this model has unstable
behavior without nugget, by default the Geostatistical Analyst
adds a small nugget to the model, equal to 1/1000 of the sample
variance computed from the data.
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Crosscovariance models

Crosscovariance models in the Geostatistical Analyst use
“coregionalization” models, which means that they are of the
same families as the covariance forms of the semivariogram
models listed above. Crossvariograms are not used in the
Geostatistical Analyst. The traditional crossvariogram (Matheron,
1965) can only be used under certain conditions (Journel and
Huijbregts, 1978, p. 236 Cressie, 1993, p. 67; Ver Hoef and
Cressie, 1993), and it is not optimal otherwise. Crosscovariances
allow models that can have spatial shifts (Journel and Huijbregts,
1978, p. 41; Ver Hoef and Cressie, 1993), and the empirical
crosscovariance surface allows the user to visually inspect for
such shifts.

Coregionalization models for crosscovariance (sometimes given
as crossvariograms, but the ideas and models are readily adapted
to crosscovariances) are described in Journel and Huijbregts
(1978, p. 40), Isaaks and Srivastava (1989, p. 390), Goovaerts,
(1997, p. 107), and Chiles and Delfiner (1999, p. 339). The
Geostatistical Analyst adapts these models by allowing a spatial
shift between any two variables (Ver Hoef and Cressie, 1993).
This adds two parameters to the model to describe the shift in the
x-coordinate and y-coordinate.
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Fitting semivariogram and covariance models

The fitting algorithm begins by obtaining a preliminary estimate
for the range of the data called stage 1. Use Z;‘ (s;) to denote the
Jjth measurement of variable type & at the ith spatial location s ..

Stage 1

Geostatistical Analyst first scales each dataset, Z ]" (s)=Z f (s;)/s,
where s, is the sample standard deviation. Stage 1 begins by
assuming an isotropic model, and it computes the empirical
semivariogram (or covariance) on the scaled data Z* (s;) using
the sector method (as defined earlier in the section ‘]éinning the
variogram and covariance estimates into lag classes’) over a large
range of lag classes that progress in a geometric series. The lag
classes are formed from intervals [¢*/2,d*"/2)  where d=1.25
and k ranges from the smallest machine integer to the largest. The
center of each lag class is taken to be d* cosh@logd").
Obviously, many lag classes are empty, and the Geostatistical
Analyst only uses those that have data in them. Call this
empirical (cross)covariance C;( %), where i indicates the ith
variable type, j indicates the jth variable type, and & indicates the
kth lag class. The first iteration of parameter estimates is obtained
by minimizing,

1

T T - R P
lelk 1w,.j(hk)(c,.j(hk;e,.j)—c,.j(h,()) 0

for 6, where Gy is the vector of parameters for the i,jth covariance
function and 6 contains all covariance parameters, where

wy(hy) =Ny(h)/ > N, (h,,) @
m=1

and N,(h) is the number of pairs in the empirical (cross)
covariance function for variables i and ; in lag class £. Call this

APPENDIX A

estimate 6. In the next iteration, the Geostatistical Analyst uses
a Cressie’s (1985) weighted least squares by minimizing (1) again,
only this time let,

N,(h,) 3)

@;(h;0;)) == = ~2 )
’ C,;(0;07)C,;(0;0°))+ C;(h,:07")

ij

and then these weights are normalized so that each
(cross)covariance gets equal weight,

n
wy (hy) =@, (1,;00)/ Y @ (h,,;:01)) @
m=1
Call this estimate 6®. Notice that if we use variograms rather than
covariances 0.7 s,

njj

argII;in ZW[[(hk)(j;[i( hk?ﬂii) _7755(11"))2 ©
k=1

i

where w_(h,) is given by (2) and then 0'” is obtained from (5
with weights as in (4) but now,
N,(h,)
o, :0;)) = 2]7(1)
7/1'1' (h’eu )

The estimates 6%V and 6@ are two steps in an iteratively
reweighted least-squares algorithm.

The estimate 6 is only used to provide a range estimate for a
default lag size for the grid method in estimating the empirical
semivariogram or covariance. The default number of lags is 12, so
the lag size for the grid method in the next section is taken to be
2*range/12.
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Stage 2

Stage 2 essentially repeats stage 1, but on an empirical
semivariogram or (cross)covariance on the scaled data Z ]" (s;)
that uses the grid method (as defined earlier in the section
‘Binning the semivariogram and covariance estimate’) where the
default lag size is obtained from the range estimate in 6® from
Stage 1. It also allows for anisotropy and linear combinations of
up to three (cross)covariance or semivariogram models in
additions into lag classes to the nugget effect for each dataset,

s
¢;0:0)=Y B, j)p,(b0,)
u=1
Here, B (i,/) is a partial sill parameter and is the /.jth component of
B . a1 x rpositive-definite matrix, where 7"is the number of fypes
of variables, S is the number of different (cross)covariance
models used in a linear combination, and the function p (h; ¢, ) is
anormalized covariance model; p (0; ¢, ) = 1, where ¢ are
parameters that typically control the range (and/or shape) of the
covariance model. As before, 6 contains all of the parameters. The
third iteration of parameter estimates, 6 is obtained by
minimizing (1) with weights (2) on the empirical covariance using
the grid method, and then 6 is obtained by minimizing (1) with
weights from (4) and (3) on the empirical covariance using the
grid method. These formulas are modified in an obvious way if we
are using semivariograms, as was shown for stage 1. Now, change
back to the original scale. The final (cross)covariance models are
C,)=5,5C. (h;0")-

and for variograms they are
7, =57, (0:0.7).

If the user changes any parameters, such as lag size, then
estimates are recalculated beginning at stage 2.
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Bivariate distribution dialog box

Disjunctive kriging requires that all pairs of data have a bivariate
normal distribution. This assumption is difficult to test in practice.
The Geostatistical Analyst gives a visual tool to help assess the
bivariate normal assumption. A theoretical curve, as a function of
lag, can be developed based on various threshold values for the
cumulative distribution function (see Deutsch and Journel, 1992,
p. 139 and Goovaerts, 1998, p. 265). This theoretical curve can be
compared to an empirical semivariogram based on indicators.
More generally, if QQPlots show a marginal normal distribution,
and the data appears to have bivariate normal distributions, it is
reasonable to assume a full multivariate normal distribution for
the data. Thus, the check for the bivariate normal distribution can
be used for simple kriging, allowing a user to assure that quantile
and probability maps are based on reasonable assumptions.

Using ARcGIS GEOSTATISTICAL ANALYST



Kriging formulas

Credit for kriging can be spread among many authors. Kriging
with covariance is equivalent to best linear unbiased prediction
(BLUP), and simple, ordinary, and universal kriging contributions
came from Wold (1938), Kolmogorov (1941), Wiener (1949),
Gandin (1959), Goldberger (1962), and Henderson (1963). Spatial
prediction using variograms is attributed to Gandin (1959, 1963)
and Matheron (1962, 1969). See Journel (1983) for indicator
kriging, Sullivan (1984) for probability kriging, and Matheron
(1976) for disjunctive kriging. Cressie (1990) gives more details on
the origins of kriging.

The Geostatistical Analyst uses predictors that can include
measurement error. These models are discussed by Gandin (1959,
1960, 1963) and Cressie (1986, 1988, 1993, 127-135). These models
include those commonly given in most geostatistics textbooks,
which are often described as “exact” predictors. By exact, it is
meant that if a prediction is made at a location where data has
already been collected, then the predictor is the same value as the
data that was collected there, and the prediction standard error is
zero. This can cause strange-looking maps because there will be
“jumps” in the predicted values wherever data has been
collected. In the presence of measurement error, one may want to
“filter” out the measurement and produce a smoother prediction
map. Measurement error models are only possible for ordinary,
simple, and universal kriging. All models were described here.
Begin with notation. At times, it will be necessary to talk about
multiple data locations, with multiple measurements per location
(measurement error), for multiple types of variables (cokriging).
We use Z;‘ (s;) to denote the jth measurement of variable type &
at the ith spatial location s ..

APPENDIX A

Estimating measurement error

If there are multiple observations per location, the Geostatistical
Analyst can estimate the measurement error. The formula for
computing measurement error is,

33 (Z,6)-Z,)
OA-:,IE — s;eD j=1 S

N-n,

where D is the set of all data locations that have more than

one measurement, Z(s,) is the jth measurement at location s,

is the mean value at location s, 7, is the number of observations
atlocation s, € D, N=X n for all s,in D, and 2, is the number of
spatial locations in D. The slider is set at the position that
corresponds with this value; that is, it is set at 100 ( 6—le / nugget)
percent. Users can override oA'fM if they choose, and the nugget
effect is constrained during estimation to be no smaller than 6'1%45 ;
whenever the user overrides a nugget value or 5':45 , then the
inequality nugget > &, is preserved.
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Ordinary kriging

The interested reader should consult Cressie (1993, pgs. 127-135)
for additional explanations of kriging with measurement error;
here, a condensed version of the ordinary kriging implementation
in Geostatistical Analyst is provided. As in Chapter 6, assume the
data is a realization of a spatially autocorrelated process plus
independent random errors:

Z[(8)=p(s) T g(s),
but now decompose the random errors,
£(8) = Y(s) + n(s) + 5(s),
where Z (s) denotes the /th realization at location s, and let 7, be
the number of measurements at location s. Often » = 1, and if , >

1, it forms a measurement error model. The following assumptions
are made:

* m(s)=mis an unknown, deterministic mean value.

* Y(s) is a smooth second-order stationary process whose range
of autocorrelation is detectable with an empirical
semivariogram or covariance.

« E(¥(s))=0.

e Cov(X(s), Y(sth)) = Cy(h), and there is no additional nugget
effect in the process Y(s).

* /(s) is a smooth second-order stationary process whose
variogram rangg is so close to 0 that it is smaller than all
practical distances between data and prediction locations.

