

red PiP Im

PIP (Company Poly Implant Prosthese) scandal

- Timeline:
- 1991: PIP launched by Jean-Claude Mas
- 1997: PIP authorized to produce medical-grade silicone implants
- 2000: FDA warns about deviations from "good manufacturing practices" found at the PIP plant. Additionally, the company withdraws its hydrogel implants from the market when it cannot show they are safe.
- 2001: PIP starts using unapproved, ("in-house" formula) industrial-grade silicone in their implants
- 2009: Concerns surfaced in France when surgeons started reporting <u>abnormally high</u> <u>rupture rates</u>
- 2010: PIP was placed into <u>liquidation</u> after the French medical safety agency recalled its implants.
- 2011: The French government recommended that <u>30,000 women</u> with PIP implants seek removal of the implants as a precaution
- 2013: Mas <u>sent to prison</u> for four years, fined 75,000 euros, and banned for life from working in medical services or running a company.

Tissue Engineering
Nature Journal: "set of methods that can replace or repair damaged or diseased tissues with natural, synthetic, or semisynthetic tissue mimics. These mimics can either be fully functional or will grow into the required functionality."
"Tissue engineering is a <u>branch of regenerative medicine</u> , itself a branch of <u>biomedical engineering</u> .
Tissue engineering and regenerative medicine are concerned with the replacement or regeneration of cells, tissues (the focus of tissue engineers) or organs to restore normal biological function."
Encyclopedia Britanica: "Tissue engineering, scientific field concerned with the development of biological substitutes capable of replacing diseased or damaged tissue in humans."

Figure 20 Typical Phoenician dental restoration by anche work composed of carved dog or calf teeth joined by gold:

Biomedicine						
	ences, biology, a disease. The American	esp and genetics	ecially , to the unde dical Dictionary Co	with the applica biochemist rstanding, treati opyright © 2007, 200	try, ment, and p	molecular revention of
•	s and veter y, biology au direct pr history ar ne is able atment, g a less reg	from inary medic botanical nd microbio actical appli nd involves in to accompli	the sciences logy. While tr cation of med tself in new re ish.Biomedici en as more 'na ext.	ad field of study history , physiology, ge , chemis aditional medici dical knowledge, esearch to push ne may also refe atural' than othe	of netics, patho try, b ne is concer biomedicine the limits of er to a specif	human blogy, zoolog iochemistry, ned with the e looks at its what medici ic type of tre

Nanc	omaterials
•	 REGULATION (EU) 2017/745 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL nanomaterial' means a natural, incidental or manufactured material containing particles in an unbound state or as an aggregate or as an agglomerate and where, for 50 % or more of the particles in the number size distribution, one or more external dimensions is in the size range 1-100 nm;

Bioinspired

Nature Journal:

"Bioinspired materials are synthetic materials whose structure, properties or function mimic those of natural materials or living matter. "

Examples of bioinspired materials are light-harvesting photonic materials that mimic photosynthesis, structural composites that imitate the structure of nacre, and metal actuators inspired by the movements of jellyfish.

Medical device
 REGULATION (EU) 2017/745 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL "clinical evaluation means a systematic and planned process to continuously generate, collect, analyse and assess the clinical data pertaining to a device in order to verify the safety and performance, including clinical benefits, of the device when used as intended by the manufacturer" "clinical investigation means any systematic investigation involving one or more human subjects, undertake n to assess the safety or performance of a device" "clinical evidence means clinical data and clinical evaluation results pertaining to a device of a sufficient amount and quality to allow a qualified assessment of whether the device is safe and achieves the intended clinical benefit(s), when used as intended by the manufacturer" "clinical performance means the ability of a device, resulting from any direct or indirect medical effects which stem from its technical or functional characteristics, including diagnostic characteristics, to achieve its intended purpose as claimed by the manufacturer, thereby leading to a clinical benefit for patients, when used as intended by the manufacturer" "clinical benefit means the positive impact of a device on the health of an individual, expressed in terms of a meaningful, measurable, patient-relevant clinical outcome(s), including outcome(s) related to diagnosis, or a positive impact on patient management or public health"

22

Protein-surface interactions

Topographic atomic force microscopy images that illustrate the structural evolution of an adsorbed **cellulase layer on polystyrene** as a function of incubation time (shown in the figure labels).

