Identifying complex interactions that modulate trait evolution

Natália Martínková

Institute of Vertebrate Biology CAS, Brno RECETOX, Masaryk University, Brno martinkova@ivb.cz

MOLAR SIZE CHANGE DURING ISLAND COLONIZATION

¹Photo: Andy Belshaw, flikr; Cucchi et al. 2014. Evolution.

MOLAR SIZE CHANGE DURING ISLAND COLONIZATION

¹Photo: Andy Belshaw, flikr; Cucchi et al. 2014. Evolution.

generations

Markov chain

heritable component

value depends on the previous value

changes between generations

mutation accumulation trait value in a child adds a random component

MARKOV CHAINS IN A RANDOM WALK

 $\mathcal{N}(0,\sigma^2)$

¹Smolinský et al. 2021. J. Vertebr. Biol.

¹Smolinský et al. 2021. J. Vertebr. Biol.

1D - TRAIT EVOLUTION WITH SPECIES DIVERGENCE

Fungal load (log10(ng cm-2))

Fungal load (log10(ng cm-2))

trait density in simulations

Fungal load (log₁₀(ng cm⁻²))

¹Zukal et al. 2016. Sci. Rep.

density of trait values

density of trait values

2D - MOVING ACROSS SPACE

¹Králová I. 2016. Master Thesis. MUNI.

each sequence has two geographic coordinates each coordinate evolves with Brownian motion as a trait

¹Králová I. 2016. Master Thesis. MUNI.

each sequence has two geographic coordinates each coordinate evolves with Brownian motion as a trait

¹Králová I. 2016. Master Thesis. MUNI.

¹Králová I. 2016. Master Thesis. MUNI.

TREE SQUIRREL DIVERGENCE AND DISPERSAL

distribution ranges in a grid with presence/absence data

modelled as evolution of discrete characters

50°E

3D - BIOTIC INTERACTIONS ACROSS SPACE

OTHER SPECIES INTERACTIONS INFLUENCE TRAIT EVOLUTION

¹Photo: Andy Belshaw, flikr; Cucchi et al. 2014. Evolution.

continuous trait, discrete space

low colonisation rate, trait convergence

low colonisation rate, trait convergence

low colonisation rate, trait convergence

NOT THAT I KNOW OF :(

THANK YOU FOR YOUR ATTENTION