« E(i(s))=0.
« Cov(h(s), h (s+h)) = C,(h) with C,(¥) =0.

* d/s) is a white-noise process composed of measurement
CITOTS.
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* E(d(s))=0.forall sand z.
+ Cov(d(s).d (s+h))=s*ifh=0and /= u, otherwise it is 0.
e Y(°), h (), and d(*) are independent of each other.

Assume here that the nugget effect, which is called v, is
composed of two parts: microscale variation plus measurement
error. Thatis, v= C,]((]) +o2. From this model, you can deduce that,

C,(h)+C,(h) if h=0
C,(0)+C,(0) if h=0andt#u
C,(0)+C,(0)+0” if h=0andr=u .

Cov(Z,(s),Z,(s+h)) =

If there is measurement error, you will want to predict the filtered
(noiseless) quantity S(s ) =+ ¥(s ) + 7(s,) at location s ; that is,
remove the measurement error. If there is no measurement error,
S(s,) = Z(s,). Ordinary kriging with measurement error is obtained
for the linear predictor,

S (SO) =Nz,
then minimize,
E(S(s,)) —2z)°,

where z is a vector of the observed data, and A is a vector of the
kriging weights. An unbiasedness condition,

E(S(s,) - 'z) =0,

implies 2> 1 = 1, which causes the need to use a Lagrange
multiplier when minimizing. Thus, obtaining the kriging equations,

ol
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where m is the Lagrange multiplier, 2 is the covariance matrix
among the data, and ¢ is Cov(z. S(s))) = Cov(z, Y(s)) + 71(s ).
Assuming that the range of 7(°) is very close to 0, you can
assume Cov(z, 7(s,)) = 0 for all practical distances, except when s,
=s_ where s is one of the spatial locations for observed data;
then Cov(Z(s), 77(s)) = C,]((]), which needs to be estimated. The
total nugget effect can be estimated, but recall that it is composed
of two parts, v=0c>+ C,]((]). If there is a separate estimate of 62,
then you can estimate C,]((]) =v — o2 This is equivalent to
specifying a proportion of the nugget effect that is measurement
error and a proportion that is microscale variation; 0 <1 < 1, and
identify 62 =mv and C,]((]) = (1 —m)v can be specified. If there are
multiple observations per location, then measurement error can be
estimated as shown earlier.

Once c* and C,(0) are specified, proceed with solving the kriging
equations. If all of the nugget effect is microscale variation due to
1(*) (i.e., no measurement error), then the solution to the kriging
equations yields exact kriging. Solving for A you obtain,

A=Z(c-1m)wherem= 1’2" e-1)/T’Z'1,

for the ordinary kriging predictor. Substituting in this A , you get
the mean-square-prediction error,

E(S(s,) - 2’z)
=C(0)+C (0)-Lc-m,
= Cy((]) +(l-myv-A’c-m,

so the prediction standard errors are

G5(50)=,/C,(0)+(1-m)v—1'ec—m

APPENDIX A

Predicting a new value for cross-validation and
validation

During cross-validation, you do not want to predict S(s,), the
noiseless version of data, but must predict Z (s ). with
measurement error, in order for the prediction standard errors to
reflect the root-mean-square prediction error from cross-
validation. Prediction of a “new value™ is obtained for the linear
predictor
ZAu(SO) =Nz,

then minimize,

E(Z (s,) —\’z)*.
Assume, in effect, thatif s, = s, € D, then u > n_. Proceeding as
before, the kriging equations are obtained,

(¥ ofu) ()

where m is the Lagrange multiplier, 2 is the covariance matrix
among the data and ¢ is Cov(z, Z (s ) = Cov(z, Y(s)) + 7)(s,)
+0 (s,)). Solving for 2., we obtain,

A=Ze-1m),wherem=(1"2 " c- /I’ Z'1.

Notice that when s, = s, € D, then the prediction Z, (s) is usually
not equal to one of the observed values z(s); 7 < n. However,
substituting in A to get the mean-square prediction error yields,

E(Z (s,) - Vz)
= Cy((]) + C,]((]) +o2-A¢c-m,
= Cy((]) +v-2¢-m,
so the prediction standard errors are
G7(89)=,/C,(0)+v—2d'c—m
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This should be compared to the prediction standard errors

G5(sy) for the noiseless version. Notice that when s = s, for one
of the observed data locations s, € D, then neither of the
prediction standard errors will be 0.

Probability and quantile maps

If the random errors are normally distributed with stationarity
(either second-order or intrinsic), then the prediction error §(s0) -
S(s,) has a normal distribution with zero mean and variance

62 (s,). Normality allows the computing of a probability map or,
equivalently, a quantile map.
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Simple kriging

Here a condensed version of the simple kriging implementation in
the Geostatistical Analyst is given. Refer to the appendix on
ordinary kriging for the model and assumptions. For simple
kriging, one assumption is changed to:

L(8) is a known, deterministic mean function.
As for ordinary kriging, it is necessary to predict the filtered
(noiseless) quantity, S(s)) = w(s,) + Y(s,) + 17(s,) at location s,

Prediction with measurement error

Simple kriging with measurement error is obtained for the linear
predictor,

S (s) =Mz +k

then minimize,
E (S(s)) =2z - k)* =Var[Y(s)) + n(s)) — K’z] + [1(s,)) — R’ p — kT,

where p is the vector of known means for all of the observed
data. The minimization is obtained by setting k= z(s ) — 2’n and
L= X ¢, where T is the covariance matrix among the data and ¢
is Cov(z, Y(s)) + 711(s,)). Then obtain the simple kriging predictor,

S(s)=Nz+k=CT 1 (z-p)+ us).
Substituting to get the mean squared prediction errors,
E(S(s) — Mz - k)
=C0)+C(0)-cZ e
=CO)+A-myv-cE e .

APPENDIX A

so the prediction standard errors are

O5(50) =,/C, (0) + (I-m)v—}'c

Predicting a new value for cross-validation

During cross-validation, it is not desirable to predict the noiseless
version of the data—rather, to predict it with measurement error in
order for the prediction standard errors to reflect the mean-square
prediction error from cross-validation. Prediction of a “new value”
is obtained for the linear predictor,

Z(s)=Nz+k,
then minimize,
E(Z(s)-Nz—k).

Assume, in effect, thatif s, = s, € D, then u > n. Proceeding as
done earlier, the kriging predictor is obtained,

2 (s)=N2+k=C% (2= p) +pis) .
with mean-square prediction errors,
E(Z(s)-N z—-k)
=C0)+C (0)+o’-cZ e
=C(0)+v+cE e,
so the prediction standard errors are

G,(50)= Cy@+v—d'c

This should be compared to the prediction standard errors for the
noiseless version. Notice that when s, = s for one of the observed
data locations s, € D, then neither of the prediction standard
errors will be 0.
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Probability and quantile maps

If the data comes from a joint multivariate normal distribution,

where
S(sg) N U(sy) || C,(0)+Cr(0) ¢
z pol c’ Xz,

then §(s)) is the conditional expectation, £(S(s )|z), and it is a
well-known property of the multivariate normal distribution that
the distribution of $(s,) is,

S(s)lz) ~N(CE, (2 - p) + (s ). C(0) +C (0) - ¢’E o).

Because the predictor also has a normal distribution, normality
allows the computation of a probability map or, equivalently, a
quantile map. Also notice that the conditional expectation

E(S(s,)|z) is the best predictor, in the sense of having the smallest
mean-square prediction error, of all predictors, linear or not.
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Universal kriging

Assume the following model,
Z(9)=[x(®P + £(s).
but now decompose the random errors,
£(8)=Y(s)+ n(s) + 5(9).

where X is a design matrix and f3 is a vector of parameters, and
otherwise it is similar to the model for ordinary kriging, with the
same assumptions except,

H(s) = [x(s)]’B , where x(s) is a vector of observed covariates
and P is a vector of unknown parameters.

Prediction with measurement error

As for ordinary kriging, predict the filtered (noiseless) quantity
S(s)) = [x(s))I’B + Y(s,) + 7(s,) at location s . X has a column of
ones, and other columns contain polynomial functions of the
spatial coordinates at location s. Universal kriging with
measurement error is obtained for the linear predictor,

S(s,) =Nz,
then minimize,
E(S(sy) —1’2),

where z is a vector of the observed data, and A is a vector of the
kriging weights. An unbiasedness condition,

E(S(s,) - %'2) =0,

implies X* A = x(s ). Proceeding as with ordinary kriging, the
universal kriging equations are obtained,

5 Sfn o)

APPENDIX A

where m is a vector of Lagrange multipliers, = is the covariance
matrix among the data, and ¢ is Cov(z, S(s ). Solving for %, the
universal kriging predictor is obtained,

A=2"(c-Xm), wherem= (X" Z"'X) (X" X" ¢~ x(s)).
Substituting to get the mean squared prediction errors,
E(S(s) —2’z)
=C(0)+C (0) -2 (ctXm),
= Cy((]) + (1 -m)v-2(ct+Xm),

so the prediction standard errors are

Gy (89) = /Cy )+ (I—m)v—2"(c— Xm)

Predicting a new value for cross-validation

During cross-validation, do not predict S(s), the noiseless
version of the data; rather, predict Z (s ) with measurement error
in order for the prediction standard errors to reflect the root-
mean-square prediction error from cross-validation. Prediction of
a “new value” is obtained for the linear predictor,

Z (s)=)\z,
then minimize,
E(Z,(s,) ~ \'z)".

Assume, in effect, thatif' s = s, € D, then # > n,. Proceeding as
before, the universal kriging equations are obtained,

I, XYn) ( ¢
X 0|m| X(Sg) |-
Solving for 7., obtain the universal kriging predictor,
A =X "(c-Xm)wherem=(X"2"X)"(X’Z "' c—x(s)).
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Notice that when s, = s € D, then the prediction 2u(s0) is usually
not equal to one of the observed values z (s ). # < n. Substituting
in A to get the mean-square prediction error yields,

E(Z(s) - \z)* =
=C,(0)+C,(0) +0>-1°(c+Xm),
= Cy((]) +v-A’(c+Xm),

so the prediction standard errors are
JC,(0) +v -2 (c— Xm ),

which should be compared to the prediction standard errors for
the noiseless version. Notice that when s = s for one of the
observed data locations s, € D, then neither of the prediction
standard errors will be 0.