Large aggregates and unaggregated proteins are observed at 1 min (top-left).

The aggregates reduce in size at 20 min (top-right) and, at 60 min (middle), they form a taller and less dense network structure.

At 3 h (bottom-right), protein aggregates are discernible in a denser layer of reduced height.

At 24 h (bottom-left), the adsorbed proteins have formed taller rod-like structures. The average height and root mean square (RMS) roughness are given for each image.

http://dx.doi.org/10.1016/j.colsurfb.2012.10.039

Protein-surface interactions				
Surface properties				
 Topography, chemical composition, hydrophobicity, heterogeneity and surface potential affect protein adsorption and adhesion. Proteins expose hydrophilic amino acids, which are readily available to 				
interact with material surfaces because physiological conditions involve aqueous environments.				
However, the interactions of hydrophobic surfaces with the hydrophobic domains of proteins lead to the strongest protein adsorption states.				
Protein affinity to charged surfaces is stronger when the pH of the environment is near the protein's isoelectric point due to decreased protein-protein interactions in solution, as proteins assume a neutral net charge.				
The distribution of charged residues on proteins and protein-protein interactions in solution therefore affect these adsorption events and their stability easily varies with the pH and ionic state of the culture media.				
The rate of protein unfolding accelerates protein–material interactions.				
Yet unfolding can also lead to protein denaturing and loss of protein stability.				
doi.org/10.1016/j.ymeth.2015.08.005				

Prote	eins 👔
•	The protein interface is a mediator of cell/material interactions. ECM proteins, adsorbed onto the material surfaces after implantation <i>in vivo</i> and from the culture media <i>in vitro</i> , are recognised by cells through integrins. Initial interaction leads to:
	 integrin clustering, internal recruitment of cytoplasm proteins, forming focal adhesions and mediating cell adhesion and contractility.
•	 Physicochemical properties (chemistry, topography and mechanics) play an important role on the adsorption of proteins onto the material surface and influence: protein surface density,
	 Protein conformation, Protein distribution.
	doi.org/10.1016/j.actbio.2018.07.016

Transport živin	
•	 In vivo jsou tkáně obvykle vzdáleny do 100μm od kapiláry dodávající živiny. Z toho by se mělo vycházet při přípravě struktur zajišťujících mikroenvironment v rámci jednotlivých podjednotek tkáně.
•	Subjednotka by tak měla představovat kostku o straně 100μm což představuje cca 500 – 1000 buněk (chrupavka má jen 1 buňku na 100 μm ³).
•	 Pokud je cílem tkáň o větších rozměrech pak jsou buňky vzdálené více než 100μm vystaveny nedostatečnému zásobování živinami a odvodem odpadních látek. Důsledkem je vznik hypoxických a nekrotických center. <i>In vivo</i> je tento problém řešen pomocí vlásečnic. <i>In vitro</i> musí být tento problém řešen konstrukcí scaffoldu (porositou) a bioreaktoru (tokem média).

Transport živin
Živiny a plyny jsou transportovány pomocí:
🔍 Toku živného média.
🔍 Difuzí.
Rychlost toku média: <i>in vivo</i> je absorpce kyslíku 25 – 250 μmol 0 ² /cm ³ /h a průtok tekutiny (pefusion rate) 0,07 ml/cm ³ /min což je založeno na průměrné koncentraci buněk 500 milionů buněk na cm ³ .
Kyslík
Fyziologická koncentrace ~ 0.2 mM
Spotřeba 0.05 – 1 μmol/10 ⁶ buněk/hodinu
Glukoza a další primární metabolity
Spotřeba 0.05 – 1 μmol/10 ⁶ buňěk/hodinu
Amino kyseliny, růstové faktory
Fyziologická koncentrace v řádech nM – μM
Spotřeba 0.01 – 1.0 nmol/10 ⁶ buněk/hodinu
Odpadní metabolity – kysleina mléčná, amoniak
Odvod 0.01 – 0.2 μmol/10 ⁶ buněk/hodinu
Průtok by tedy měl být zajištěn zhruba 50 – 400 μL/min/10 6 buněk.