Probability and quantile maps

If the random errors are normally distributed with stationarity
(either second-order or intrinsic), then the prediction error 3‘(s0) -
S(s,) has a normal distribution with zero mean and

variance G 4 (S,). Normality allows the computation of a
probability map or, equivalently, a quantile map.
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Lognormal linear kriging

If a log transformation is selected, lognormal kriging can be used
for ordinary kriging, simple kriging, and universal kriging and is
implemented as given in Cressie (1993). Following his notation,
the prediction formulas are:

Ordinary Kriging—equation 3.2.40, p. 135 of Cressie (1993)
Simple Kriging—second equation on p. 136 of Cressie (1993)
Universal Kriging—Cressie (1993) equation 3.2.40 generalizes to,

P.(Z:s,) =exp{p, (Z;s,) +67(s,)/2—m, [x(s)]1}.

where m is the vector of Lagrange multipliers from the universal
kriging equations and x(s,) is the vector of covariates at location
s,- the prediction location. The prediction variance is given in
Cressie (1993) equation 3.2.41, where:

Ordinary Kriging - . is replaced by,
Ay =PEFY/1’E{)

Simple Kriging - p., is known,
Universal Kriging - . is replaced by,

fiy (59) =[X(s50) (X' EYX) ' X EY'Y
where the vector Y = log(Z) and each element of Y is assumed to
have a normal distribution.
Transgaussian kriging

If a Box—Cox or arcsine transformation is selected, transgaussian
kriging can be used for ordinary kriging and universal kriging,
and is implemented as given in Cressie (1993, p. 137).

APPENDIX A

Indicator kriging

Indicator kriging is a nonlinear method, and only the exact form
(i.e., measurement error is not filtered out) of ordinary kriging can
be used on indicators. Assume the data is a realization of a
spatially autocorrelated process,

Z(8) = pt &(s).
and a binary (0 or 1) random variable is created by using a
threshold,
Z(s)=1(Z(s) > c).

where I(condition) is an indicator function that is 1 if condition is
true and 0, otherwise. Assume the binary data is also a realization
of a spatially autocorrelated process (with a nugget effect
possible),

Z(8)=p, + £(s).
Indicator kriging is ordinary kriging (with 0 measurement error) of
the binary variables Z'(s), and hence no filtering of any

measurement error in Z(s) is attempted. Another threshold can be
used,

ZX(8)=1(Z(s) > c,),
with a model,
ZX8) =, £(9).

Now use cokriging with both binary variables to predict Z'(s ).
The theory and formulas are given by Journel (1983), Isaaks and
Srivastava (1989), Cressie (1993, p. 281), Goovaerts (1997, p. 293),
and Chiles and Delfiner (1999, p. 381).
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Probability kriging

Like indicator kriging, probability kriging (Sullivan, 1984; Cressie,
1993, p. 283; Goovaerts, 1997, p. 301; Chiles and Delfiner, 1999,

p. 385) is a nonlinear method, and it is not obvious how to filter
out measurement error when using probability kriging. Assume
the data is a realization of a spatially autocorrelated process plus
independent random errors,

Z(8) = pt &s).
and a binary (0 or 1) random variable is created by using a
threshold,
Z\(s)=1(Z(s) > ©),

where I(condition) is an indicator function that is 1 if condition is
true and 0, otherwise. Assume the binary data is also a realization
of a spatially autocorrelated process (with a nugget effect
possible),

Zi(s)= p, + £(s).

Then, use cokriging to predict Z'(s ) using {Z'(s)} as the primary
variable and the original data {Z(s)} as the secondary variable in
the cokriging equations. See the section on cokriging for further
details.

Disjunctive kriging

In disjunctive kriging (Matheron, 1976), the predictor is of the
form,

Z(s)) =Y. 8,(Z(s)),

seD

where g (Z(s)) is some function of the variable Z(s). The
Geostatistical Analyst uses the following predictor,

Z(s)=f,+ > fH (Y(s,)),

k>0

270

where
A5 = Y A H, (Y 5,),

J,and A_are coefficients, H,(¥(s)) are Hermite polynomials, and
Y(s)and Y (s) have a bivariate normal distribution. The variable
Y(s) can be transformed (i.e., disjunctive kriging can be lognormal
and transgaussian) and allows the user to examine the
assumption of bivariate normality. The theory and practice of
disjunctive kriging are complicated, and the Geostatistical
Analyst follows the method as outlined in Rivoirard (1994).
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Cokriging

Cokriging can be used when there are several variables. The exact
formulas for cokriging are given by Journel and Huijbregts (1978,
p. 324), Isaaks and Srivastava (1989, p. 400), Cressie (1991, p. 138),
Goovaerts (1997, p. 224), and Chiles and Delfiner (1999, p. 298).
Ordinary cokriging, simple cokriging, and universal cokriging
allow measurement error models, just like their kriging
counterparts. Similarly, indicator cokriging, probability cokriging,
and disjunctive cokriging can only do exact prediction (i.e.,
measurement error is not filtered out).

Ordinary, simple, and universal cokriging

The universal kriging model is the most general, so assume,
Z5 )= [x]B, + Ts) + 1(s) + 55 (s) .

where X is a design matrix and 3, is a vector of parameters for
the kth variable type, with the following assumptions:

* TY*(s) is a smooth second-order stationary process whose
variogram range is larger than the shortest distance between
data points.

« E(Y%s))=0.

* Cov(¥(s), "(s+h)) =C)" (h) , withC}" (=) = 0 (i.e., there is no
additional nugget effect in the process Y*(s)).

* 7f(s) is a smooth second-order stationary process whose
variogram range is so close to O that it is shorter than all
practical distances between data and prediction locations.

+ EG/(s)=0.

+ Cov(7/(s), 7"(s+h)) =C;" (h) when k is equal to .
withCy"(e9=0.

o Cov(7#(s), "(s+h)) = 0 when £ is not equal to .

APPENDIX A

. 5}‘ (s) is a white noise process composed of measurement
erTorS,

+ E (6(s)) =0, forall kand,.

+ Covis)(s) 5% (s+h)) =s. if h=0: otherwise, it is 0.

* Cov(s}(s). d)(s+h)) = 0 for i not equal to 7.

Y*(®), 17/(*), and 8"(*) are independent of cach other for all &, /, and

m. Assume here that the nugget effect v, is composed of two

parts: microscale variation plus measurement error; that is, v, =

C *(0) + o,>. Also notice that there is no joint information at the

scale of 77(*) and 77"(*), so set their crosscovariance to 0. From
this model, you can deduce that,

Cov(Z5(5),2]" (s+h)) =

k#m
k=mandh=#0
k=mandh=0and j#t¢

Cy" (h) if
clmy+Cy ) if
croy+co) if

Y O+Cf0+0] if k=mandh=0and j=¢

For simplicity, consider only two variable types; the ideas
generalize easily for more types of variables. Predict the filtered
(nmselegs)l qugntlty Si(s,) = .[xli(so)]’[} T W(so) + 7f(s0) at location
s,- Cokriging in the Geostatistical Analyst is obtained for the
linear predictor,

S'(sy)= Mz, + 22,
then minimize,
E(Z(s) - Mz, +4)z,]).

Proceeding, as with ordinary kriging, the following cokriging
equations are obtained,

X, XYr) ( ¢
X’Om_xl(so)
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where
C(Zy Ep) o (X 0 (e} (M) (m
z:z_[):zl Ly Xl X, ¢ e ST g pme m, J°

m, and m, are Lagrange multipliers, X, is the covariance matrix
among the dataz, and z , and ¢, is Cov(z,. S,(s ). Solving for A,
obtains,

A=Z(c-Xm), wherem= (X" Z"'X)"'(X* X e -x(s)).
Substituting A, get the mean-square prediction error,
E(S'(s,) — 1'z)*
= C' O + )l @) — (e +Xm),
=C)'0+(1- m v, - X’(c+Xm),

so the prediction standard errors are,

G51(50) = [CL(0) + (-7, ), —1’(e+ Xm) -

(10
X“o 1)

then ordinary cokriging is a special case of universal cokriging.
For simple cokriging,

$1(89) =Nz +k=C5 @z p)+ ps,).

with the prediction standard errors given by,

G51(50) = JCl O+ v, —' e -

Predicting new values for cross-validation can be developed just
as with ordinary, simple, and universal kriging.
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Indicator, probability, and disjunctive cokriging

Indicator, probability, and disjunctive cokriging are nonlinear
methods, and only the exact form (i.e., measurement error is not
filtered out) of ordinary cokriging can be used with these
methods. Indicator cokriging is just cokriging of indicators; see
Cressie (1993, p. 283), Goovaerts (1997, p. 297), and Chiles and
Delfiner (1999, p. 386). Probability cokriging involves forming
indicators on two variable types in addition to using the original
data, and then using the ordinary cokriging equations.
Disjunctive cokriging is a generalization of disjunctive kriging for
bivariate Gaussian distributions (Muge and Cabecadas, 1989;
Chiles and Delfiner, 1999, p. 419).

Cross Validation dialog box

Cross-validation

Cross-validation consists of removing data, one at a time, and
then trying to predict it. Next, the predicted value can be
compared to the actual (observed) value to assess how well the
prediction is working. Notice that in geostatistics the
semivariogram models are typically not reestimated each time data
is removed. For more information on cross-validation, see Isaaks
and Srivastava (1989, p. 351), Cressie (1993, p. 101), Goovaerts
(1997, p. 105), Armstrong (1998, p. 115), Chiles and Delfiner (1999,
p. 111), and Stein (1999, p. 215).
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Cross-validation summaries

Summary statistics and graphs can be made by comparing the
predicted value to the actual value from cross-validation. Let

z (s;) be the predicted value from cross-validation, let z(s)) be the
observed value, and let 6(s;) be the prediction standard error for
location s. Then some of the summary statistics given by the
Geostatistical Analyst are:

1. Mean prediction errors,
Y (26s)-265,))
i=1 .
n

2. Root-mean-square prediction errors,

i(ZA(Sl) - Z(Si))z

i=1

n

3. Average kriging standard error,

APPENDIX A

4. Mean standardized prediction errors,

i (ZA(SI) - Z(Si))/d-(si)

i=1

5. Root-mean-square standardized prediction errors,

n

i [(2(Si) - Z(Si))

i=1

/(3'(sl-)]2

n
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Appendix

IN THIS APPENDIX This appendix provides an overview of the methods that are available with
the Geostatistical Analyst. The following chart describesthe
characteristics of each method, summarizes its advandages and
disadvantages, and shows the type of output it creates. By comparing the
differences between these methods you can determine which ones you
should usein your application.

e A comparison of the Geostatistical
Analyst methods
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A comparison of the Geostatistical Analyst methods

Method Deterministic/ Output Computing Exact Advantages Disadvantages Assumptions?
Stochastic Surface Time/ Interpolator
Types Modeling
Time'
Inverse Deterministic Prediction Fast/Fast Yes Few parameter No assessment of
Distance decisions prediction errors;
Weighted produces “bulls eyes”
around data locations None
Global
polynomial  Deterministic Prediction Fast/Fast No Few parameter No assessment of
decisions prediction errors;
may be too smooth;
edge points have large
influence None
Local Deterministic Prediction Moderately
polynomial Fast/Moderate No More parameter No assessment of
decisions prediction errors;
may be too automatic None
Radial Deterministic Prediction Moderately Yes Flexible and No assessment of None
basis Fast/Moderate automatic with prediction errors;
functions some parameter may be too automatic
decisions
Kriging Stochastic Prediction; Moderately Yes without Very flexible; Need to make Data comes from a
Prediction Fast/Slower measurement allows assessment many decisions on stationary stochastic
Standard error; of spatial transformations, process, and some
Errors; No with autocorrelation; trends, models, methods require that
Probability; measurement can obtain parameters, and the data comes from a
Quantile error prediction standard neighborhoods normal distribution
errors; many
parameter decisions
Cokriging Stochastic Prediction; Moderate/ Yes without Very flexible; Need to make Data comes from a
Prediction Slowest measurement can use information many decisions on stationary stochastic
Standard error; in multiple datasets; transformations, process, and some
Errors; No with allows assessment trends, models, methods require that
Probability; measurement of spatial cross- parameters, and the data comes from
Quantile error correlation; neighborhoods a normal distribution
many parameter
decisions

1. Computing time is computer-processing time to create a surface. Modeling time includes user-processing time to make decisions on model parameters and search neighborhoods.

2. We assume that all methods are predicting a smooth surface from noisy data.
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Descriptions

IDW: IDW is a quick deterministic interpolator that is exact. There
are very few decisions to make regarding model parameters. It can
be a good way to take a first look at an interpolated surface.
However, there is no assessment of prediction errors and IDW
can produce “bulls eyes” around data locations. There are no
assumptions required of the data.

Global polynomial: Global polynomial is a quick deterministic
interpolator that is smooth (inexact). There are very few decisions
to make regarding model parameters. It is best used for surfaces
that change slowly and gradually. However, there is no
assessment of prediction errors and it may be too smooth.
Locations at the edge of the data can have a large effect on the
surface. There are no assumptions required of the data.

Local polynomial: Local polynomial is a moderately quick
deterministic interpolator that is smooth (inexact). It is more
flexible than the global polynomial method, but there are more
parameter decisions. There is no assessment of prediction errors.
The method provides prediction surfaces that are comparable to
kriging with measurement errors. Local polynomial methods do
not allow you to investigate the autocorrelation of the data,
making it less flexible and more automatic than kriging. There are
no assumptions required of the data.

Radial basis functions: Radial basis functions are moderately
quick deterministic interpolators that are exact. They are much
more flexible than IDW, but there are more parameter decisions.
There is no assessment of prediction errors. The method provides
prediction surfaces that are comparable to the exact form of
kriging. Radial basis functions do not allow you to investigate the
autocorrelation of the data, making it less flexible and more
automatic than kriging. Radial basis functions make no
assumptions about the data.

ArPENDIX B

Kriging: Kriging is a moderately quick interpolator that can be
exact if the data has no measurement error, or smoothed if the
data has measurement error. It is very flexible and allows you to
investigate the spatial autocorrelation in the data. Because
kriging uses statistical models, it allows a variety of map outputs,
including predictions, prediction standard errors, probability, and
quantile maps. The flexibility of kriging can require a lot of
decision-making relative to other methods, or you can take the
parameter defaults. Kriging assumes the data comes from a
stationary stochastic process, and some methods require that the
data comes from a normal distribution.

Cokriging: Cokriging is a moderately quick interpolator that can
be exact if the data has no measurement error, or smoothed if the
data has measurement error. It can use information in multiple
datasets. Cokriging is very flexible and allows you to investigate
the spatial autocorrelation and cross-correlation in the data.
Because cokriging uses statistical models, it allows a variety of
map outputs, including predictions, prediction standard errors,
probability, and quantile maps. The flexibility of cokriging
requires the most decision-making of all methods, or you can take
the parameter defaults. Cokriging assumes the data comes from a
stationary stochastic process, and some methods require that the
data comes from a normal distribution.
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Glossary

anisotropy

A property of a spatial process or data where spatial dependence (autocorrelation) changes with
both the distance and the direction between two locations.

autocorrelation

Statistical correlation between spatial random variables of the same type, attribute, name, and so
on, where the correlation depends on the distance and/or direction that separates the locations.
Compare to crosscorrelation.

bandwidth

This term, when used for binning the empirical semivariogram/covariance, is some maximum width
of a bin when using the sector method. The sector method forms bins between radial lines that
diverge. The maximum divergence is called the bandwidth, beyond which the lines (no longer
radial) become parallel.

bin
A classification of lags, where all lags that have similar distance and direction are put into the same
bin. Bins are commonly formed by a grid or a sector method.

cokriging
A statistical interpolation method that uses data from multiple data types (multiple attributes) to

predict (interpolate) values of the primary data type (primary attribute). Cokriging also provides
standard errors of the predictions. See also kriging.

correlation

Covariance that is scaled so that values range from -1, when variables vary opposite of each other,
to 1 when they vary together. See also covariance.

covariance

The statistical tendency of two variables of the same type, attribute, name, and so on, to vary in
ways that are related to each other. Positive covariance occurs when both variables tend to be
above their respective means together, and negative covariance occurs if one variable tends to be
above its mean when the other variable is below its mean. See also correlation, and compare to
crosscovariance.
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crosscorrelation

Statistical correlation between spatial random variables of
different types, attributes, names, and so on, where the
correlation depends on the distance and/or direction that
separates the locations. Compare to autocorrelation.

crosscovariance

The statistical tendency of variables of different types, attributes,
names, and so on, to vary in ways that are related to each other.
Positive crosscovariance occurs when both variables tend to be
above their respective means together, and negative
crosscovariance occurs if one variable tends to be above its mean
when the other variable is below its mean. Compare to covariance.

cross-validation

The procedure where one data is removed and the rest of the data
is used to predict the removed data. Full cross-validation is done
by removing each data in the dataset and using the rest of the
data to predict it.

crossvariogram

A function of the distance and direction separating two locations,
used to quantify cross-correlation. The crossvariogram is defined
as the variance of the difference between two variables of
different types or attributes at two locations. The crossvariogram
generally increases with distance, and is described by nugget,
sill, and range parameters.

deterministic

A type or part of a model where the outcome is completely and
exactly known based on known input; the fixed (nonrandom)
components of a model. In the Geostatistical Analyst, all
interpolation methods that do not have random components
(IDW, global and local polynomial, and radial basis functions) are
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deterministic. The statistical methods (kriging, cokriging) may
have deterministic (nonrandom) components, often called trend
(as in universal kriging).

detrending

The process of removing the trend by subtracting the trend
surface (usually polynomial functions of the spatial x- and y-
coordinates) from the original data values. The resulting values,
after having the trend removed, are called residuals.

directional influences

Natural or physical processes that affect the measured trait or
attribute such that the magnitude of the effects on the attribute
vary in different directions.

dissimilarity

Becoming less and less alike. The semivariogram is a dissimilarity
function because it increases with distance, indicating that values
are becoming less alike as they get farther apart. Thus, the higher
the semivariogram value, the more dissimilar the values.

empirical

A term used to mean that the quantity depends on the data,
observations, or experiment only: that is, it is not a model or part
of a model. For example, empirical semivariograms are computed
on data only, which is in contrast to theoretical semivariogram
models.

estimation

The process of forming a statistic from observed data to estimate
parameters in a model or distribution.

first-order polynomial

The order of a polynomial is the largest integer m in the power
terms (e.g., x™). For a first-order polynomial the largest mis 1. In
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the spatial context, where x and y are spatial coordinates, a
polynomial will contain terms x™y*, and a first-order polynomial
can contain all terms wherem+n=1(e.g..b,+b x+b,y). See
also second-order polynomial.

geostatistics

General: Statistical methodologies that use spatial coordinates to
help formulate models used in estimation and prediction. In the
Geostatistical Analyst: Exploratory and interpolation methods
that use information on the spatial coordinates of the data.

global polynomial interpolation

One of the deterministic interpolation methods used in the
Geostatistical Analyst. The interpolated surface is not forced to
go through the data, and the method does not have standard
errors associated with it.

histogram

A bar graph where data is divided into groups. The width of the
bars shows the range of values in each group, and the height of
the bar indicates how many values are in each group.

interpolate

Predicting values at locations where data has not been observed,
using data from locations where data has been collected. Usually,
interpolation is for predictions within the area where data has
been collected, rather then extending predictions to areas outside
of the data-collection area.

intrinsic stationarity

An assumption that the data comes from a random process with a
constant mean, and a semivariogram that only depends on the
distance and direction separating any two locations.