• Každá tkáň vyžaduje odlišné další mechanické stimuly:

- Pulsující radiální stres tubulárního scaffoldu osazeného hladkosvalovými buňkami zlepšuje strukturní organizaci umělých cév. Dále zvyšuje produkci elastinu čímž zlepšuje mechanické vlastnosti graftu.
- Dynamická deformace stimuluje syntézu glycosaminoglykanů chondrocyty a zlepšuje tak mechanické vlastnosti chrupavky.
- Rotační tlaky mesenchymálních progenitorových buněk v kolagenové matrici vedou k spojování buněk a formaci orientovaných kolagenových vláken.
- Mechanické stlačování a cyklický hydrostatický tlak ovlivňuje významně genovou expresi a produkci extra celulární matrix.

• Vliv na **chrupavku** *in vivo* i *in vitro* v kultuře chondrocytů je ovlivňována:

- Komprese mění buněčnou proliferaci, metabolismus pojivové tkáně a obsah pojiva.
- Statický tlak způsobuje trvalou deformaci tkáně zároveň inhibuje syntézu pojiva.
- Dynamický tlak o určité amplitudě a frekvenci způsobující tok tekutiny v tkáni a její deformaci stimuluje syntézu pojiva.

Typy bioreaktorů		
•	Existuje celá řada různých typů. V následující části budou uvedeny jen vybrané příklady. Uvedené výhody a nevýhody jsou obecné a vždy závisí na konkrétní tkáni jež má být generována a scaffoldu.	

Spin	ner flasks
	Buňky jsou transportovány na povrch i do scaffoldu pomocí konvekce. Míchání média zvyšuje povrchový transfer média a podporuje růst buněk nicméně generuje turbulence které mohou mít negativní dopad na tvorbu tkáně.

Bone
 Aging-related changes such as excessive remodeling. Consequent fractures can lead to significant mortality. A primary factor is bone quality - characteristics of the bone matrix nano- and microstructure that can influence mechanical properties. Traditional thinking focused on bone quantity described by the bone-mass or bone mineral density (BMD), defined as the amount of bone mineral per unit cross-sectional area. For example, the elevation in bone-remodeling activity, concurrent with menopause in aging women, can lead to osteoporosis, a condition of low bone mass associated with an increased risk of fracture. Reality – more complicated proces involving not only BMD but other factors such as hierarchy.
DOI: 10.1146/annurev-matsci-070909-104427

 Interventions: "gold standard" for intervention - graft materials - limited by supply. Fabrication methods with limited control of the pore shape, architecture, porosity, or interconnectivity. Extrusion-based processes - fabrication accuracy on tens and hundreds of micrometers Freeze drying Fiber bonding Particulate/salt leaching Emulsification Phase separation/inversion

For metal bone substitutes:	Table 1 Biomate	rial abbreviations and material group	
 selective laser melting (SLM), selective laser sintering (SLS), 	Biomaterial abbreviation	Full form of biomaterial	Biomaterial group
 sintering, perforating titanium sheet, capsule-free hot isostatic pressing (CF-HIP). Polymer and ceramic Porogen leaching, freeze drying, 3D printing of successive fibre/strut layers, electrospinning, gas foaming. 	CaP HA MBG β-TCP Ti6Al4V TiNi TT CSNF Col CG CG DEF HFIP PA PDMS PLGA PPF	Calcium phosphate Hydroxyapatite Mesoporous bioactive glass β-Tricalcium phosphate Titanium Titanium nickel Trabecular titanium Chitosan network fibres Collagen Collagen-glycosaminoglycan Diethyl fumarate Hexafluoroisopropanol Polyacrylamide Poly(dimethylsiloxane) Poly(lactide-co-glycolide) Poly(propylene carbonate) Poly(propylene fumarate)	Ceramic Ceramic Ceramic Metal Metal Polymer Polymer Polymer Polymer Polymer Polymer Polymer Polymer Polymer Polymer Polymer Polymer Polymer
	PPP PCL SF SPCL TG TPU PDLLA	Poly(p-caprolactone) Silk fibroin Starch poly(e-caprolactone) Thermoplastic gelatin Thermoplastic polyurethane Poly(p,1-lactic acid)	Polymer Polymer Polymer Polymer Polymer Polymer