GLOSSARY

inverse distance weighted interpolation

One of the deterministic interpolation methods used in the
Geostatistical Analyst. The interpolated surface goes through the
data, and the method does not have standard errors associated
withit.

isotropy

A property of a natural process or data where spatial dependence
(autocorrelation) changes only with the distance between two
locations (direction is unimportant).

kriging

A statistical interpolation method that uses data from a single
data type (single attribute) to predict (interpolate) values of that
same data type at unsampled locations. Kriging also provides
standard errors of the predictions. See also cokriging.

lag
The line (vector) that separates any two locations. A lag has
length (distance) and direction (orientation).

least-squares fit

A model (line, surface, or smooth function) that is fit to data by
finding the parameters of the model that minimize the squared
differences between each data value and the model.

linear model of coregionalization

A model for semivariograms/covariances and crosscovariances
formed by taking a linear combination of component
semivariogram/covariance models. This model is used for
cokriging methods.
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local polynomial interpolation

One of the deterministic interpolation methods used in the
Geostatistical Analyst. The interpolated surface is not forced to
go through the data; the method does not have standard errors
associated with it.

long-range variation

Variation can often be decomposed into components, each of
which vary over different spatial resolutions or scales. Long-
range variation refers to variation at the coarse scale, and is
usually modeled with deterministic components such as
polynomials, also known as trend.

mean stationarity

A property of a spatial process where all of the spatial random
variables have the same mean value.

nugget

A parameter of a covariance or semivariogram model that
represents independent error, measurement error and/or
microscale variation at spatial scales that are too fine to detect.
The nugget effect is seen as a discontinuity at the origin of either
the covariance or semivariogram model.

ordinary kriging

Spatial prediction (interpolation) using semivariogram or
covariance models that rely on spatial relationships among the
data. Ordinary kriging makes certain assumptions about the
model, such as intrinsic stationarity, and that the true mean of the
data is constant but unknown.

partial sill

A parameter of a covariance or semivariogram model that
represents the variance of a spatially autocorrelated process
without any nugget effect. In the semivariogram model, the partial
sill is the difference between the nugget and the sill.
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polynomial

A function composed by summing powers of its variables. In the
spatial context, where x-coordinates and y-coordinates are the
variables, a polynomial has terms like 1, x, X%, y, ¥2, Xy, X%y, and so
on, all of which are added together with coefficients, b, +b x +
b,y + ... In general, terms of the form bx"y" can be summed,
where m and n are nonnegative integers.

prediction

The process of forming a statistic from observed data to predict
random variables at locations where data has not been collected.

prediction standard error

The square-root of the prediction variance, which is the variation
associated with the difference between the true and predicted
value. The prediction standard error quantifies the uncertainty of
the prediction. A rule of thumb is that 95 percent of the time the
true value will be within the interval formed by taking the
predicted value + 2 times the prediction standard error if data are
normally distributed.

probability map
A surface that gives the probability that the variable of interest is
above (or below) some threshold value that the user specifies.

QQPIlot

A scatter-plot, where the quantiles of two distributions are
plotted against each other.

quantile

The p-th quantile, where p is between 0 and 1, is the value that
has a proportion p of the data below the value. For theoretical
distributions, the p-th quantile is the value that has p probability
below the value.
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radial basis functions

One of the deterministic interpolation methods used in the
Geostatistical Analyst. The interpolated surface is forced to go
through the data, and the method does not have standard errors
associated with it.

regression

A statistical method where a variable, often called the response or
dependent variable, is made up of a function (often linear) of one
or more other variables which are called covariates, explanatory,
or independent variables. The function can be fitted by least
squares, among other methods.

residuals

Values formed by subtracting the trend surface (usually,
polynomial functions of the spatial x- and y-coordinates) from the
original data values.

range

A parameter of a covariance or semivariogram model that
represents a distance beyond which there is little or no
autocorrelation among variables.

searching neighborhood

A polygon that forms a subset of data around the prediction
location. Only data within the searching neighborhood will be
used for interpolation.

second-order polynomial

The order of a polynomial is the largest integer m in the power
terms (e.g., x™). A second-order polynomial has two as the largest
m. In the spatial context, where x and y are spatial coordinates, a
polynomial will contain terms x"y", and a second-order
polynomial can contain all terms where m+n=2 (e.g.,b, +b x+
b,y +b,x* +b,y* +b_xy). See also first-order polynomial.

GLOSSARY

second-order stationarity

An assumption that the data comes from a random process with a
constant mean, and spatial covariance that only depends on the
distance and direction separating any two locations.

semicrossvariogram
The crossvariogram divided by two.

semivariogram
The variogram divided by two.

semivariogram values

The value of the semivariogram function for some distance and
direction.

short-range variation

Variation can often be decomposed into components, each of
which vary over different spatial resolution or scales. Short-range
variation refers to variation at the fine scale, and is usually
modeled as spatially dependent random variation.

sill

A parameter of a variogram or semivariogram model that
represents a value that the semivariogram tends to when
distances get very large. At large distances, variables become
uncorrelated, so the sill of the semivariogram is equal to the
variance of the random variable. Some theoretical semivariograms
do not have a sill. All semivariogram models used in the
Geostatistical Analyst have a sill.

spatial dependence

The notion that things near to each other are more similar than
things farther apart.
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spherical model

A function of specific form with nugget, range, and sill parameters
that can be used for a semivariogram or covariance model.

spline interpolation

One of the deterministic interpolation methods used in the
Geostatistical Analyst; a special case of radial basis functions.
The interpolated surface is forced to go through the data, and no
standard errors are available.

stationarity

All statistical properties of an attribute depend only on the
relative locations of attribute values. See mean stationarity,
intrinsic stationarity, and second-order stationarity.

surface

A function of the spatial coordinates where the function
represents some variable of interest, either what actually occurred
in nature or a mathematical model of the variable.

trend

A surface composed of fixed parameters, often polynomials of the
x- and y-coordinates. The nonrandom part of a spatial model
describing an attribute. The trend usually models the long-range
or coarse-scale variation, leaving random errors to model the fine-
scale variation.

unimodal

A curve with a single global maximum value, without any local
maximums.

univariate distribution

A function for a single variable that gives the probabilities that
the variable will take a given value.
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validation

The procedure where part of the data is removed and the rest of
the data is used to predict the removed part of the data.

variogram

A function of the distance and direction separating two locations,
used to quantify autocorrelation. The variogram is defined as the

variance of the difference between two variables at two locations.
The variogram generally increases with distance, and is described
by nugget, sill, and range parameters.

variography

The process of estimating the theoretical semivariogram. It begins
with exploratory data analysis, then computing the empirical
semivariogram, binning, fitting a semivariogram model, and using
diagnostics to assess the fitted model.
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Angle of rotation 170
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detined 279
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starting 14

Arcsine
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defined mathematically 200
when to use 200

Artificial neural networks 126
Autocorrelation 28, 53, 59, 61, 133

cokriging 165
detined 279
spatial. See also Spatial autocorrelation

Average empirical semivariance 56
Average standard error 35

comparison 197
cross-validation 190
validation 190

Averaged semivariogram 61
Averaged semivariogram values 61

Back transformation
normal score transformation 201
Bandwidth 65
defined 279
Bin
defined 279
Binary variables
indicator kriging 155
principles 154
probability kriging 156
Binning 28, 62
angle tolerance 65
bandwidth 65
directional binning 66
directional influences 65
grid method 66
radial sector method 65
semivariogram surface 64
the mathematics 253
Bivariate distribution
checking for 209
Bivariate Distribution dialog box
identifying the controls 208
Bivariate normal distribution 207
disjunctive kriging 206
explained 206
formulas 260
p value 206
principles 206
probability map 206
quantile map 206
Box—Cox
defined mathematically 200
effects on distributions 95
when to use 200
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Brushing. See also Selections
in the Semivariogram/Covariance Cloud tool
32
making selections in ArcMap 82
making selections with ESDA 82

Cc

Cell declustering
formulas 251
Cell method
declustering 212
Circular model
formula 256
Classification 230
of a geostatistical layer 230
setting class ranges manually 230
with a predefined method 233
with equal interval 232
with manual breaks 234
with quantile 232
with smart quantiles 232
Clipping 43
Cokriging
as a prediction method 135
constant mean 165
creating a prediction map 166
detined 279
indicator, probability, and disjunctive
cokriging 272
mathematical formulas 271
model explained 165
models 134
ordinary, simple, and universal cokriging
mathematical formulas 271
principles 165
Comparing models 38
Comparison 79
average standard error 197
concerns 197
mean 197
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Comparison (continued)
performing 199
principles 197
root-mean-square prediction error 197
standardized mean 197
standardized root-mean-square prediction
error 197
validation 197
Comparison dialog box 198
cross-validation statistics 197
identifying the controls 198
Completely regularized spline 128
principles 126
Constant mean
cokriging 165
disjunctive kriging 159
in an ordinary kriging example 54
indicator kriging 154
ordinary kriging 138
probability kriging 156
simple kriging 143
universal kriging 150
Continuous
spatially 132
values 132
Continuous surface 50
Contours
and the geostatistical layer 220
displaying the geostatistical layer as 228
Coregionalization models 258
Correlation
detined 279
Covariance 59, 109, 175
adding shifts 173
altering the anisotropy parameters 177
changing the lag size and number 179
changing the partial sill and nugget 179
cross-covariance function 172
detined 279
directional 170
directional autocorrelation 176
empirical cross-covariance 173

Covariance (continued)
fitting models formulas 259
formulas 168
functions 169
handling measurement error 180
maximum cross-covariance 173
minimum cross-covariance 173
modeling anisotropy 177
models 172
partial sill principles 168
range principles 168
selecting a model 175
Semivariogram/Covariance Cloud tool 91
sill 168
sill principles 168
Covariance functions 168
Covariance models
formulas 255
Covariance surface
Cross-Covariance Cloud tool 94
Covariation 109
among multiple datasets 109
Cross-correlation
cokriging 165
Cross-validation 263
average standard errors 190
defined 280
error plot 190
examining the predicted fit 193
local polynomial 123
mathematical formulas 263, 272
mean prediction error 190
objective of 35
prediction standard errors 190
principles 189

QQPlot 190
root-mean-square prediction error
190, 191, 197

saving statistics to a file 194
scatter plot 189
selecting a particular point 193
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Cross-validation (continued)
standard error plot 190
standard normal distribution 190
standard prediction errors 190
summary statistics mathematical
formulas 273
Cross-Validation dialog box 17
identifying the controls 192
Crosscorrelation
defined 280
Crosscovariance 93
concepts 109
defined 280
exploring with the Crosscovariance Cloud
tool 109
exploring with the Histogram tool 109
using the Crosscovariance Cloud tool 111
Crosscovariance cloud 93
Crosscovariance Cloud tool
covariance surface 94
cross-correlation between datasets 109
general description 93
Lag Size 94
Number of Lags 94
Search Direction 94
Crosscovariance models 172, 258
Crossvariogram
defined 280
Cumulative distributions
described 88

D

Data

examining the distribution

explained 95

in an example 19

using the histogram tool 96, 98
global trends 21. See also Global trends
understanding distributions

with the QQPlot 97, 98

INDEX

Data classification
principles 230. See also Geostatistical
layers
Data layers
adding to ArcMap 14
Declustering 211
cell method 212
performing 214
polygonal method 212
preferential sampling 211
principles 211
Declustering dialog box
identifying the controls 213
Dependency rules 59
Deterministic
detined 280
Deterministic component 69, 216
Deterministic interpolation 49, 53, 78
Deterministic interpolation techniques 113
global 113
local 113
Deterministic methods 50, 78
global 103
local 103
Detrending 69
detined 280
Detrending dialog
setting the window 218
Detrending dialog box
identifying the controls 217
Diagnostics 35
performing 79
Directional autocorrelation 74
how to look for 176
Directional binning 66
Directional components
anisotropy 69
global trends 69
Directional differences
Semivariogram/Covariance Cloud tool 107

Directional influences 30, 69, 74
affecting the data 24
detined 280
exploring for directional autocorrelation 176
exploring with the Semivariogram/Covariance
Cloud 109
searching neighborhoods 74
using the Semivariogram/Covariance Cloud
tool 108
Directional search 65
Directional semivariograms 30
Directional variation 106, 108
Disjunctive kriging
bivariate normal 159
constant mean 159
creating a prediction map 160
examining the bivariate distribution 164
with declustering 163
creating a probability map 161
creating a standard error of indicators map
162
mathematical formulas 270
model described 159
principles 159
trends 159
Dissimilarity
detined 280
Distribution modeling
direct 252
Gaussian mixture 252
linear 252
Distributions
asymmetric 97
bivariate normal 206
checking for bivariate distribution 209
examining with the Normal QQPlot 97
general descriptions 95
kurtosis 85
leptokurtic 85
modeling with normal score transformation
205
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Distributions (continued)
normal 85
platykurtic 85
probability density 95
skewed 96
skewness 85
stationarity 95
symmetry 85
tail 85
transformations 95
univariate normal 206
using the Histogram tool 98
Drawing order
in ArcMap 223

E

Elevation surface 50
Empirical
detined 280
Empirical covariance functions 171
Empirical semivariogram
29, 53, 56, 61, 63, 66
concepts 61, 62
fitting a model 67
functions 171
in an ordinary kriging example 56
Semivariogram/Covariance Cloud tool 91
Empirical semivariogram surface 171
Entropy
maximum entropy 87
minimum entropy 87
principles 87
quartile 87
Equal interval 231
Error 35
Error plot
cross-validation 190
validation 190
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ESDA tools
Crosscovariance Cloud tool. See
Crosscovariance Cloud tool
General QQPlot
explained 88
Histogram tools. See Histogram
tool; Histogram tools
interacting with ArcMap 82
Normal QQPlot
construction of 88
explained 88
Semivariogram/Covariance cloud
explained 91
Trend analysis
examining the global trend 103
explained 90
identifying global trends 105
Voronoi map 86
methods for assigning polygon values 86
Estimation
defined 280
Exact interpolators 113
explained 113
Inverse Distance Weighted function 113
measurement error 169
radial basis functions (RBF) 113, 126
Exploratory Spatial Data Analysis (ESDA) 81
ArcMap and ESDA 82
associated properties of selected points 83
brushing 82
explained 82
highlighting 82
linking 82
querying 82
selecting 82
selecting points 82
tools
Crosscovariance Cloud 84
General QQPlot 84
Histogram 84
Normal QQPlot 84

Exploratory Spatial Data Analysis (ESDA)
(continued)
tools (continued)
Semivariogram/Covariance Cloud 84
Trend Analysis 84
Voronoi Map 84
transformations 82
Views
Crosscovariance Cloud 82
General QQPlot 82
Histogram 82
Normal QQPlot 82
Semivariogram/Covariance Cloud 82
Trend Analysis 82
Voronoi Map 82
Exploring your data
in an example 19
Exponential model
concepts 71
formula 257

F

Filled contours
and the geostatistical layer 220
displaying the geostatistical layer as 227
Filtered value
measurement error 169
First and third quartiles 84
First-order polynomial 51, 123
detined 280
Fitting a model
in an ordinary kriging example 56
Fitting covariance models
formulas 259
Fitting semivariogram models
formulas 259
Fixed trend 103
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G

G matrix 56, 57
G vector 57
in an ordinary kriging example 57
Gamma matrix 55
in an example 56
in an ordinary kriging example 55
Gaussian mixture
normal score transformation method 252
Gaussian model
formula 257
General QQPlot
explained 88
General QQPIlot tool
general description 88
Geostatistical Analyst toolbar
adding to ArcMap 14
Geostatistical interpolation 49, 78
Geostatistical interpolation techniques 131
creating surfaces 131
Geostatistical layer
adding 222
adding a group layer 222
altering class breaks manually 234
assigning data
Equal interval 230, 231
Quantile 230, 231
Smart quantiles 230, 232
changing color interactively 229
changing color scheme 229
changing drawing order 223
changing the name 17, 224
classifying with a predefined method 233
classifying with equal interval 231
classifying with quantiles 231
classifying with smart quantiles 232
contours 220
copying 224
data classitication 230
displaying as a grid 227

INDEX

Geostatistical layer (continued)
displaying as a hillshade 228
displaying as contours 228
displaying as filled contours 227
exporting to a raster 238
exporting to vector format 238
extrapolating 236
filled contours 220
grid 220
hillshade 220
managing 224
map extent 220
method properties 240
model parameters 220, 224
predicting specific locations 242
previewing data in ArcCatalog 225
principles 220
removing 224
saving a map 237
selecting points 241
setting class ranges manually 230
setting scale range 235
starting ArcCatalog 225
symbology 220
transparency 220
turning display on and oft 223
using map tips 241
using method properties 240
viewing in ArcCatalog 225
viewing metadata 226
zooming and panning 223

Geostatistical techniques
autocorrelation 53
certainty 53
concepts 53
creating the matrices 53
empirical semivariogram 53
fitting a model 53
interpolation 132
making a prediction 53
prediction surface 53

Geostatistics 78
defined 281
principles 132
Global deterministic interpolation 103
Global outliers 101
Histogram tool 101
Semivariogram/Covariance Cloud tool 101
Global polynomial 248
concepts 51
cubic polynomial 120
first-order polynomial 51
formulas 248
linear polynomial 120
principles 120
quadratic polynomial 120
second-order polynomial 51
third-order polynomial 51
Global polynomial interpolation
creating a map 122
creating a prediction map 122
defined 281
first-order 51
formulas 248
how it works 120
second-order 51
third-order polynomial 51
when to use 120
Global trends. See also Trends
concepts 69
fixed 103
looking for 103
Grid
and the geostatistical layer 220
displaying a geostatistical layer as 227
Grid spacing
as an indicator of lag size 66
Group layer
adding 222
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H

Hillshade
adding 47
and the geostatistical layer 220
displaying the geostatistical layer as 228
Histogram
defined 281
in an example 19
normally distributed data 19, 20
skewed data 19
symmetric data 20
unimodal data 20
Histogram tool
examining distributions 96, 98
exploring the crosscovariance 109
frequency distribution
Ist and 3rd quartiles 84
kurtosis 85
mean 84
median 84
skewness 85
standard deviation 85
statistics summary 84
variance 84
general description 84
identifying global outliers 101
looking for outliers 99
Histogram tools 109
Hole effect model
formula 257

IDW. See Inverse Distance Weighted (IDW)
interpolation
Indicator kriging
binary variable 154
constant mean 134, 154
creating a probability map 155
indicator variable 154
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Indicator kriging (continued)
mathematical formulas 269
model 154
model described 154
multiple thresholds 154
primary variable 154
principles 154
secondary variable 154

Indicator kriging technique
in an example 39

Indicator prediction value 40

Indicator variable
indicator kriging 156
probability kriging 156

Inexact interpolator 113
global polynomial 113
local polynomial 113

Interpolate
defined 281

Interpolation techniques
deterministic 49, 53, 113
geostatistical 49, 53, 113

Intrinsic stationarity
and ordinary kriging 54
concepts 59
defined 281
semivariogram 61