/larke	rs of bone	regeneration			
		generation, cells proliferate and differ hat becomes mineralized.	entiate into osteoblasts which deposit a		
(Proliferation are able to r 		ng and consists mainly of cell division. Cells		
(ration, cells start to differentiate into k, and the release of alkaline phosphatas	osteoprogenitor cells until the end of the e (ALP) increases.		
(ks after the differentiation stage, ostend secreted by the cells, indicating the pr	ocalcin (OCN) and osteopontin (OPN) are esence of osteoblasts.		
(When the collagen matrix is synthesized by osteoblasts, biomineralization is initiated and mineral crystals are formed within the collagen matrix.				
	vessels (ang to the cells	iogenesis). These vessels create a vascul and developing tissue within the bone s bone regeneration and direct the	n of cells, blood vessels form from existing ar network to provide oxygen and nutrients ubstitute. This network provides stem cells differentiation of endothelial cells and		
	Osteogenic markers	Full form of marker	Expressed by		
ALP	bienation	Alkaline phosphatase	Osteoprogenitor		
RunX-2		Alkanne phosphatase	Osteoprogenitor, osteoblast		
OPN		Osteopontin	Osteoblast		
OCN		Osteocalcin	Osteoblast		
OPG		Osteoprotegerin	Osteoblast, inhibits bone resorption		
Calcium		Collegen tract	Osteoblast		
Col1 VEGF		Collagen type 1 Vascular endothelial growth factor	Organic matrix of bone, synthesized by osteoblast Growth factor blood vessels		
BSP		Bone sialoprotein	Mineralized tissue		
	tb00741h				

Pore	e shape
۰	The geometry of pores within a bone substitute can be, among others, spherical, rectangular, square, hexagonal or trabecularlike.
	 (a) Titanium; (b) Starch poly(ɛ-caprolactone); (c) Poly(lactide-<i>co</i>-glycolide); (d) bioactive glass; (e) Poly(propylene fumarate); (f) collagen-apatite; (g) Mesoporous bioactive a) a) b) b)
DOI: 10.10	g as/cpt/cmstp

Bone tissue engineering - Macrostructure - Multioriented hollow channel structures
Multioriented hollow channel structures exhibited improved bone regeneration:
Hollow channel structures led to a quick release of ions from the scaffolds.
Improved degradation offered more space for the formation of new bone tissue.
Hollow tube provided a channel for oxygen and nutrition transport and cell migration, thus benefiting the improvement in bone formation.
Bioactive ions released from the hollow-pipe-packed silicate bioceramic scaffolds can also promote angiogenesis by inducing the migration of endothelial cells.
Facilitate the infiltration of host blood vessels into the hollow channels and also improve the delivery of stem cells and growth factors, thus contributing to further tissue regeneration.
Promote osteoclast/immune cell invasion.
Size 500jm 500jm 500jm 500jm
doi.org/10.1016/j.actbio.2018.08.026

Bone tissue engineering – bioceramic scaffolds					
Calcium phosphate bioceramic scaffolds:					
Certain calcium phosphate ceramics are osteoinductive in the absence of supplements.					
Unadeqate mechanical property limits the clinical application.					
Calcium silicate bioceramic scaffolds CS (CaSiO3)					
Bioactive glasses					
Hydroxyapatite (HA) (Ca10(PO4)6(OH)2)					
Chemical composition same as that of the main bone components					
Leading to positive influences on adhesion and proliferation of osteoblasts.					
Slow degradation rate and poor mechanical strength as well as fracture toughness of pure HA hinder complete bone formation and possibly increases the risk of infection.					
combined with different compositions like ZrO ₂ , carbon fiber, and Al ₂ O ₃ to improve the mechanical characteristics. ZrO ₂ , carbon fiber, and Al ₂ O ₃ are bioinert materials that reduce the bioactivity of HA significantly.					
 combined with natural polymers – such as polylactide-co- glycolide acid (PLGA) – favorable biodegradability and good biocompatibility. 					