Inverse Distance Weighted IDW) 53
concepts 50
similarities to kriging 53, 74

Inverse Distance Weighted (IDW) interpolation

114

creating amap 118

creating a prediction map 118

creating a prediction map using Validation
119

cross-validation 114

exact interpolator 117

how surface is calculated 117

optimal power 114

power function 114

Inverse Distance Weighted (IDW) interpolation
(continued)
principles 114
root-mean-square prediction error 114
search neighborhood 115
shape 116
sectors 116
shape of the neighborhood 116
Inverse Distance Weighted interpolation
defined 281
Inverse Distance Weighting IDW) 54, 74
Inverse multiquadric spline
principles 126, 128
Isotropy
defined 281
general principles 106
neighborhood search 181

J

J-Bessel model
formula 258

K

K-Bessel model
formula 257

Kriging 74
as a prediction method 135
autocorrelation 53, 133, 134
certainty 53
concepts 53
creating the matrices 53
defined 281
deterministic trend 133
empirical semivariogram 53
error term 133
fitting a model 53
logarithmic transformations 137
making a prediction 53
mathematical formulas 261
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Kriging (continued)
output surface types 135
prediction maps 135
prediction surface 53
predictors 172
principles 132
probability and predictions 133
probability maps 135
quantile map 135
random error 134
standard error of indicators map 135
standard errors 172
transformations 134
trend 134
unbiased predictor 137
Kriging equations 54, 55
Kriging family 131
Disjunctive 131
Indicator 131
Ordinary 131
Probability 131
Simple 131
Universal 131
Kriging map
using default parameters 136
Kriging methods
transformation methods 137
trend options 137
Kriging models 133
cokriging 134
disjunctive cokriging 134
indicator cokriging 134
ordinary cokriging 134
probability cokriging 134
probability kriging 134
simple cokriging 134
universal cokriging 134
Kriging standard error
in an ordinary kriging example 58

INDEX

Kriging tasks
producing a prediction 131
quantifying the spatial structure 131. See
also Variography
Kriging variance
in an ordinary kriging example 58
Kriging weights 74
Kurtosis 85

L

Lag 31
defined 281
size 64
choosing 66
Lag size 28, 171
Lag vector 73
Lagrange multiplier 77
Least-squares fit 53
defined 281
Least-squares regression line 56
Leptokurtic 85
Linear
normal score transformation method 252
Linear combination of models 255
Linear model of coregionalization
defined 281
Linking. See Selections
Local outliers
in a Voronoi map 102
Local polynomial 52
cross-validation 124
formulas 248
order 123
principles 123
root-mean-square prediction error 124
search neighborhood 123
Local polynomial interpolation 52, 123
creating a map using 125
creating a prediction map 125
defined 282

Local polynomial interpolation (continued)
formulas 248
how it works 123
when to use 124
Local variation 28, 51
Log transformation
defined mathematically 200
when to use 200
Logarithmic transformation
effects on distributions 95
Lognormal kriging. See also Transformations
mathematical formulas 269
Long-range variation
defined 282

M

Major range
anisotropy 170
Major/Minor axis 33
Map composition
saving 237
Map elements
adding 47
Map production
in an example 42
Map tips
for a geostatistical layer 241
Matrices 53
Mean
comparison 197
explained 86
Mean error 35
Mean prediction error
cross-validation 190
validation 190
Mean stationarity 59
defined 282
Measurement error 32, 169
concepts 68
formulas 261
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Measurement error (continued)
microscale variation 168, 169
principles 169

Measurement error model
formulas 169

Measurement variation 169

Measures of location
first and third quartiles 84
mean 84
median 84

Measures of shape
kurtosis 85
skewness 85

Measures of spread
standard deviation 84
variance 84

Median
described 87
Voronoi map 87

Method properties
changing 240
using 240

Microscale variation 32

Minimize the statistical expectation 54

Minor range
anisotropy 170

Modeling process
compare the models 18, 79
explore the data 18, 79
fit a model 18
perform diagnostics 18, 79
represent the data 18, 79

Models
comparing

principles. See Comparing models
comparison concerns

optimality 197

validity 197

Multiquadric function
principles 126
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Multiquadric Spline

principles 128

Multivariate normal distribution 132

Negative standard errors 56
Neighborhood search

altering the map view 188

altering the shape of the neighborhood 186

anisotropy 181

changing the number of points 185

determining the prediction for a specific
location 187

directional autocorrelation 181

isotropy 181

major axis 181

maximum number of points 183

minimum number of points 182

principals 181

sectors 182

semimajor axis 182

semiminor axis 182

shape 181

viewing the neighborhood within a map 188

Normal distribution

applying transformations 137

Normal score transformation (continued)
cumulative distribution principles 201
direct approximation 201
formulas 251
Gaussian kernels 201
linear approximation 201
mathematics 251
modeling distributions 205
standard normal principles 201

Normal Score Transformation distribution

dialog
identifying controls 202

Nugget 28, 32
concepts 68
defined 282
local variation 68
measurement error 68
spatial variation 68

Nugget effect
formula 256

Nugget Error Modeling check box 32

Number of lags 171

Omnidirectional semivariogram 66
Ordered

bell-shaped curve 95

described 95

examining with the Histogram tool 96
Normal distributions

examining with the Normal QQPlot 97
Normal QQPIlot

cumulative distributions 88

described 97

explained 88
Normal QQPlot tool

using with distributions 96
Normal score transformation 137

back transformation 201

comparing to other transformations 203

values 132

Ordinary kriging 53, 54, 57, 138

binning 55
constant mean 54
creating a map 139
creating a prediction map 139
applying transformation 141
using detrending 142
creating a prediction map using validation
140
creating a prediction standard error map 140
cross-validation mathematical formulas 263
defined 282
empirical semivariogram 56
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Ordinary kriging (continued)

fitting a model 56

fitting a model in an example 72

fitting the spherical model in an example 73
g vector 57, 76

gamma matrix 76

in an example 26

kriging equations in an example 54
kriging standard error 58

kriging variance in an example 58

making a prediction 57

mathematical formulas 262

model 134

model described 138

principles 138

probability maps mathematical formulas 264
quantile maps mathematical formulas 264
random error 54

specifying the search neighborhood 75
trends 138

use of measurement error models 169
validation mathematical formulas 263
weight vector in an example 57

Outliers

general description 99
identifying global and local 101
looking for
with the Histogram tool 99
with the Semivariogram/Covariance Cloud
tool 99
with Voronoi Mapping 100
looking for global and local
explained 99
using the Histogram tool 101
using the Semivariogram/Covariance Cloud
tool 101
using the Voronoi map 102

Output Layer Information dialog box 17

INDEX

P

Partial sill 28, 68
defined 282
Pentaspherical model
formula 256
Platykurtic 85
Polygonal method
declustering 212
Polynomial
defined 282
Polynomials 22, 51
Power function
inverse distance weighted 114
Predicted kriging variance 58
Prediction 74
defined 282
making in an ordinary kriging example 57
Prediction error 35
Prediction map
as an output surface type 135
local polynomial interpolation 122
ordinary kriging 139
with cokriging 166
with disjunctive kriging 160
with global polynomial 122
with IDW 118
with inverse distance weighted 118
with local polynomial 125
with ordinary kriging
using detrending 142
while applying a transformation 141
with radial basis functions 129
with simple kriging 144
while applying a transformation 147, 148
while examining bivariate distribution 149
with the defaults 136
with universal kriging 151
Prediction map using validation
created with IDW 119
Prediction map with declustering
creating with disjunctive kriging 163

Prediction maps
types of 135
probability map 135
quantile map 135
standard error maps 135
Prediction methods
cokriging 135
kriging 135
Prediction of error map
creating wtih disjunctive kriging 161
Prediction of standard error of indicators map
creating with disjunctive kriging 162
Prediction standard error
defined 282
Prediction standard error map
creating with ordinary kriging 140
creating with simple kriging 146
creating with universal kriging 152
Prediction standard errors 37
cross-validation 190
validation 190
Prediction surface 53
creating 75
Prediction unbiased 54
Preferential sampling
declustering 211
weight data 212
Probability kriging
binary variable 156
constant mean 156
creating a probability map 157
indicator variable 156
mathematical formulas 270
model described 156
Probability map
as an output surface type 135
creating with indicator kriging 155
creating with probability kriging 157
creating with simple kriging 145
defined 282
Probability mapping 39
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Probability maps
creating with disjunctive kriging 161
ordinary kriging mathematical formulas 264
simple kriging mathematical formulas 266
universal kriging mathematical formulas 268

Q

QQPlot 35
cross-validation 190
defined 282
General 21
normal
in an example 20
principles 88
validation 190
Quantile 231
defined 282
Quantile maps
as an output surface type 135
creating with simple kriging 145
ordinary kriging mathematical formulas 264
simple kriging mathematical formulas 266
universal kriging mathematical formulas 268
Quartiles
first and third 84

R

Radial basis functions
defined 283

Radial basis functions (RBF) 52, 126
artificial neural networks 126
completely regularized spline 126
concepts 127
creating a map 129
creating a prediction map 129
formulas 248, 250
how it works 126
inverse multiquadric spline 126
multiquadric function 126
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Radial basis functions (RBF) (continued)
principles 126
spline with tension 52, 126
thin-plate spline 52, 126
weights 128
when to use 127
Radial sectors 65
Random errors 54, 69
cokriging 165
in an ordinary kriging example 54
principles 133
second-order stationarity 137
Random process 54
and ordinary kriging 54
Random processes
making predictions 59
with dependence 59
Random short-range variation 103
Range 28, 31, 68
detined 283
principles 168
Range of the model 73
Raster
exporting a geostatistical layer to 238
Rational quadratic model
formula 257
RBE. See Radial basis functions (RBF)
Regression
detined 283
Replication 60
Residuals 26
detined 283
modeling 21
simple kriging 143
trends 216
RMSPE. See Root-mean-square prediction
error
Root-mean-square error 35
Root-mean-square prediction error
comparison 38, 197
cross-validation 190, 191

Root-mean-square prediction error (continued)
inverse distance weighted 114
validation 190, 191

Root-mean-square standardized prediction error
comparison 38

S

Scale
and the geostatistical layer 235
Scatter plots
cross-validation 189
validation 189
Scatterplots 35
Search Direction tool 30
in an example 24
Search neighborhood 115. See also
Neighborhood search
accounting for directional influences 74
influences on shape 116
inverse distance weighted 117
local polynomial 123
sectors 74
Searching neighborhood
detined 283
Searching Neighborhood dialog
altering the map view 188
altering the shape of the neighborhood 186
changing the number of points 185
determining the prediction for a specific
location 187
Searching Neighborhood dialog box 33
identifying the controls 184
Second-order polynomial 21, 22, 51
detined 283
Second-order stationarity 59, 137
defined 283
kriging assumption 137
Sectors 33, 116
inverse distance weighted 116
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Selections
brushing 82
linking 82
Semicrossvariogram
detined 283
Semimajor axes 182
Semiminor axes 182
Semivariance 28
in an ordinary kriging example 56
Semivariance/Covariance
goal of 28
Semivariogram 28
altering the anisotropy parameters 177
binning 62
binning concepts 62
changing the lag size and number 179
changing the partial sill and nugget 179
circular model formula 256
combining models 71
creating the cloud 61
detined 283
directional 170
empirical semivariogram 91

exploring for directional autocorrelation 176

exponential formula 257
exponential model 67

fitting a model 67, 72

functions 171

Gaussian model formula 257
handling measurement error 180
hole effect model formula 257
J-Bessel model formula 258
K-Bessel model formula 257
modeling anisotropy 177

nugget 168

nugget effect formula 256

partial sill 68, 168
pentaspherical model formula 256
principles 168

quantifying spatial autocorrelation 65
radial sector method 65

INDEX

Semivariogram (continued)
range 68, 168
rational quadratic model formula 257
selecting a model 175
sill 68, 168
spherical model 67
spherical model formula 256
stable model formula 258
tetraspherical model formula 256
Semivariogram graph 29
Semivariogram model
circular formula 256
exponential formula 257
formulas 255
Gaussian formula 257
hole effect formula 257
J-Bessel formula 258
K-Bessel formula 257
nugget effect formula 256
pentaspherical formula 256
Rational quadratic formula 257
spherical formula 256
stable formula 258
tetraspherical formula 256
types of 67
Circular 67
Exponential 67
Gaussian 67
Hole Effect 67
J-Bessel 67
K-Bessel 67
Pentaspherical 67
Rational Quadratic 67
Spherical 67
Stable 67
Tetraspherical 67
Semivariogram surface 29
concepts 64
Semivariogram/Covariance Cloud tool 92
Semivariogram values
detined 283

Semivariogram/Covariance

general description 91

handling measurement error 180
Semivariogram/Covariance Cloud 91
Semivariogram/Covariance Cloud tool 91

bins 92

empirical semivariogram 91

exploring spatial structure 106

identifying outliers 99, 101

Lag Size 92

looking for directional influences 107

looking for outliers 99

Number of Lags 92

outliers 91

Search Direction 92

Semivariogram Surface 92

spatial autocorrelation 91

using for global and local outliers 99

using to explore directional influences 108

using to explore spatial structure 108
Semivariogram/Covariance dialog

changing the lag size and number 179

changing the partial sill and nugget 179
Semivariogram/Covariance dialog box

identifying the controls 174
Semivariogram/Covariance Modeling dialog box

16, 28

identifying the controls 174
Semivariograms

functions 168

selecting a model 175
Shifts 173
Short-range variation 26, 103

detined 283
Sill 31, 68

detined 283

nugget effect 168

measurement error 168
microscale variation 168
partial sill 168
value 73
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Simple kriging 143
constant mean 143
creating a prediction map 144
applying a transformation 147
applying a transformation with declusing
148
examine bivariate distribution 149
creating a prediction standard error map 146
creating a probability map 145
creating a quantile map 145
mathematical formulas 265
model described 143
predicting a new value for cross-validation
mathematical formula 265
prediction with measurement error
mathematical formula 265
probability maps
mathematical formulas 266
quantile maps
mathematical formula 266
residuals 143
trends 143
use of measurement error models 169
Skewness 85
Spatial autocorrelation 23, 53, 59, 62, 106
anisotropy 106
concepts 113
explained 106
isotropy 106
stationarity 106
Spatial covariation
using the Crosscovariance Cloud tool 111
Spatial dependence 54, 62
detined 283
Spatial modeling 61
Spatial structure 106, 108
exploring
with the Semivariogram/Covariance Cloud
tool 106
understanding through variography 108
using the Semivariogram/Covariance Cloud
tool 108
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Spherical model 28, 73
defined 284
formula 256
Spline interpolation
defined 284
Spline with tension 52
principles 126
Square root transformation. See
Transformations
Squared difference 53
Stable model
formula 258
Standard deviation
explained 85
Voronoi map 87
Standard error plot
cross-validation 190
validation 190
Standard errors 172
Standard errors map 135
Standard errors of indicators map 135
Standard normal distribution
cross-validation 190
validation 190
Standard prediction error
cross-validation 190
validation 190
Standardized error 35
Standardized root-mean-square prediction error
comparison 197
Stationarity 106
concepts 59
defined 284
intrinsic stationarity 59
replication 59
second-order stationarity 59
spatial autocorrelation 106
trends 103
Statistical values 132
continuous 132
Ordered Categorical 132
Unordered Categorical 132

Subsets
creating 79, 243
performing validation 244
Sum of the weighting 54
Summary statistics 84
Surface
defined 284
Surface types
overview 135
prediction map 135
probability map 135
quantile map 135
standard error of indicators map 135
standard errors map 135
Surface-fitting methodology 18
Surfaces
create using default settings 15
creating using ESDA tools 81
Symbology
and the geostatistical layer 220
changing the color interactively 229
changing the color scheme 229

T

Tetraspherical model
formula 256
Thin plate
principles 126
Thin plate sline 52
Third-order polynomial 51
Threshold 39, 153
Transformation
normal distributions 137
with histogram 82
with Normal QQPlot 82
Transformations 137
approximation methods
direct 201
Gaussian Kernels 201
linear 201
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Transformations (continued)
arcsine 200
arcsine transformations 137
back transformations 82
Box—Cox 200
Box—Cox transformation
log transformation 137, 200
checking for the bivariate normal distribution
206
comparing NST to other tra 203
constant variance 200
distributions and arcsine 95
distributions and Box—Cox 95
distributions and logarithmic 95
effects on predictions 82
logarithmic 200
modeling distributions 205
modeling distributions with NST 205
normally distributed 82
NST 201
comparing to arcsine 203
comparing to Box—Cox 203
comparing to log transformation 203
comparing to other transformations 203
cumulative distribution 201
direct approximation 201
Gaussian Kernels approximation 201
linear approximation 201
standard normal 201
primary variable 137
principles 137, 200
secondary variable 137
skewed data 82
standard normal distribution
cumulative distribution 201
trends 137
using 204
Transgaussian kriging 137, 200
Transparency
adding 47
and the geostatistical layer 220

INDEX

Trend
detined 284
Trend analysis 90
Trend Analysis tool
directional trends 90
general description 90
identifying global trends 105
in an example 21, 103. See also ESDA
tools: Trend analysis: explained
looking for global trends 105
polynomials 90
Trends 51, 69, 90
cokriging 165
deterministic method 103
fixed 216
geostatistical method 103
global. See also Global trends
nugget effect 103
ordinary kriging 138
principles 216
random errors 103, 216
random short-range variation 103
removal 26, 27, 28, 103, 137, 216
residuals 103, 216
setting the window size 218
simple kriging 143
spatial autocorrelation 103
stationarity 103
universal kriging 150

U

Unbiased predictions 54
Unbiased predictor 137
Unbiasedness 55
Unbiasedness constraint 55
Unimodal
defined 284
Univariate distribution
defined 284
Univariate normal 206

Univariate normal distribution
checking for with QQPlots 206
Universal kriging
constant mean 150
creating a prediction map 151

creating a prediction standard error map 152

mathematical formulas 267
model described 150

predicting a new value for cross-validation

mathematical formula 267
prediction with measurement error

mathematical formula 267
principles 150
probability maps

mathematical formulas 268
quantile maps

mathematical formulas 268
trends 150
use of measurement error models 169

Unordered

values 132

Vv

Validation
average standard errors 190

creating a prediction map using validation

using IDW 119
creating subsets 195, 243
detined 284
error plot 190
examining the predicted fit 193
mathematical formulas 263
mean prediction error 190
performing using subsets 244
performing validation 196
prediction standard error 190
principles 189
QQPlot 190

root-mean-square prediction error 190, 191

saving statistics to a file 194
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Validation (continued)
scatter plot 189
selecting a particular point 193
standard error plot 190
standard normal distribution 190
standard prediction errors 190
Values. See Statistical values
Variance 84
Variogram
defined 284
Variogram models 16
combining of 71
Variography 16, 131, 168
defined 284
goal of 62
Variography dialog box 174
identifying the controls 174
Vector format

exporting a geostatistical layer to 238

Vector g 55

Visualization
3D 50

Voronoi
general concepts 86
local influence 87
local outliers 87
local smoothing 87
local variation 87
maximum entropy 87
minimum entropy 87
quartile 87

Voronoi map
general concepts 86
local influence 87
local outliers 87
local smoothing 87
local variation 87

Voronoi Map tool
general description 86

identifying global and local outliers 101

looking tfor outliers 100
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Voronoi methods
cluster 87
entropy 87
finding outliers 102
interquartile range 87
mean 86
median 87
mode 86
simple 86
standard deviation 87

w

Weight 54
Weight vector
in an ordinary kriging example 57
Weighted sum 54
Weights
in an ordinary kriging example 57

YA

Zooming and panning a layer 223
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